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Minimum Lk path partitioning—An illustration of the Monge property

Pei-Hao Hoa, Arie Tamirb, Bang Ye Wua,∗
aDepartment of Computer Science and Information Engineering, Shu-Te University, YenChau, KaoShiung 824, Taiwan, ROC

bDepartment of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University, Israel

Received 18 March 2007; accepted 19 March 2007
Available online 4 July 2007

Abstract

We investigate the problem of cutting a given sequence of positive real numbers into p pieces, with the objective of minimizing the Lk norm
of the sums of the numbers in these pieces. We observe that this problem satisfies a Monge property, and thus derive fast algorithms for it.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let S = (x1, . . . , xn) be a sequence of n positive real
numbers. Given a positive integer p and a real k�1, we
consider the problem of partitioning S into p nonempty
subsequences {S1, S2, . . . , Sp} of S, of consecutively in-
dexed numbers, such that the Lk norm is minimized. For-
mally, a p-partition � = {S1, S2, . . . , Sp} of S is defined
by a set of indices {h(1), h(2), . . . , h(p), h(p + 1)}, sat-
isfying 1 = h(1) < h(2) < · · · < h(p) < h(p + 1) = n + 1,
where Sj = (xh(j), xh(j)+1, . . . , xh(j+1)−1), for j = 1, . . . , p.
The Lk norm of � is defined by

∑
1� j �p|�(Sj ) − �|k ,

where �(Sj ) = xh(j) + xh(j)+1 + · · · + xh(j+1)−1, and
� = (

∑
1� j �p �(Sj ))/p = (

∑
1� i �n xi)/p. The L∞ norm of

� is defined by max1� j �p|�(Sj ) − �|.
The problem is known as the minimum Lk path partitioning

problem [9,10,13,15], in which the input numbers are thought
of as the weights of vertices of a path. This path equiparti-
tioning problem has several applications. For example, in im-
age processing [10] we may want to transform a picture of n
gray-levels into p gray-levels (p < n). The transformation can
be done by cutting an n-vertex path into p subpaths. If the ith
vertex of the path is in the jth subpath, all pixels of gray-level
i will be assigned a new gray-level j. One hopes that, in the
resulting picture, the number of pixels of different gray-levels
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are as equal as possible. The Lk norm of a partition is a measure-
ment of how equal a partition is. For example, the L2 norm is
actually the variance of the numbers of pixels of all gray-levels.

The minimum Lk path partitioning problem for any finite
constant k, as well as k = ∞, can be modeled by a recurrence
equation, and solved in O(pn2) time by using dynamic pro-
gramming. For some values of k more efficient algorithms are
known. Specifically, an O(pn)-time algorithm for the L1 norm
case is presented in [13,15], and an O(pn log p) time algorithm
for the L∞ norm is reported in [9]. We also cite [10], where a
related equipartition problem, called the most uniform path par-
titioning problem was introduced and solved in O(pn2)-time.
In this model the objective is to minimize the difference be-
tween the maximum and the minimum weights of the subpaths.

In this note we show that for any real number k�1, the mini-
mum Lk path partitioning problem can be solved in O(pn) time
by applying the algorithms developed in [1,4,5,7,16]. Specifi-
cally, we illustrate that the above partitioning problem satisfies
the well known convex Monge property.

In the last section we briefly discuss the complexity of solv-
ing some related partitioning problems, including some in-
stances of the minimum Lk path partitioning problem, with
0 < k < 1.

2. The Monge property of the Lk path partitioning
problem, k�1

In the following, we relax the above definition of � as
� = (

∑
1� i �n xi)/p, and instead assume that � is any real
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number, which is independent of the p-partition that we select.
In particular, � can be any constant which is independent of
the elements in S, e.g., � = 0.

For i = 1, . . . , n, and j = 1, . . . , i, define c(i, j) to be
the minimum Lk cost of partitioning the prefix subsequence
(x1, x2, . . . , xi) into j consecutive parts. Set c(i, j) = ∞ if
j > i. For r < i, let Xri = xr+1 + xr+2 +· · ·+ xi . By definition
c(i, 1)=|X0i −�|k for each i�n, and for 1 < j � i, we clearly
have

c(i, j) = min
r<i

{c(r, j − 1) + |Xri − �|k}. (1)

Using dynamic programming, we can obtain c(n, p), the op-
timal solution value to the model, by iteratively computing
c(i, j) for j = 2, . . . , p, and i = j, . . . , n. The time complex-
ity is O(pn2). Note that Xri for any 0�r < i�n, can be ob-
tained in constant time after a linear time preprocessing stage
for computing the prefix sum X0i for each i�n.

The above algorithm iteratively computes c(i, j) with j vary-
ing from small to large. Therefore, we can assume that all the
values c(i, j −1), i =1, . . . , n, are already available when con-
sidering a specific j. We will next show that for each 1 < j �p,
all the terms c(i, j), 1� i�n, can be found in O(n) time. That
will result in an O(pn) algorithm for the minimum Lk path
partition problem. The improvement is implied by observing
that the function |Xri − �|k satisfies the following quadrangle
(supermodular) inequality, also known as the convex Monge
property. (We follow the definitions in [5]. Note that the defini-
tions of convexity and concavity in terms of the Monge prop-
erty have been interchanged in some references.)

Definition 1. A real function w(a, b) defined on the integers
1�a�b�n has the convex Monge property if w(a, p) +
w(b, q)�w(b, p)+w(a, q) for all a�b�p�q. It has the con-
cave Monge property if w(a, p)+w(b, q)�w(b, p)+w(a, q)

for all a�b�p�q.

Lemma 1. Let f be a real convex function defined on the set
R of real numbers. Then the function w(r, i)= f (Xri) satisfies
the convex Monge property.

Proof. For all 0�a�b�p�q �n, the quadrangle (convex)
inequality w(a, p)+w(b, q)�w(b, p)+w(a, q) is equivalent
to w(b, q)−w(b, p)�w(a, q)−w(a, p), which, by definition,
is equivalent to

f (Xbq) − f (Xbp)�f (Xaq) − f (Xap).

The latter inequality follows from the convexity of the func-
tion f, and the facts that Xbq − Xbp = Xaq − Xap, and Xbq

�Xaq . �

To prove our claim that the function w(r, i) = |Xri − �|k
satisfies the convex Monge property, we observe that the real
function f (y)=|y−�|k is convex for any constants � and k�1.

Finally, since the cost function in (1) satisfies the convex
Monge property, the algorithms in [1,4,5,7,16] can be applied
to the problem.

Theorem 2. For any real constants � and k�1, the minimum
Lk path partition problem can be solved in O(pn) time.

3. Related models

We briefly comment on the solvability of related path parti-
tioning problems.

First consider the Lk path partitioning problem when
0 < k < 1. In this case the real function f (y) = |y − �|k is
concave over the interval [�, ∞), as well as over the interval
(−∞, �]. However, it is not globally concave. Nevertheless, if
� = 0, the concavity of f (y) = yk over the nonnegative real
ray implies that in this case, the function w(r, i)=Xk

ri satisfies
the concave Monge property. Hence, we can use the algorithm
in [8] to solve the respective model.

Theorem 3. For any real constants, 0 < k < 1, and
��min1� i �n xi , the minimum Lk path partition problem can
be solved in O(pn � (n)) time. (�(n) is the functional inverse
of the Ackermann’s function.)

Next consider the L∞ path partitioning model. As men-
tioned above, an O(pn log p)-time algorithm for this model
(with � = (

∑
1� i �n xi)/p), is reported in [9]. We note that if

� = 0, the model is actually solvable in optimal O(n) effort
by the algorithms in [2,3]. In fact, if all the prefix sums X0i ,
i = 1, . . . , n, are already known, this minmax problem can be
solved in O(p2 log2 n) time by adapting the algorithm in [12].
The latter bound is sublinear in n for relatively small values of
p, i.e., p = o(n1/2/ log n). In the context of general minmax
(L∞ norm) path p-partitioning models, the reader is referred
to [11,14].

For applications of the Monge property to other path parti-
tioning problems see [6].
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