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Abstract. A unified framework is applied to solving various sequence
comparison problems for run-length encoded strings. All of these algo-
rithms take O(min{mn′, m′n}) time and O(max{m, n}) space, for two
strings of lengths m and n, with m′ and n′ runs, respectively. We assume
the linear-gap model and make no assumption on the scoring matrices,
which maximizes the applicability of these algorithms. The trace (i.e., the
way to align two strings) of an optimal solution can also be recovered
within the same time and space bounds.

1 Introduction

We consider how to compare the similarity of two run-length-compressed strings
in this paper. Let Σ be an alphabet with a constant number of symbols. A string
like ak for any a ∈ Σ and k ∈ IN is called a run. Strings can be compressed by
runs. For example, aaaabbbaa can be compressed to (a, 4)(b, 3)(a, 2) as three runs
in the run-length encoding. Let x and y be two strings over Σ with lengths m and
n, respectively. Suppose x has m′ runs and y has n′ runs. In this paper, we show
that the following problems can be solved in O(m′n) time and O(n) space under
a unified framework: (A) the string edit distance problem; (B) the pairwise global
alignment problem; and (C) the pairwise local alignment problem. We assume
the linear-gap model, and the scoring matrices can be arbitrary.

Two special cases of (A) and (B) are the LCS (Longest-Common-Subsequence)
metric and the Levenshtein metric [24,18]. For the LCS metric, Bunke and
Csirik [8] first presented an O(m′n + mn′) time algorithm. It is further im-
proved by Apostolico et al. [4] in time O(m′n′ lg(m′n′)), and by Mitchell [22]
in time O((m′ + n′ + d) lg(m′ + n′ + d)) where d is the number of matches of
runs (in the worst case d = O(m′n′)). Around 2002, three groups independently
made a break through on this problem. Arbell et al. [5] solved the case for the
Levenshtein metric, which is an edit distance problem with unit cost, in time
O(m′n + mn′); Mäkinen et al. [21] solved the general edit distance problem,
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under the assumption that the distance matrix is nonnegative and satisfies the
triangle inequality, in time O(m′n + mn′); Crochemore et al. [11] solved the
global alignment problem under the linear-gap model, and the latter can be eas-
ily converted to solving the general edit distance problem, also in O(m′n+mn′)
time. Finally, Liu et al. [19,20] proposed an O(min{m′n, mn′})-time algorithm
for the Levenshtein and LCS metrics.

The paper of Crochemore et al. [11] originally solves sequence alignment prob-
lems under the Lempel-Ziv encoding. Strings being compressed by LZ78 have
nice recursive structures. They employed the Monge property (which will be ex-
plained in Sect. 3) to solve the global and the local alignment problems in both
O(hn2/ lg n) time and space where 0 < h ≤ 1 is the entropy of input strings.
The trace [24] can also be recovered in the same time and space bounds. This
technique was also applied to run-length compressed strings for the global align-
ment problem. We remark that the approach of [11] has several advantages.
First, its assumption is rather general. It assumes the linear-gap model with un-
restricted scoring matrices. Second, this framework has great potential to solve
other related problems such as the local alignment problem.

We combine techniques from [11] and [19], and improve several results of
[21,11,19,20]. In addition, we propose an algorithm for the approximate match-
ing under the run-length encoding. Let T be a long text, which is run-length-
compressed into n′ runs. Let P be a pattern with m characters. This problem
asks one to find out all occurrences of P in T such that their distances are under
some given threshold. Our algorithm takes O(n′m) time and O(m) space, which
improves the previous O(n′mm′)-time algorithm in [21]. Furthermore, we do not
need the entries in a distance matrix and the threshold for approximate match-
ing to be bounded by constants, which is implicitly assumed in the algorithm
proposed by [21]. A comparison of related results is listed in Table 1.

Table 1. A comparison of related results

Problem In This Paper Previous Results
Edit distance/
Global alignment

O(min{m′n, mn′}) timea O(m′n + mn′) time [11]a

O(min{m′n, mn′}) time[19,20]b
Local alignment O(min{m′n, mn′}) timea only for LZW compression [11]c
Approximate
matching O(n′m) timea O(n′mm′) time [21]d

a Linear gap cost with unrestricted scoring matrices.
b Limited to Levenshtein and LCS metrics.
c To the best of our knowledge.
d Assume the distance is a metric and the approximate threshold is a constant.

The organization of this paper is as follows. We explain the basic idea in Sect. 2
and give a quick review on related preliminaries in Sect. 3. Then subsequent
sections are followed for each problem. Finally, a conclusion ends in Sect. 8.
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2 The Idea

We integrate several important techniques from [11] and [19]. Let x be a run-
length-compressed string which is put to the left side of the edit graph [12].
Let y be an uncompressed string which is put on the top. The edit graph is
divided into several regions, and in each region, only the values on borders are
computed. However, unlike [11,5,8,21] that partition the edit graph into blocks,
we use strips. A strip R is a region defined by a run of x and the whole y (see
Fig. 1). Let OR(j) be the jth cell in the last row of R. Let IR(i) be the ith cell
in the last row of the region prior to R. We will show that, for each run of x, all
values of OR can be computed in O(n) time based on values of IR. Accordingly,
the last row of the edit graph can be computed in overall O(m′n) time.
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...

Fig. 1. A strip and its input/output borders

More specifically, let DIST (i, j) be the cost of the optimal path starting from
IR(i) and ending at OR(j) for 1 ≤ i ≤ j ≤ n. Define OUT (i, j) = IR(i) +
DIST (i, j). Hirschberg [13] observed1 that

OR(j) = min
1≤i≤j

OUT (i, j) for 1 ≤ j ≤ n . (1)

The matrix OUT defines a Monge matrix [2]. Therefore, all of the minima in (1)
for all j can be determined in O(n) time by applying the SMAWK algorithm [1].
DIST and OUT matrices have also been used elsewhere, see [11,3,7,14,16,23,17].
Related preliminaries are given in the next section.

3 Preliminaries

Definition 1. An m × n matrix M = (ci,j)m×n is called Monge iff

ci,j + ci′,j′ ≤ ci,j′ + ci′,j (2)

for all 1 ≤ i ≤ i′ ≤ m and 1 ≤ j ≤ j′ ≤ n.

Symmetrically, we can define an inverse Monge matrix if (2) is replaced by
ci,j+ci′,j′ ≥ ci,j′ +ci′,j . Monge matrices have many nice properties and important
applications. For surveys and recent applications, see [9,6,10].

Lemma 1 (Aggarwal and Park [2]). All of the row minima and column
minima in an m×n Monge or inverse Monge matrix can be determined in time
1 Hirschberg did not write in this form. It is borrowed from [11].
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O(m + n), provided that each entry in the matrix can be accessed in time O(1).
(When there are many minima in a row or column, we can simply choose the
first one.) Dually, all of the row and column maxima can also be found in the
same time bound.

The algorithm for Lemma 1, which is called the SMAWK algorithm, was first in-
vented in [1] by applying the prune-and-search technique. Indeed, Aggarwal et al.
in [1] defined a larger class called the total monotonicity. However, in real applica-
tions Monge or inverse Monge is sufficient for most cases. Extensions to higher di-
mensional arrays and on-line algorithms can be found in [2] and [6], respectively.

Lemma 2 (Aggarwal and Park [2]). The matrices DIST and OUT used in
(1) are Monge. When changing min to max, the corresponding DIST and OUT
matrices are inverse Monge.

In Appendix A, we give an informal proof of Lemma 2. As a consequence, if
entries in DIST can be accessed in O(1) time, from Lemmas 1 and 2, all cells of
OR can be evaluated in O(n) time for each strip R. In the following four sections,
we will show how to define appropriate OR, IR, DIST , OUT for various problems
related to sequence alignment under this framework. The key point is on how to
keep DIST (i, j) accessible in O(1) time.

4 Edit Distance with Unrestricted Scoring Matrices

Let E(x, y) be the edit distance of strings x and y in the linear-gap model
with scoring matrix δ. It accounts for the minimum number of weighted edit
operations (i.e., the insertions, deletions, and substitutions) that transform x
into y.

The traditional way to compute the edit distance is through the following
recurrence relation:

E(ua, vb) = min {E(ua, v) + δ(−, b), E(u, vb) + δ(a, −), E(u, v) + δ(a, b)} (3)

with base cases E(ua, ε) = E(u, ε) + δ(a, −), E(ε, vb) = E(ε, v) + δ(−, b), and
E(ε, ε) = 0 where ε is the empty string and − is the gap. We can replace (3) by

E(x′ak, y[1..j]) = min
0≤i≤j

{
E(x′, y[1..i]) + E(ak, y[(i + 1)..j])

}
(4)

when x = x′ak is run-length compressed and ak is the last run of x. In fact, (4)
is an instantiation of (1): set IR(i) = E(x′, y[1..i]) and DIST (i, j) = E(ak, y[(i+
1)..j]). All we have to do is to show that E(ak, y[(i + 1)..j]) can be evaluated in
constant time, and consequently, the Monge paradigm described in Sects 2 and
3 ensures the O(m′n) time and O(n) space complexity.

For simplicity, let us first assume that the cost of an insertion or deletion is
d ≥ 0 and a substitution is s ≥ 0. Then we have

Lemma 3. Let a ∈ Σ and z ∈ Σ∗. Let the length of z be |z| and the number of
occurrences of a in z be σa(z). Then
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E(ak, z) = d max{|z|, k} − (d − s)min{|z|, k} − s min{σa(z), k} if 0 ≤ s ≤ 2d
(5)

and

E(ak, z) = d(|z| + k) − 2d min{σa(z), k} if s ≥ 2d ≥ 0 . (6)

Proof. The edit distance of two strings is s×α+d×(β+γ) whereα, β, and γ are the
numbers of substitutions, insertions, and deletions, respectively. Since the string
ak contains identical letters, these numbers can be easily counted. Suppose s ≤ 2d;
then γ+β = max{|z|, k}−min{|z|, k} and α = min{|z|, k}−min{σa(z), k}. Hence
(5) follows. Suppose s ≥ 2d; then any substitution can be replaced by a deletion
followed by an insertion, and thus, α = 0 and β + γ = |z| + k − 2 min{σa(z), k},
the last term is the number of matches. Hence (6) follows.

We can spend O(n) time to perform a linear scan on y in order to keep track
of σa(y[1..j]) for 0 ≤ j ≤ n, where σa(y[1..0]) = σa(ε) = 0. Based on this
preprocessing and the identity that σa(y[(i + 1)..j]) = σa(y[1..j]) − σa(y[1..i]),
Lemma 3 can be done in O(1) time by instantiating z by y[(i + 1)..j].

Analysis of the time and space complexity. The preprocessing of σa(y[1..j]) for
0 ≤ j ≤ n takes O(n) time and space, for each run in x. After this, each
DIST (i, j) and OUT (i, j) can be accessed in O(1) for 1 ≤ i ≤ j ≤ n. Then
applying the SMAWK algorithm on OUT matrix to find all of the column minima
takes again O(n) time and space. Note that the SMAWK algorithm need not
evaluate all entries of the OUT matrix; it only scans O(n) of them. Therefore, by
using O(n) time and space, we can advance the computation of the edit graph
by a run of x. Hence the overall computation of E(x, y) takes O(m′n) time and
O(n) space. The time can be reduced to O(min{m′n, mn′}) by choosing E(x, y)
or E(y, x) according to which one costs less, and the corresponding space is O(n)
and O(m), respectively.

As for a general scoring matrix, Lemma 3 can be extended smoothly when the
size of the alphabet Σ is bounded. Let us reconsider the settings in Lemma 3,
except now the weight for each edit operation is determined by δ. The following
greedy algorithm can evaluate E(ak, y[(i + 1)..j]) for each i and j in O(1) time.
The evaluation of E(ak, z) inquires either to assign every a in ak to a character in
z or to delete itself. For those unmapped characters in z, insertions are applied.
Define δ′(a, b) = min{δ(a, b), δ(a, −)+δ(−, b)} for all b ∈ Σ (here a and b may be
the same character). That is, if a substitution cannot be better than a deletion
followed by an insertion, we never use it. Since the alphabet is bounded, without
loss of generality, we can assume δ′(a, b1) ≤ δ′(a, b2) ≤ · · · ≤ δ′(a, b|Σ|) for all
bt ∈ Σ. Hence this provides a priority to choose the mate for each a in ak to z
by b1 ≺ b2 ≺ · · · ≺ b|Σ| ≺ −. Let the occurrences of bt in z be σbt(z). Also, set
σ−(z) be k, which serves as the sentinel. Hence there exists u between 1 and |Σ|
such that

∑
1≤t≤u σbt(z) ≥ k but

∑
1≤t≤u−1 σbt(z) < k (here b|Σ|+1 = −). Let

A + B = σbu(z) such that A +
∑

1≤t≤u−1 σbt(z) = k. Then the value of E(ak, z)
equals to
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A ·δ′(a, bu)+B ·δ′(−, bu)+
∑

1≤t≤u−1

δ′(a, bt) ·σbt(z)+
∑

u+1≤t≤|Σ|
δ′(−, bt) ·σbt(z) ,

which generalizes Lemma 3 and can be computed in O(u) = O(|Σ|) = O(1)
time.

Theorem 1. The edit distance problem in the linear-gap model with unrestricted
scoring matrices can be solved in O(min{mn′, m′n}) time for run-length-encoded
strings x and y with lengths m and n, being compressed into m′ and n′ runs,
respectively.

5 Global Alignment Algorithm

The algorithm for the global alignment problem is simply the dual of the one
described in Sect. 4. In this case, (1) is modified into

OR(j) = max
1≤i≤j

OUT (i, j) for 1 ≤ j ≤ n ,

and the inverse Monge property holds for the OUT matrix. Each entry in the
OUT matrix can be accessed in O(1) time by a similar greedy algorithm for the
edit distance problem, as long as the alphabet is bounded. Then all of the column
maxima, which are the values of OR, can be found by the SMAWK algorithm
in O(n) time and space. This process can be continued, and finally the value of
the optimal global alignment of x and y can be obtained in O(m′n) time and
O(n) space. The trace of an optimal alignment can also be found in the same
time and space bounds, by applying Hirschberg’s technique [13].

Theorem 2. The global alignment problem in the linear-gap model with unre-
stricted scoring matrices can be solved in O(min{mn′, m′n}) time for run-length-
encoded strings x and y with lengths m and n, being compressed into m′ and n′

runs, respectively.

6 Local Alignment Algorithm

In the local alignment problem, the goal is to identify a substring x′ of x and a
substring y′ of y such that the global alignment score of x′ and y′ is maximized.
Let L(x, y) denote the score of the optimal local alignment for x and y ending
at the ends of x and y. The traditional approach evaluates L(x, y) through the
following recurrence relation:

L(ua, vb) = max {0, L(ua, v) + δ(−, b), L(u, vb) + δ(a, −), L(u, v) + δ(a, b)} (7)

with base cases L(ua, ε) = max{0, L(u, ε)+ δ(a, −)}, L(ε, vb) = max{0, L(ε, v)+
δ(−, b)}, and L(ε, ε) = 0. The score of the optimal local alignment for x and y
can be obtained by finding the maximum over all cells in the induced alignment
graph.

There are two kinds of local alignment paths in the alignment graph. The first
kind categorizes paths fully contained in a strip. The second kind has paths that
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Fig. 2. An alignment inside a strip can always be moved down (or up) to touch the
border in a local alignment graph

cross at least one border of a strip. Since the left side of a strip is always a whole
run of x, paths of the first kind in fact can be moved down or up to touch the
bottom or top of the strip (see Fig. 2 for an illustration). Hence it has at least one
incarnation of the second kind, and thus can be ignored during the computation.

Paths of the second kind have a general pattern. Each path has three parts:
S, H , E, which stand for segments of the path as follows (see Fig. 3):

S : a segment begins at some strip and ends at the bottom of this strip;
H : a segment begins at the top of a strip and ends at the bottom of some strip;
E : a segment begins at the top of a strip and ends within this strip.

Each part may be empty. The H part can be handled just like paths in the
global alignment problem in a way propagating from one strip to the next. We
can first ignore E part since their values cannot propagate to other strips, and
after finishing values on borders of strips in the alignment graph, we can regain
the contributions of E part into the alignment graph. As to incorporate S part
into the alignment graph, we need to modify (4) into

L(x′ak, y[1..j]) =

max
{

max
0≤i≤j

{
L(x′, y[1..i]) + G(ak, y[(i + 1)..j])

}
, L(ak, y[1..j])

} (8)

where G(ak, y[(i + 1)..j] is the global alignment score that can be evaluated in
O(1) time. Note that (8) is different from (4) in the last term L(ak, y[1..j]). Hence
we create an array SR(j) for 0 ≤ j ≤ n at OR in order to evaluate (8) where
SR(j) = L(ak, y[1..j]). In the following paragraphs, we show how to calculate all
entries of SR in O(n) time. Again, the trick is the inverse Monge property.

Let us reformulate the framework provided in Sect. 2 for the local alignment
problem. The meanings of IR and OR are the same, but at this time they record
the scores of optimal local alignments ending at the corresponding cells. In other
words, IR(i) = L(x′, y[1..i]) and OR(j) = L(x′ak, y[1..j]). Leave DIST (i, j) =
G(ak, y[(i+1)..j]) and OUT (i, j) = IR(i)+DIST (i, j) unchanged. Then (8) can
be rewritten into

OR(j) = max
{

max
0≤i≤j

OUT (i, j), SR(j)
}

.

The computation of max0≤i≤j OUT (i, j) for 0 ≤ j ≤ n is as before, and it can
be finished in O(n) time and space, and thus the H part follows.
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Fig. 3. Paths need to be considered in a local alignment graph

The calculations of SR are closely related to max0≤i≤j DIST (i, j) for 0 ≤ j ≤
n. Given j, let i(j) be the first i that maximizes DIST (i, j). It stands for the
score of an optimal local alignment ending at OR(j) under the constraint that it
must use exactly k copies of a’s from ak, a run of x. However, SR(j) stands for
the optimal local alignment ending at OR(j) that uses at most k copies of a’s.
This difference can be resolved by applying this simple idea: set δ(a, −) to be
zero; that is, the deletion of a’s from ak is free so that ‘exactly’ performs as well
as ‘at most’. This trick can be applied because we can always regroup all of the
deletions of a’s to its very beginning. As a consequence they can be truncated
if deleting an a causes a negative score. By the above discussion, we have to
consider two cases: (1) δ(a, −) < 0 and (2) δ(a, −) ≥ 0. For the first case, let
δL(a, −) = 0 and keep all other scores the same as δ. Let DISTL(i, j) be the score
of the optimal global alignment of ak against y[(i+1)..j] under δL. Then DISTL
is inverse Monge and the resulting maxi DISTL(i, j), which is the required SR(j),
for 0 ≤ j ≤ n, can be computed in O(n) time and space. The second case deals
with δ(a, −) ≥ 0 (this could happen since δ is arbitrary). This case is much easier
since L(ak, y[(i+1)..j]) always uses all ak and thus, L(ak, y[(i+1)..j]) coincides
with DIST (i, j). Therefore SR(j) = maxi DIST (i, j).

So far, we know how to handle S and H parts in the local alignment graph. In
order to handle the E part, we need to create another array ER(i) for 0 ≤ i ≤ n
at IR such that ER(i) = L(ak, y[(i+1)..n]). This case can be processed similarly
as the procedure for the S part.

The final optimal local alignment for L(x, y) can be found by a linear scan
over all entries in the output border OR plus the corresponding contributions
from the E part.

Analysis of the time and space complexity. It is easy to see that the time and
space complexity is the same as the algorithm for the global alignment problem.
The trace of an optimal local alignment can also be constructed in O(m′n) time
and O(n) space by Hirschberg’s technique [13].

7 Approximate Matchings

Given a text T , a pattern P , a distance matrix δ, and a bound K, the problem
of approximate matching is to find all occurrences of substrings T ′ of T such
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that the edit distance of T ′ and P under δ does not exceed the bound K. Its
dual is to find out all occurrences of substrings whose global alignment scores
against P are above the bound K.

Let T be run-length-encoded, with length n and n′ runs. Let the length of
P be m. We first propose an O(mn′) time and O(m) space algorithm that can
locate all end positions indexed by runs. The exact end locations of T ′ on T
can further be reported as intervals on T in the same time and space bound.
Consequently, all of the r occurrences can be reported with additional O(r) time.

The idea is very similar to the algorithm in Sect. 6. We simply sketch the idea
here. We put P on top of the edit graph and T to the left. Again, each optimal
path can be broken into three parts: S, H , and E. However, in this time the
prefixes and suffixes of P (which corresponds to y) cannot be truncated, but this
facility is still available on T . The only difference is to set SR(j) = DISTL(0, j)
instead of mini DISTL(i, j). This prohibits the possibility to truncate the prefix
of P . The E part is processed similarly, which prevents the removal of suffixes
of P . If there exists a strip R and an index j such that OR(j) + ER′(j) below
the threshold K, where R′ is the strip next to R, then we find an occurrence.

The next step is on how to locate all end positions of T ′ on T . Let T ′ be
such an occurrence, and let R the the strip that contains the E part of T ′. Let
IR(i) be the starting position of E for T ′. Since IR(i) records the distance of the
optimal trace among all paths passing through it, its value cannot be worse than
T ′. Hence if we can find all segments, starting from IR(i) and ending to the right
border of R, such that each of their edit distance against P [(i + 1)..m] plus the
value of IR(i) is below K, then this is a valid occurrence. The greedy algorithm
proposed in the end of Sect. 4 can be modified to fulfil this requirement. For each
IR(i), the corresponding end locations of these segments (which are on the right
border of R) then can be represented by an interval. (This is because we regroup
letters in P [(i+1)..m] into |Σ| buckets, and the cost of mating or deleting one a
to the same bucket costs the same, and the costs for buckets are sorted.) An ad-
ditional check can also report approximate matches that occurred inside a strip.

Theorem 3. Let T be a text with length n, being run-length-compressed into
n′ runs. Let P be a pattern with m characters. For any K, which serves as the
threshold for matching, all of the occurrences T ′ of T such that the edit distance
of T ′ and P is bounded above by K can be determined in O(mn′) time and O(m)
space. The threshold K and entries in the distance matrix δ can depend on m
and n′.

8 Conclusion

We improve previous O(m′n + nm′) time algorithms to O(m′n), which makes
one of the string truly compressed in the run-length encoding. However, another
string is still left flat. An intriguing question is on (if it is possible) how to design
an efficient algorithm for each problem whose time complexity only depends on
the numbers of runs, as what were done in [4,22] for the LCS problem.
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Another direction to extend the applicability of these algorithms is to intro-
duce the affine gap penalty, which takes consecutive gaps as a whole unit and the
costs for opening and extending a gap are different. In [15], Kim et al. proposed
an O(m′n + mn′)-time algorithm for the global alignment problem with affine
gap penalty on run-length-encoded strings. It uses similar techniques as in [5,21].
However, Ledergerber et al. in [17] have pointed out that the matrix OUT (i, j)
described in Sect. 2 might not be (inverse) Monge. Therefore direct application
of the model provided in Sect. 2 seems impossible. We note that it is possible to
combine the results of [19] and [15] to get an O(min{mn′, m′n})-time algorithm
for the affine gap penalty.
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A Monge Property

The reason that OUT matrix in (1) is Monge (or inverse Monge) is as follows.
As for minimization problems, such as the edit distance problem, we intend to
find shortest paths in edit graphs. First, observe that OUT (i, j)’s are defined for
1 ≤ i ≤ j ≤ n, whose domain is not a square (see Fig. 4). Let us first consider
1 ≤ i < i′ ≤ j < j′ ≤ n. In Fig. 5, DIST (i, j) and DIST (i′, j′) are the lengths of
shortest paths (drawn solid) from i to j and from i′ to j′, respectively. Similarly,
the dashed lines are the shortest paths for i-j′ and i′-j. Intuitively, DIST (i, j) ≤
DIST (i, c)+ DIST (c, j) and DIST (i′, j′) ≤ DIST (i′, c) + DIST (c, j′), as long
as lengths of paths are additive in the edit graph. This holds because DIST (i, j)
is the length of a shortest path connecting i and j, and DIST (i, c)+DIST (c, j)
represents the length of another path which may not be the shortest. We remark
that this result does not rely on the condition of the triangle inequality for
weights on edges; in fact, triangle inequality may not hold for paths on an edit
graph. On the other hand, we have DIST (i, j′) + DIST (i′, j) = DIST (i, c) +
DIST (c, j′) + DIST (i′, c) + DIST (c, j). Combining them, we get

DIST (i, j) + DIST (i′, j′) ≤ DIST (i, j′) + DIST (i′, j) ,

and thus
OUT (i, j) + OUT (i′, j′) ≤ OUT (i, j′) + OUT (i′, j)

for 1 ≤ i < i′ ≤ j < j′ ≤ n. The above argument partially fulfils the Monge
property. As for 1 ≤ j < i ≤ n, this can be resolved by setting OUT (i, j) = ∞
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and taking the convention that r + ∞ = ∞ + r = ∞ and ∞ + ∞ = ∞ for any
real number r. Hence the matrix OUT (i, j) for 1 ≤ i, j ≤ n in the minimization
version is Monge.

�

�
∞ ∞

���(�,�)

� �

�
�’

’

Fig. 4. Extension of the OUT matrix to the Monge matrix
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Fig. 5. A geometric interpretation of the quadrangle inequality

As for maximization problems, such as sequence alignment problems, we in-
tend to find longest paths in the alignment graphs (note that an alignment graph
is always acyclic). The argument in the above paragraph can also be applied by
setting OUT (i, j) = −∞ for 1 ≤ j < i ≤ n and taking the convention that
r + −∞ = −∞ + r = −∞ and −∞+ −∞ = −∞ for any real number r. Finally,
we conclude that the matrix OUT (i, j) for 1 ≤ i, j ≤ n in the maximization
version is inverse Monge.
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