Information Processing Letters 33 (1989 /90) 309-311
North-Holland

A LINEAR-TIME ALGORITHM FOR CONCAVE ONE-DIMENSIONAL

DYNAMIC PROGRAMMING *

Zvi GALIL

Department of Computer Science, 450 Computer Science Building, Columbia University, New York, NY 10027, USA
Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

Kunsoo PARK

Department of Computer Science, 450 Computer Science Building, Columbia University, New York, NY 10027, USA

Communicated by David Gnes

Received 2 May 1989
Rewvised 1 September 1989

Keywords: Dynamic programming, quadrangle inequality, total monotonicity

The one-dimensional dynamic programming
problem 1s defined as follows: given a real-valued
function w(i, j) for integers 0 < i <j < n and E[O0],
compute
E[j]= min {D[i]+w(i, j))

O<i<y

for 1 <j<n,

where Dfi] 1s computed from FE[i] in constant
time. The least weight subsequence problem [4] is
a special case of the problem where D[:i] = E[i].
The modified edit distance problem [3], which
arises 1n molecular biology, geology, and speech
recognition, can be decomposed 1nto 2n copies of
the problem.

Let A be an n X m matrix. A[i, j] denotes the
element 1n the ith row and the jth column.
Ali:i’,j: j'] denotes the submatrix of A4 that is
the intersection of rows i, i+ 1,...,i" and col-
umns j, j+1,..., j°. We say that the cost func-
tion w 1s concave 1if 1t satisfies the quadrangle
inequality [7]

w(a, c) +w(b, d)<w(b, c)+w(a, d),

fora<b<c<d.

* Work supported 1n part by NSF Grants CCR-86-05353 and
CCR-88-14977.

In the concave one-dimensional dynamic pro-
gramming problem w 1s concave as defined above.
A condition closely related to the quadrangle in-
equality was introduced by Aggarwal et al. [1]. An
n X m matnx A is totally monotone 1if for all a < b
and ¢ < d,

Ala,c]>A[b,c] = Ala,d]> A[b,d].

Let r(j) be the smallest row index such that
A[r(j),j] 1s the minimum value in column j.
Then total monotonicity implies

r(1) <r(2)< -+ <r(m). (*)

That is, the minimum row indices are nondecreas-
ing. We say that an element A[i, j] is dead if
I #r(J). A submatnx of 4 1s dead if all of its
elements are dead. Note that the guadrangle in-
equality implies total monotonicity, but the con-
verse 1S not true. Aggarwal et al. [1] show that the
row maxima of a totally monotone n X m matrix
A can be found in O(n + m) time if A[i, j] for any
I,] can be computed in constant time. Their al-
gorithm 1s easily adapted to find the column
minima. We will refer to their algorithm as the
SMAWK algorithm.

Let Bli,jl=D[i]+w(i,j)for0<i<j< n We
say that B{[i, j] 1s available if D[i] is known and

0020-0190,/90/3$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland) 309

Volume 33, Number 6

therefore B[i,j] can be computed 1n constant
time. Then the problem is to find the column
minima in the upper triangular matrix B with the
restriction that BJ[i, j] 1s available only after the
column minima for columns 1, 2,..., 7 have been
found. It 1s easy to see that when w satisfies the
quadrangle 1nequality, B also satisfies the
quadrangle inequality. For the concave problem
Hirschberg and Larmore [4] and later Galil and
Giancarlo [3] gave O(n log n) algorithms using
queues. Wilber [6] proposed an O(n) time al-
gorithm when DJ[i]= E[i]. However, his al-
gorithm does not work if the availability of matnx
B must be obeyed, which happens when many
copies of the problem proceed simultaneously (i.e.,
the computation 1s interleaved among many
copies) as in the modified edit distance problem
[3] and the mixed convex and concave cost prob-
lem [2]. Eppstein [2] extended Wilber’s algornthm
for interleaved computation. Our algorithm is more
general than Eppstein’s; 1t works for any totally
monotone matnx B (we use only relation (*)),
whereas Eppstein’s algorithm works only when
Bli, j]= D{i] + w(i, j). Our algorithm 1s also sim-
pler than both Wilber’s and Eppstein’s. Recently,
Larmore and Schieber [5] reported another linear-
time algorithm, which i1s quite different from ours.

The algorithm consists of a sequence of itera-
tions. Fig. 1 shows a typical iteration. We use
Nl[Jj], 1 <j<n, to store interim column minima

Fig. 1. Matnx B at a typical iteration.

310

INFORMATION PROCESSING LETTERS

10 February 1990

before row r; N[j]= B[i, j] for some i <r (the
usage will be clear shortly). At the beginning of
each iteration the following invarniants hold:

(a) O<r and r<c.

(b) E[j] for all 1 € < ¢ have been found.

(¢) E[j] for j> ¢ is min(N[j], min, B[,).

Invariant (b) means that Df[i] for all 0 <i <
are known, and therefore B[, j] for 0 <i <c¢ and
¢ <J < n 1s available. Initially, r =0, ¢ =1, and all
N|j] are + 0.

Let p=min(2c—r, n), and let G be the union
of N[c: p]and B[r:c—1, c: p], N[c: p] as 1its
first row and B[r:c—1, c: p] as the other rows.
Gisa(c—r+1)X(c—r+1) matrix unless 2¢ —
r>n. Let F[j], ¢c<j<p, denote the column
minima of G. Since matrix G 1s totally monotone,
we use the SMAWK algorithm to find the column
minima of G. Once F[c: p] are found, we com-
pute E[j] for j=c¢, ¢+ 1,... as follows. Obwvi-
ously, E[c]= F|c]. For ¢+ 1 <j < p, assume 1n-
ductively that Blc: j—2,j: p] (B 1n Fig. 1) 1s
dead and B[j — 1, j: n] 1s available. It 1s tnivially

‘true when j=c+ 1. By the assumption E[j]=

min(F[j}, B[j— 1, j)).
(1) If Bl[j—1,j]<F[j], then E[;}]=B[)—-

1,j], and by relation (1) Bfr: j—2,: n]

(a, B, v, and the part of G above B in Fig.

1) and N[j: n] are dead. We start a new

iteration with c= 7+ 1 and r=j— 1.

(2) If F[j]<B[j—1,j], then E[j]=F[j]. We
compare B[j— 1, p] with F{ pl].

(2.1) If B[j—1,pl< F{p], Bfr:j—2,p+
l1:n] (¢ and vy 1n Fig. 1) 1s dead by
relation (*). Blc: j—2,j: p] (B In
Fig. 1) 1s dead by the assumption.
Thus only F[j+1: p] among Bf0: j
— 2,7+ 1:n] may become column
minima in the future computation. We
store F[j+1:p]in N[j+1:p] and
start a new iteration with ¢ =; + 1 and
r=j—1.

(2.2) It Flpl<B[j—-1p], Blj—1,j:p]
(0 in Fig. 1) is dead by relation (*) in
submatnx B[r: j—1,j: p] (B, 0, and
the part of G above B). Since B[, j +
1: n] 1s available from EJ /], the as-
sumption holds at ; + 1. We go on to
column j + 1.

Volume 33, Number 6

procedure concave 1D
c — 1;
r o« 0
N{l:n] — 4o0;
while ¢ < n do
p — min(2¢c — r, n);
use SMAWK to find column minima Fc: p] of G;
Elc] « Flc};
for j—c+1 to p do
if B{j — 1,7] < F[j] then
E[J] = B[] _ 17]-];
break
else
Elj] « Flj];
if B(j — 1, p] < F|[p] then
N[j + 1:p] « F[j + 1: pj;
break

end 1if
end if
end for
1f 7 < p then
ce— 7+ 1

c—p+1;
r « max(r, row of F[p])
end 1if
end while

end
Fig. 2. The algornthm for concave 1D dynamic programming,.

If case (2.2) is repeated until j = p, we have found
E[Jj] for ¢ <j<p. We start a new 1teration with
¢ =p + 1. If the row of F[p] 1s greater than r, 1t
becomes the new r (1t may be smaller than r 1if 1t
1s the row of N[p]). Note that the three invanants
hold at the beginning of new iterations. Figure 2
shows the algorithm, where the break statement
causes the innermost enclosing loop to be excited

immediately.

INFORMATION PROCESSING LETTERS

10 February 1990

Each iteration takes time O(c — r). If either

case (1) or case (2.1) happens, we charge the time

to rows r,...,c—1 because r 1s i1ncreased by

(j—1)—r>=c—r. If case (2.2) 1s repeated until
Jj = p, there are two cases. If p <n, we charge the

time to columns c,..., p because ¢ 1s increased by
(p+1)—c>c—r+ 1. If p=n, we have finished
the whole computation, and rows r,...,c — 1 (<n)
have not been charged yet; we charge the time to
the rows. Since ¢ and r never decrease, only
constant time 1s charged to each row or column.
Thus the total time of the algorithm 1s linear in n.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R.
Wilber, Geometric applications of a matnx-searching al-
gorithm, Algorithmica 2 (1987) 195-208. '

'{2] D. Eppstein, Sequence companson with mixed convex and

concave costs, J. Algorithms, to appear.

[3] Z. Galill and R. Giancarlo, Speeding up dynamic program-
ming with applications to molecular biology, Theoret. Com-
put. Sci. 64 (1989) 107-118.

[4] D.S. Hirschberg and L.L. Larmore, The least weight subse-
quence problem, SIAM J. Comput. 16 (4) (1987) 628—-638.

[5] L.L. Larmore and B. Schieber, On-line dynamic program-
ming with applications to the prediction of RNA secondary
structure, to be presented at Ist Ann. ACM-SIAM Symp.
on Discrete Algorithms.

[6] R. Wilber, The concave least-weight subsequence problem
revisited, J. Algorithms 9 (1988) 418-425.

(7] F.F. Yao, Speed-up in dynamic programmung, SIAM J.
Algebraic Discrete Methods 3 (1982) 532-540.

311

