Theoretical Computer Science 64 {1989} 107-118 197
North-Holland

NOTE

SPEEDING UP DYNAMIC PROGRAMMING WITH
APPLICATIONS TO MOLECULAR BIOLOGY®

Zvi GALIL

Department of Computer Science, Columbia University, NY 10027, US.A,, and
Tel-Aviy University, Tel-Aviv, Israel

Raffaele GIANCARLO

Department of Compuier Science, Columbia University, NY 10027, US.A., and
University of Salerno, Salerno, Italy

Communicated by G. Ausiello
Received July 1987
Revised May 1988

Abstract. Consider the problem of computing

E(jl=, min {DIkI+wlkj)}, J=1,....n,

where w is a given weight {unction, D[0] is given and for every k=1,...,n, D[k] is easily
computable from E[k]. This problem appears as a subproblem in dynamic programming solutions
to various problems, Obvicusly, it can be solved in time O(n?), and for a general weight function
no better algorithm is possible,

We consider two dual cases that arise in applications: in the concave case, the weight function
satisfies the quadrangle inequality:

wlk, D+wll j)swll)+wlkj) forallksisjsj.

In the convex case, the weight function satisfies the inverse quadrangle inequality.

In both cases we show how to use the assumed property of w to derive an O{n log n) algorithm.
Even better, linear-time algorithms are obtained if w satisfies the following additional closest zero
property: for every two integers I and k, /< k, and real number a, the smallest zero af

J(x)y=w(l, x)—wlk x)~a

which is farger than &k can be found in constant time.

The two algorithms speed up several dynamic programming routines that solve as a subproblem
the problem above. The speed-up is from O(n*} to O(n* log n) or O(x°). Applications include
algorithms for comparing DNA sequences and algorithms used in speech recognition and geology.

One typical problem is the following: given the cost of substituting any pair of symbols and a
convex cost function g for gaps (where g(r) is the cost of a gap of size r), compute the modified
edit distance between the two given sequences.

* Work supported in part by NSF Grants DCR-85-11713, CCR-86-05353 and by the Italian Ministry
of Education, Project “Teoria degli Algoritmi™.

0304-3975/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

-
-]

Z. Galil, R. Giancarln
1. Introduction

Dynamic programming is one of several widely used problem-solving techniques
in computer science and operations research. In applying the technique, one always
seeks to take advantage of special properties of the problem at hand and speed up
the algorithm. There are very few general techniques for speeding up dynamic
programming routines and ad hoc approaches seem to be characteristic.

The only general technigue known to us is due to Yao [12]. She considered the
following recurrence relations:

eG)=0; (i j)=wli,)+ min{e(i k=D +elk)} fori<j (1)

She proved that if the weight function satisfies the quadrangle inequality
wik, jy+w(l, jyswl, j)+wk,j), forall kslsj<j, (2)
then the obvmus O{(n?) algorithm can be sped up to O(n?). A corollary of this resuit

e “t pre Aa.um Tetsvmess e L -

fommztliven Frnet mossvsdnpaddon o = e
13 AV lll!lil AWV v puniig, yuuuuu vinal ¥y auwalviy tl.UCb, ail vai

esult of Knuth I's1
it O Aanuth 155,

In this paper we consider the problem of computing
E[flﬂaj‘lifml{ﬁ[k]'? wh,)b, j=1.....m, (3)

t function; D{0] is given and for every k=1, ..., n, D[k]
is asnly computable fr om E []. This problem appears as a subproblem in dynamic

programming solutions to various problems. Obviously, it can be solved in time

cti

<

n(uzl and for a general weicht function no betier aleorithm ic nossible
LS A a t 3213 ¥ "lallﬁ ABRIALWEALTARE REAWF LSWERERSWR “‘avlll—lil‘i EnT ’-’vul’luiv
We cQﬁS!éer two d.l.s&l cases that a“isp in app!ica ions: in thp concave case, the

weight function satisfies the inverse quadrangle mequailty.

In both cases we show how to use the assumed property of w to derive an
O(n log n) algorithm. Even better, linear-time algorithms are obtained if w satisfies
the following additional property, which we call the closest zero property: for every
two integers I and k, I <k, and real number a, the smallest zero of

which is larger than k can be found in constant time. The two algorithms are simple
a1d short (a dozen lines of code each).
Surprisingly, the two algorithms are also dual in the following sense: both work

e neeme Fen #len Jale e e e . ae = e PSS S,
in stages. in the jth stage they compuie E{j], which is viewed as a competition
among swvrdinan V1 3 __1 £ [P . S S Ly o PSR, Sy, .
QIHVIE LMILVGD U,y 1y 000 ,_; T R0T uil’.’ LFELEIIREIRERN) 30D [.)) 1EHCY llldintaill i

a set o
candidates which satisfies the property that E[j] depends only on D[k]+ w{k, j
for k’s in the set. Moreover, each algorithm discards candidates f rom the set, and

discarded candidates never raioin the set, Tog e able to m

. .
““““““““““““““ never rejoin th Tc te able to maintain such a set of
candidates eflicientlv ane uges the fallawineg “dual” data girnctures: a2 guane in tha
---¢c¢; e mAW PR OWLE WRASW S WAEW TY AARK b e R B R REAELLL IR WWLLWEL WD =4 \llﬁvu\v 2133 %illWw

concave case and a st:ck in the convex case.

Sreeding up dynamic progrumming 109

Despite the similarity, Yao’s result does not seem to apply in our case. She uses
the quadrangle inequality to derive tighter bounds on the ranges of indices for
computing the minimum in (1) and does not need any data structure. Also, it is not
clear what happens in her case when the inverse quadrangle inequality holds.

Notice that in the special case that D[j]= E[j] and w(j, j)=0for j=1,...,n
our problem is the single source shortest path problem for the complete acyclic
graph where edge lengths are given by the weight function w. However, neithier the
convex nor the concave case is interesting, since the quadrangle inequality implies
the inverse triangle inequality and the inverse quadrangle inequality implies the
triangle inequality. Thus in the convex case E[j1= D[0]+ w(0, j} and in the concave
case

E[jl1=D[0]+w(0, 1)+ w(1,2)+- - -+ w(j—1, j).

We use recurrence (3) to compute various versions of the “modified edit distance”
defined below. Given two strings over alphabet X, x=x,...x,, and y=y,...y,, the
edit distance of x and y is the minimal cost of an edit sequence that changes x into
y. This sequence contains operations of the form delete(x;) of cost (x;), insert(y;)
of cost i(y;) and substitate{x,, y,) of cost s(x;, y.). The edit distance can be easily
computed by an obvious dynamic program in O(mn) time.

Notice that a sequence of deletes (inserts) corresponds to a gap in x (y, respec-
tively). In many applications the cost of such a gap is not linear. In the applications
we list below the cost of deleting xy44...%; is

1 2
w(l, k) =f (x), Xp01) (%, X n) + 8k~ 1), (4)
where g is a convex function. The cost consists of charges for breaking x.., and x;
plus an additional cost that depends on the length of the'gap. The dependence (the
function g) is convex, since the incremental cost decreases as the size of the gap
increases. ’I‘%le modified edit distance is defined to be the rmmmal cost of an edit

‘To clomll;ute h mz:i:lﬁed ;d Uélstance we consider a dynamic programming
equation of the form
Dii, jl=min{D{i - 1, j— 1]+ s(x;, y;}, ELi, j1, F(i, jT} (5)
where
ELi,j1=_ min {D[i k}+w(k j)} (6)
Fli, jl=_min (D[} jl+w(, D}, M

with initial conditions
D[i,0]1=w'(0,), 1<sism and DI[0,jl=w(0,j), I<js:

]
H

‘..A ot dleest movavs
v luua alg iuuu uiarcom

- t
pu - % AXN?
Notice that the computation of D[i, j} reduces to the computation of E[j, j

. In x
L

Lacmm
-
8=

110 Z Galil, R. Giancarlo

Fli,], and the computatior. of a row of E and of a column of F are each just the
same as the problem discussed above. But the weight functions w and w’ are defined
as in (4) and therefore satisfly the inverse quadrangle inequality. As a result, we
obtain ar: algorithm that computes the matrix D in O(mn(log n+log m)) time, and
even better O(mn) time if the weight functions satisfy the closest zero property.

This dynamic programming scheme arises in the context of sequence comparison
in molecular biology [10], geology [9] and in speech recognition [7]. In those fields,
the most natural weight functions w are convex. In molecular biology, for instance,
the motivation for the use of convex weight functions is the following. When a
DNA sequence evolves into another by means of the deletion, say, of some con-
tiguous bases, the event *‘deletion of contiguous bases™ should be seen as a single
event rather than as the combination of many “deletion™ events. Accordingly, the
cost of the multiple deletions event must be less than the total cost of the single
deletion events composing it. Experimental evidence supports this theory [2]. In
geology and speech recognition, analogous reasoning motivates the use of convex
weight functions.

For the concave case, good algorithms were already known. Hirshberg and
Larmore [3] assumed a restricted quadrangle incquality with k<1<j<j' in (2) that
does not imply the inverse triangle inequality. They solved the “least weight sub-
sequence”™, with D[j]= E[f], in time O(n log n). Such a time bound kecomes O(n)
in case a certain condition (similar to our closest zero property) is s:iisfied by the
weight function. They used this result to derive improved algorithms for several
problems. Their main application is an O(n log n) algorithm for breakung a para-
graph into lines with a concave penalty function. For quadratic and Iinear penalty
functions they design a linear-time algorithm. This problem was considered first by
Knuth and Plass [6] with general penaity functions. The algorithm of Hirshberg
and Larmore, like cur algorithm, uses a queue. Surprisingly, our algcrithm, which
solves a more general case, is slightly simpler and in many cases faster, as in our
algorithm the queue is sometimes emptied in a single operation.

Wilber [11] obtained an ingenious O(n) algorithm, also for the ccacave case,
based on previous work by Aggarwal et al. [1]. His algorithm is recursive and its
recursive calls use another recursive algorithm, so the constant factor in the time
bound is quite large. Wilber claims that his algorithm is superior to our O(n log n)
ene only for # in the thousands, We remark that Wilber’s technique does not seem
to be useful in the convex case, which is the main subject of this paper.

2. The convex case

In this section we describe the convex case. That is, the weight function w satisfies
the inverse quadrangle inequality:

w(l,)+ w(k, jy=wk, j)+w(l, j'), forall Isk=<j=<j (8)

Speeding up dynamic programming 111

Let C(k, r) denote D[k]+ w(k, r). We give an algorithm, denoted A, that computes
E[j], 0<j=<n, in O(nlogn) time. The algorithm consists of n steps. We now
describe step j. We need the following definition.

Definition 1. An index k, k <j, is dead (at step j) if for every j', j<j <n, either
there is I k, I<j (I may depend on j) with C(l, j') < C(k, j') or there is I < k with
C(, jy=C(k J).

Algorithm A implicitly maintains a list of candidates k, k <j. These candidates
compete for the minimum in (3). Then the algorithm justifiably discards dead indices
from the list since it is clear that for every j', j < j’ < n, the minimum in the expression
for E[j'] corresponding to (3) is achieved on some k that has not been discarded.
There are two criteria that the algorithm uses to kill k’s. In the first, an index k dies
because of one of the candidates which will always dominate it (I{(j*) =1 for each
J', j=<j'=n), and in the second case k will be dominated by one of two candidates
(I(jhe{l,, L} foreach j, j<j=<n).

A basic step of the algorithm consists of comparing two candidates ! and k
Lemma 1 is the basis for such a comparison.

Lemma 1. For given | and k, 1 <k < n, the furction
fry=C(, r)=Clk, r)=w(l, r)—w(k, r}+ D[1]— D[k]

is monotonically nonincreasing.
Proof. Straightforward from equation (8). [
Facts 1-4 are immediate consequences of Lemma 1.

Fact 1. Given indices | and k, I<k<j<n, assume that C(l, j)=< C(k, j). Then
C(L jY<C(k, J') for all j’ satisfying j<j <n.

Fact 2. Given indices I and k, I<k<j<n, assume that C(l, j)> C(k, j). Let h be
the minimal index, k < h < n, such that

C(Lh)y<=C(k h). (9)
Then C(1, j'Y> C(k, j'), for all j' satisfying k<j' <h and C(1, j'y< C(k, j), for all

j' satisfying h<j'=n,

In what follows, we adopt the shorthand notation k([k), for the minimal h,
k < h < n, satisfying equation (9) for indices / and k, I <k <n and we set k(L k)=
n+1 if no such h exists.

112 Z. Galil, R. Giancarloe

Fact 3. For given | and k, I <k <n, h(l, k)< h if and only if C(I, k)< C(k, h).

Fact 4. Given l and k, l <k=<n, h(l, k) can be computed in time O(log n) and, if w
satisfies ihe closest zero property, it can be computed in constent time.

Proof. By Fact 2 we can compute h(l, k) by binary search. If the closest zero praperty
holds, then one computes h(l, k) by finding the closest zero, x,, of

S(x)=w(l, x)-w(k,x)—a, a=D[I]-D[k],
and h(L k)=[x]. O

The meaning of Fact 1 is that if a newer candidate k is no better than an older
candidate L then k is dead. The meaning of Fact 2 is that if the newer candidate is
better we know that it can be declared dead at step h= h(l, k). Moreover, we also
know that k is a better candidate than ! for steps j, j+1,..., h—1. Thus, there is
no need to consider / in the competition for the minimum during these steps.

The algorithm compares the new candidate, namely j—1, with the best among
the old candidates. If th.: new candidate is no betier, then Fact 1 allows us to discard
it. If it is better, Fact 2 tells us that it is better in an interval at th= end of which
the new candidate will die. This gives rise to the use of a stack.

The list of candidates at step j is represented in a stack S of pairs {corresponding
to intervals) (kiop, Piop)s (Kiop—-1s Prap-1)s - - - » (Ko, o), where (k,, hy) is 2 dummy pair
equal to (ko, n+1). At step j, the pairs in S satisfy the following conditions, for
0=<s<top, :

(1) hy <h,, with j<h,, and hy=n+1,

(2) ks < ks+1 s with ktop <j -1,

(3) hs+i = h(ksv ks-!—i}s

(4) if k<j and k is not in any pair in S, then k is dead,

(5) the last element in S is always a dummy pair.

Conditions (1)-(5) are referred to as the stack property. Part (1) and (2) of ihe
stack property mean that the stack consists of a sequenc: of open intervals, properly
nested on both sides, all of which contain j. By Fact 2 aud condition (3), the meaning
of adjacent pairs (k,.;, %,+,) and (k,, h,) is that k,,, is a better candidate than k,
up to siep i, —1. At step h,.,, k., can be declared dead since from that point
on k, is never worse than k,,,. The meaning of the dummy pair (k,, n+1) is that
A does not know yet how long k; is going to survive.

We now show that if the stack property holds at step j, we can easily compute
E[j]. Then, we discuss how the algorithm updates S so that the stack property
holds at step j+1.

Lemma 2. Assume that |S|> 1. The quantities C(k,, j) are monotonically increasing
as we go down the stack,

Praof. Fix 5, 0=<s<top. From Fact 2 we have that for each adjacent pair (k,, h,)
and (K,.q, Roer)

C(k.ts f’) > C(ks-i-i] j;}!

Speeding up dynamic programming 113

for j’ satisfying k.., <j'<h,.,. By conditions (1) and (2) of the stack property
ksi1<j<heiy and thus C(k,, j}> Clksq, j). O

Lemma 2 implies that k,,, is the best among the old candidates. Thus, E[j] is
the minimum of C(j—1, j) and C(ky,,, j). (In the case that |$]|= 1, the same result
follows since j—1 and k,,, are the only two candidates.)

We now describe the update of S that follows the computation of E[j]. Informally,
it consists of the insertion of the new candidate j—1, if appropriate, and of the
possible deletion of some “old” candidates. The update step depends on the outcome
of the comparison between C(k,,,, j) and C(j -1, j).

When C(kap, j)=< C(j—1, j), the update of S is very simple. Indeed, algorithm
A can kill j—1 by Fact 1. When C(k,,, j}> C(j—1, j), the algorithm tries to push
a pair corresponding to j — 1 on the stack. However, the new interval (in which j—1
is better than the current k,,,) may not be properly nested in (K, Biop), i.€. the
new interval may end at h> h,,—1. By Fact 3, we can check it by comparing
C(kyop, hiop—1) and C{j—1, b, — 1) (i.e. comparing the twoe candidates at the last
point of the interval of k,,,). Fortunately, if the nesting property is violated, then
k..p can be declared dead as shown in Fact 3.

Fact 5. Let (k,p, o) be the pair on top of S at step j and assume that Clk.,,,
Rop—1)> C{j—1, hyp,—1). Then k,,, can be declared dead at step j.

Proof. By the assumption and Fact 1 we have C(k,p, i/)> C(j—1, j') for j' satisiy-
ing j<j' < hg,—1. If |S|=1, hy,=n+1 and the proof is complete, Otherwise, by
Fact 1 (since Kygp-1 < Kiop) Clkiop—1,J') = Clkyop, §') for j' satisfying a,<j<=n,
and k,,, is dead (it is dominated either by j—1 or by k). U

When C(kp,j)> C(j—1, j), the update of § is as follows. Algorithm A keeps
popping pairs (k,, h;) when C(k,, h,—1)> C{j—1, h;—1). The deletion process
stops ¢ither when the stack is empty or when the algorithm finds a pair (k,, h,)
such that C(k,, h,~1)=<C{j—1, h,—1). If the former case hoids, the algorithm
inserts the dummy pair (j~1, n+1) and ends the update of S. If the latter case
holds, the algorithm computes k= h(k,, j—1) and pushes (j—1, k) on top of S.
(Note that, since

Clk,, h,—1)<C{j—~1,h,—1),

h'<h,~1 by Fact 3.) We notice that all the first components of the popped pairs
are k’s which are dead by Fact 5.

Once § has been updated as described above, we may have to pop one more pair
from its top. Indeed, if h,,=j+1 we have by Fact 1 that k.op can be declared dead
at step j+ 1. Thus, the algorithm kills k., by popping the stack. If j+1< heop, the
stack is not modified since k, can still be a candidate.

i14 Z. Galil, R. Giancarlo

In what follows let K(#) and H(r) denote the first and second component of the
rth pair from the bottom in S. The algorithm described above can be formalized as

follows.

Algorithm A
push (0,n+1) on §;
for j=1to n do
begin
I« K(top):
it C(j~1,/)=C(Lj) then E[jl« C(l, j);
else
begin
E[jl«C(i—1,j)
while S0 and C(j—1, H(top) - 1)< C(K(top), H(top) — 1) do pop
if S=0 then push (j—1,n+1)
else h« h(K(top), j—1); push (1, h)
end
if H(top)=j+1 then pop
end.

Theorem 1. Algorithm A is correct and runs in time O(n log n). If w sati Ses the
closest zero property, then one can implement the algorithm in linear time.

Proof. The correctness of the algorithm can be easily proved by induction using
the discussion on the update of the stack at step j. The time bound can be derived
as follows. Notice that for each index j, 1< j=< n, there may be a computation of
h(K (top), j} when a pair corresponding to j is pushed onto the stack. Since each
index can be pushed on the stack only once and since, by Fact 4, the computation
of h(K(top), i) takes O(log n), we obtain a time bound of O(n log n). If w satisfies
the closest zero property, then the computation A(K(top), j) takes constant time
per call and the above time bound reduces to O(n). [

3. The concave case

In this section we describe the concave case, omitting the proofs since they are
analogous to the ones given in the previous section. In the concave case, the weight
function satisfies the quadrangle inequality (2). We given an algorithm, denoted B,
that computes E[j], 0<j < n, in O(n log n) time. The algerithm consists of » steps.
We now describe step j. We need the following definition.

Definition 2. An index k, k <}, is dead (at step j) if for every j', j<j'< n, either
there is {# k, I<j (I may depend on j') with C([, j')< C(k, j'), or there is I>k
with C(l,) = C(k, j').

3
S
S,
)
R
&
5
B
3
B
3
5
3
5
3
3
5
@
-
-
th

Notice thai Definitions 1 and 2 are the same except tha. now we break ties in
favor of the larger index.

Algorithm B implicitly maintains a list of candidates k, k<. These candidates
compete for the minimum in expression (3). Then the aigorithm discards dead
indices from the list since it is clear that for every j', j<j'< n, the minimum in the
expression for E[j'] corresponding to (3) is achieved on some k that has not been
discarded. Agai, there are two criteria that the algcrithm uses to kill k's. These
criteria are analogous to the ones given in the previous section.

A basic step of the algorithm consists of comparing two candidates / and k.
Lemma 3 is the basis for such a comparison.

Lemma 3. For given land k, k<l<n,
f(ry=C(r)—Ck,n)=w(l, ry—w(k, r)+ D[]~ D{k]

is monotonically nondecreasing.
Facts 6-9 are an immediate consequence of Lerama 3.

Fact 6. Given indices | and k, k<I<j<n, assume that C(], j)<C(k, j). Then
C(L, j)<C(k, j') for 5 satisfying j<j' <n.

Fact 7. Given indices I and k, k<lI<j=n, assume that C({, j}> C(k, j). Let h be
the minimal index, | < h< n, such that

C(L)< C(k h). (10)
Thow £ F N~ 'L N fnw i’ cntichidun o~ 3o b aund £ e £ L 33 fne 3 ontiofuing
X I¥ G\.a\l,; F NPy | Je JUF QUEEII VIR I] SRR UG A &y f JTS AR J] g SRR YO
h<j'sn

In what follows, we adopt the shorthand notation A(l, k), for the minimal A,
I< h=n, satisfying equation (10) for indices / and k, k<I<n, and we set
A{l k)=n+1 if no such h exists.

Fact 8. For given land k, k<I<n, h(L k)< h if and only if C(l,)< C(k, k).

Fact 9. Given l and k, k<1< n, h(l, k) can be computed in time O(log n) and, if w
satisfies the closest zero property, it can be computed in constant time.

S

The meaning of Facis 6 and 7 is analogous to the meaning of F:
respectively, with the role of [and k switched.
The algorithm compares the new candidate, namely j—1, with the best among

the old candléates If the ne candidate is better, then Fact 6 allows us to d;scard

b I el ™Y
Cis 1 and -,

116 Z. Galil, R. Giancarlo

The list of candidates at step j is represented in a quene Q of pairs

(krron;: hfront)s (kfmm—h hl‘mnb—l)s Ty (kﬁs h())’

where (Kqonts Biron) 18 @ dummy pair with b, = j. At step J, the pairs in Q satisfy
the following conditions, for 0= s <front:

(1) hs-fnl < hss With hl‘ront mj"

(2) k> koyq, with kg<j—1.

(3) hy=h(k, k;.,).

(4) If k<j and k is not in any pair in Q, then k is dead.

(5) The first element in Q is always a dummy pair.

In what follows, we refer to conditions (1)-(5) as the queue property, Parts (1)
and (2) of the queue property mean that the queue consists of a sequence of open
intervals, properly nested on both sides, all containing j except for the dummy
interval. The meaning of adjacent pairs (k,,, h,+,) and (k,, h.) is that k,,, is a
better candidate than k, up to step h,—1. At step h,, k,,, can be declared dead
since from that point on k; is never worse than k,,,. The meaning of the dummy
pairs {Kgont, j) is that kg, has no index in front of it to kill.

We now show that if the queue property holds at step j, we can easily compute
E[j]. Then, we discuss how the algorithm updates Q so as to preserve the queue
property at step j+ 1.

Lemma 4. Assuine that |Q|> 1. The quantities C(k., j) are monotonically increasing
as we go along the queue from the front to the rear.

Lemma 4 implies that kg, is the best among the old candidates. Thus, E[j] is
the minimum of C{(j—1, j} and C(Ksont, J)-

Next, we describe the update of Q that follows the computation of E[jlL
Informally, it consists of the insertion of the new candidate j— 1, if appropriate,
and of the possible deletion of some “old™ candidates. The update step depends
on the outcome of the comparison between C(kqone, j) and C(j 1, j).

When C(kseon, /)= C(J—1, j), the update of Q is very simple. Indeed, ko<j—1,
k,> k., and, by Lemma 4, the quantities C(k,, j) are monotonically increasing as
we go down the queue. By Fact 6, all the k, in @ can be declared dead. The algorithm
sets Q =49, i.e. it discards all elements in the queue, and inserts the dummy pair
(j—1, j+1). The operation Q =# can obviously be implemented in constant time.

When C(Kkgone,)< C(j—1, j), the algorithm must insert a pair corresponding to
J—1 at the rear of the queue. Again, such insertion may cause the departure of some
pairs in Q. The following fact is useful in this respect.

Fact 10. Let (k, hy) be the pair at the end of Q at step j and assume that C(ky, hy) =
C(j—1, ho). Then k, can be declared dead at step j.

When C{Kkgrom» J) < C(j—1, j), the update of Q is as follows. The algorithm keeps
on deleting pairs (k,, h,} from the rear of Q when C(k,, h,)=C(j-1, h,). The

A i"ﬂ Hun J\snnmuv ﬂb'ﬂﬂ!’ﬂmm’ﬂﬂ
PEEEing ME Wy Gl - 5

"
o
~J

deletion process stops when the algorithm finds a pair (k,, h,) such that C(k,, h,) <
C(j—1, h,). (At least the dummy pair meets this condition.) Then, the algorithm
computes h(j—1, k,). Notice that all the first components of the deleted pairs are
k’s that are dead by Fact 10. Moreover, if j+1 = h¢nt, the algorithm deletes the
front of the queue.

In what follows, let K(r) and H(r) denote the first and second component,
respectively, of the #th pair from the back of the queue and let rear denote the last
element in Q. The algorithm outlined above can be formalized as follows. It uses
the following operations: delete and dequeue to remove the last and first element
of Q, respectively; and enqueue to insert a new element at the end of the queue.

Algorithm B
enqueune (0,1) in Q
for j=1to n do

begin
!« K({front);
H B aF i IS | N 91 D than
iR U‘J’ 1"’]"‘-‘-0‘5,_’} pA i
begin
E[jl« C(j—1,j)
G(—ﬁ'
enquene (j—1,j+1)
end
else
begin
E[jl« C(j)

while C(j—1, H(rear))=< C(K((rear), H(rear)) do delete
h< h(j—1, K(rear)); enquene (j—~1, i)
if j+1= H(front) then dequeue
else H(front) <« H(front)+1;
end
end

I

£ RPN SRy

Theorem 2. Atg writhm B is correct and runs in time UU’! E{)g vj. If w Saisjic

S ‘.'.....n

closest zero property, then one can lmptemem ine ucgorumu in linear time.

4. Conclusion

We presented two algorithms for the computation of

E{jl= min {D[k]+w(k j)}, j=1,...,n, (i1)

Ok jei
L TR S .s.‘l._ errmtmled Syremabirnmy motinfian atthar tha maadranaels inannalifv ar f%‘lp
KHUWlIlg ne WEIgNt rundciion SaUsnes Clifivl Uk Juatiiangit iivighadingy U2 %

ave a time complexity of

=

inverse quadrangle inequality. The two algorithms

1R Z. Galil, R. Giancarlo

O(n log n). This time bound reduces to O(n) if the weight function satisfies the
closest zero property. These algorithms can be used to speed up several dynamic
programming routines. The speed-up is from O(n’) to O(n’log n) or O(#?). In
particular, we obtain an efficient and practical algorithm for the computation of the
“modified edit distance™ between two strings.

Note added in proof

Webb Miller and Eugene W. Myers [8] independently discovered Algorithm A.
The two algorithms are similar, except for boundary conditions. Maria Klawe [4]
improved Algorithm A to run in time O(n log* n). She later improved it even further
obtaining an O(aa(n)) time bound (personal communication). Her algorithm is
very nice, aithough mainly of theoretical interest. Indeed, the constant in the
O-notation is quite large since the algorithm is recursive and each recursive step
consists of several calls to another recursive procedure.

References

[1] A. Aggarwal, M.M. Kiawe, S. Moran, P. Shor and R.E. Wilber, Geometric applications of a
matrix-searching algorithm, Algorithmica 2 (1987) 209-233.
2] W.M. Fitch and T.F. Smith, Optimal sequence alignment, Nat. Acad. Sci. U.S.A. (1983) 1382-1385.
[3) DS. Hirshberg and L.L. Larmore, The least weight subsequence problem, STAM J. Comput. 16
(1987) 628-638.
[4] M.M. Kiawe, Speeding up dynamic programming, Manuscript,
[5] D.E. Knuth, Optimur: binary search trees, Acta Inform. 1 {1973) 14..25.
[6] D.E. Knuth and M.F. Plass, Breaking paragraphs into lines, Software: Practice and Experience 11
(1981) 1119-1184.
[7} 1.B. Kruskal and D. Sankoff, eds., Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison (New York, Addison-Wesley, 1983).
[81 W. Miller and E.W. Myers, Sequence comparison with concave weighting functions. Bull Maih.
Bislogy 50 (1988) 97-120.
[9] T.F. Smith and M.S. Waterman, New stratigraphic correlation technigques, J. Geology 88 (1980)
451-457.
[10] M.S. Waterman, General methods of sequence comparison, Bull. Math. Biology 46 {1984) 473-501.
[11] R.E. Wilber, The concave least weight subsequence problem revisited, J. Algorithms, to appear.
[12] F.F. Yao, Speed-up in dynamic programming, SIAM J. Alg. Discr, Meth. 3 {1982) 532-540.

