PAPERS

Efficient Convolution without 'Input-—Output Delay”

WILLIAM G. GARDNER, AES Member

Perceptual Computing Section, MIT Media Lab, Cambridge, MA 02139, USA

A block FFT implementation of convolution is vastly more efficient than the direct-form
FIR filter. Unfortunately block processing incurs significant input—output delay, which is
undesirable for real-time applications. A hybrid convolution method is proposed, which
combines direct-form and block FFT processing. The result is a zero-delay convolver that
performs significantly better than direct-form methods.

0 INTRODUCTION

In various audio applications there 1s a need to perform
large finite-impulse-response (FIR) filters. One such ap-
plication 1s room reverberation simulation, in which a
synthetic or sampled room i1mpulse response i1s con-
volved with a source sound to simulate the room. Typical
room responses can span several seconds, and thus a 2-s
room response will require an 88 200-point FIR filter at
a 44.1-kHz sampling rate. Clearly, implementing such
a filter using the direct-form (multiply accumulate)
method is impractical. It 1s vastly more efficient to use
a block transform method based on the fast Fourier trans-
form (FFT), such as the overlap—add or overlap—save
methods [1], [2]. These methods collect a block of input
samples, transform them into the frequency domain,
multiply by the spectrum of the filter response, and in-
verse transform to obtain output samples. Unfortunately
a block transform implementation will cause significant
input—output delay, because the processor must wait for
an entire block of input samples to accumulate, and then
perform significant calculations, before a block of output
samples is generated. The processor calculates the cor-
rect output signal, but this signal 1s delayed duqt% Inter-
nal buffering inherent in the block algorithm. If the proc-
essor is operating at maximum capacity, we can expect
the input—output delay to be twice ‘the length of the
block size. (This constraint is discussed later.) Conse-
quently, if we are convolving with a 2-s room 1mpulse
response, the input—output delay might be 4 s. This
delay is prohibitive for most real-time performance or

mixing applications.

i — —

* Presented at the 97th Convention of the Audio Engineering
Society, San Francisco, CA, 1994 November 10-13.

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

There 1s a simple way to harness the efficiency of
block transform methods without imposing any input—
output delay. The linearity of convolution allows us to
split the filter impulse response into blocks of different
sizes, compute the convolution of each block with the
input signal, and sum these results to obtain the output
signal. Prior to summing, the results must be delayed
according to the position of the block within the filter
response. A block starting at sample M within the filter
response will yield a result that must be delayed by M
samples. Convolving with the first block of the filter
response yields a result that 1s not delayed, and thus
it must be computed using the direct-form FIR filter.
Subsequent blocks of the filter response yield results that
are delayed, so these may be computed using block FFT
methods without violating the constraint of no input—
output delay, provided we choose the block sizes cor-
rectly. If we want to use the largest possible block sizes
without violating the delay constraint, we split the filter
response into small blocks at the start of the response,
with successively increasing block sizes at later times
in the filter response.

This paper describes such an algorithm for doing etfi-
cient convolution without input—output delay. The
method requires computing both a direct-form filter and
sets of various sized block FFT convolutions. The design
problem is how to split.up the filter response into blocks,
and how to manage the tasks so that everything 1s done
on time and the processor 1s fully utilized. We propose
using a primitive process scheduler to manage DSP
tasks. The convolution algorithm can be optimized sig-
nificantly by reusing previously computed spectra when-
ever possible. We will compare our hybrid method to
both direct-form and standard large-block transform
methods. As expected, our method is far more efficient

127

GARDNER

than direct-form implementation, but less efficient than
large-block, large-delay methods. With our method, a
small amount of fixed input—output delay can be traded
for additional efficiency.

1 CONVOLUTION

The convolution operator * 1s defined as follows:

y[n] = x[n] * h[n] - (1)
N-—-1

y[n] = kZ hlklx[n — k] . (2)
=0

ke

The convolution summation in Eq. (2) can be easily
implemented using the direct-form FIR filter, as shown
in Fig. 1. This implementation requires N multiplies per
output point.

A much more efficient convolution method uses the
discrete Fourier transform (DFT) to perform the convo-
lution in the frequency domain. An N-point block con-
volver using the overlap—save method 1s shown 1n Fig.
2. This has been drawn to look like a device that works
one sample at a time; for each input sample shifted in
at the top, an output sample 1s produced at the bottom.
Internally the device computes N points of result every
N sampling periods. The spectrum of the zero padded
filter response can be calculated once before operation.
During operation, samples are shifted into the input

buffer. Every N samples, the forward DFT transform of

the input samples, the spectral product with the filter
spectrum, and the inverse DFT transform are calculated.

Thus the overall input—output delay i1s N samples plus

—&—> y[n] = x{n] - hin]

Fig. 1. Direct-form implementation of convolution.

x[n]

N-pt block 0 n
of x[n]

“]¢— samples of x[n]
"shifted" into buffer

Runs once every
N samples

JllDFT

. AP m BTN MasdE R dE - .o
B v r v i A d B ow o mde morw L mga A
N N R e R .
B B R T B et
BoE RN W A g TR R R R R r g e b

tnaae e a

samples of y[n]
"shifted" out

aliased |

H"-_—--—--l—ﬂ"',

N-pt block
of result y[n]

Fig. 2. N-point overlap—save block convolver.

128

PAPERS

the time it takes to perform these calculations. This 1m-
plementation is efficient because we can use the FFT
algorithm to implement the DFT. The FFT block con-
volver requires O(log N) multiplies per output point.

1.1 Notation

We now introduce a notation to describe the operation
of this block convolver, |

h * x(ng, N) . (3)
Thig %evpresents the N-point result of the convolution y[n]
= [n] * x[n] starting at sample n,, and we will use
this notation to refer to the particular block operation
that produced this N-point result. The output y[n] can
be produced by concatenating the results of many block

convolution operations as follows:

y[n] = h * x(0, N) | h * x(N, N) | h = x(2N, N) . . .
(4)

where | represents concatenation.

2 ZERO-DELAY CONVOLUTION ALGORITHM

We will develop the zero-delay algorithm by first 1n-
troducing a minimum-cost algorithm that 1s completely
impractical. Then we will develop a practical algorithm
that 1s nearly as efficient. We will constrain ourselves
to using only radix-2 FFT algorithms [3], and thus all
convolution block sizes will be powers of 2.

2.1 Minimum-Cost Algorithm

It 1s easy to divide the filter response into blocks such
that we minimize the total computation cost per output
point without violating the delay constraint. This 1s done
by using the largest possible blocks to calculate the con-
volution. Fig. 3 shows a minimum-cost decomposition
of the filter response.

The filter response & is 8N points long and is split into
blocks h,, h,, h,, and h, with N, N, 2N, and 4N points,
respectively. The first block, A,, 1s N points long, and its
result, y,, 1s computed by direct-form filtering without

) o
--

lllllllllll

--

2N 3N 4N SN 6N 7N 8N time

y2=Xx"h2

y3 =X " h3

Yy=X"h=ypg+y{+y2+y3

Fig. 3. Minimum-cost decomposition of filter response under
constraint of no input—output delay.

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

PAPERS

delay. For small filter lengths, direct-form filtering is
more efficient than the block transform method. Here N
1s the size at which block convolution becomes more
efficient than direct-form filtering; for a typical DSP this
might be 32 or 64 samples. We will refer to N as the
starting block size, which i1s defined as the block size at
which block convolution becomes more efficient than
direct-form filtering. The computation of y, via direct-
form filtering allows us just enough time to accumulate
a block of N input samples to calculate y, = x * h, using
an N-point block transform. As should be evident, this
calculation must be completed within one sampling pe-
riod, or we will not produce the result y, in time.

Continuing with this strategy, the calculations of y,
and y, allow us just enough time to accumulate a 2N-
point block of input samples to calculate y, = x * h,,
which is done using 2N-point blocks. The last calcula-
tion shown is y; = x * h,, which is done using 4N-point
blocks. We would increase the filter response size by
adding blocks of size 8N, 16N, 32N, and so on.

With this scheme each block of size M starts M sam-
ples into the filter response A (except for the direct-form
block h,). We can sée that the result is a minimum-cost
solution because there 1s no way to increase any block
size without violating the delay constraint. However,
this algorithm 1s completely impractical because all the
block computations must be done almost instantane-
ously. Each M-point block convolver must wait M sam-
pling periods for the M-point block of input samples to
be shifted in, and since the result cannot be delayed
more than M samples, the computation must be complete
before the next sampling period. If we had a processor
that was fast enough to perform these calculations, we
would be wasting its power, since most of its time would
be spent waiting for input samples to be shifted into the
input buffer. Thus there 1s an implicit constraint that the
processor should be fully utilized, and this can be met
by distributing processor demand evenly over time.

—
"

2.2 A Practical, Uniform Demand Solution

We want to avoid the situation where a repetitive
calculation must complete in less time than the period
of repetition. This causes the demand on the processor
to become nonuniform over time. Consider the M-point

CONVOLUTION

block hA,, which starts L points into the filter response,
as shown 1n Fig. 4. The block convolution with A, 1s a
repetitive computation which 1s done every M samples.
The first block of the result x * A; must be computed by
time L, but the computation cannot begin until time M.
Thus the demand on the processor 1s nonuniform unless
L = 2M. In other words, we allow the processor the
same amount of time to do the block computation as it
takes to wait for a block of input samples. With this
constraint, each block of size M samples should start at
least 2M samples into the filter response. This ensures
that there 1s no time during which the processor 1s pre-
vented from working on any particular computation.

3 IMPLEMENTATION

Fig. 5 illustrates how to decompose the filter response
so that the processor demand stays constant. Fig. 5(a)
shows a filter response of size 16N. The first block,
h,, i1s of length 2N, and its convolution result will be
computed using a direct-form filter. The remaining
blocks A, through h¢ have sizes N, N, 2N, 4N, and 4N,
respectively. With the exception of h,, each block of
size M begins at least 2M samples into the filter response.
If h were longer, we would continue partitioning it using
two blocks of size 8N, followed by two blocks of size
16N, and so on. As before, N is chosen to be the smallest
block size at which block convolution 1s more efficient
than the direct-form filter.

Fig. 5(b) shows the schedule for performing the vari-
ous block convolution operations. Each horizontal strip
shows the schedule of operations for one block of the

processor demand
for x * h4

0 time

Fig. 4. Demand on processor is nonuniform over time unless
blocks of size M start at least 2M samples 1nto filter response.

—-_——

i

convolution
with:

0O N

(a)

(b)

;
e T e T e
mmmmmmmmmmmmmmmmmmmmmm m_(EN 2N) —(4N 2N) .m—(an 2N) _(10N 2N) _(12N 2N)
''''''''''' mmm
mmmm
_Lom [oum JeNm [N Jenm [snm (6NN [NN) [ENN) [ONN) [AONN) [11NN (120N (3NN (04NN |

2N 3N 4N 5N 6N 7N 8N ON

time

10N 11N 12N 13N 14N 15N 16N

Fig. 5. (a) Practical decomposition of filter response. (b) Corresponding block convolution scheduling.

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

129

GARDNER

filter response using the notation introduced 1n Eq. (3).
For instance, the convolution of the input with h, starts
at time N with the computation of x * A,;(0, N). This
computation can begin no sooner than time N and must
be complete by time 2N. At time 2N we can start with
the computation of x * A, (N, N). For the even-numbered
blocks of A we have artifically imposed a deadline sooner
than necessary. For instance, the computation of x * h,
(0, N) can begin no sooner than time N, but does not
have to be complete until time 3N, although we are
imposing a deadline of time 2N. The processor is uni-
formly loaded over time with this schedule, except at
the very start of the operation. Note that equal areas
in the diagram do not necessarily torrespond to equal
amounts of computation; the diagram only shows the
order of operations for each block convolver.

3.1 Process Scheduling

We can think of the periodic block convolutions with
different parts of the filter response as separate pro-
cesses, or tasks, which must be completed on time. We
have separate tasks associated with h, through A, seven
periodic tasks in all. Convolution with A, 1s special in
that a result must be obtained every sampling period via
direct-form filtering. Hence convolution with A, will be
calculated during the sample interrupt procedure. When
the processor 1s not servicing a sample interrupt, it con-
‘tinues processing one of the block convolution tasks.
Every N sample interrupts we hit a block boundary, and
we must schedule (start) the appropriate block tasks.
The N-point blocks have the most immediate deadline,
and thus will have the highest priority. The 2N-point
tasks will have medium priority, and the 4N-point tasks
will have the lowest priority. So for this example we
have three priority levels of tasks that must be com-
pleted. Table 1 shows what tasks are scheduled at times ¢
= 4N, SN, 6N, and 7/N. This scheduling follows directly
from Fig. 5.

At time ¢t = 4N we will schedule tasks at all three
priority levels. The highest priority task is to calculate
x * hy (B3N, N) and then calculate x * h, (3N, N). We
want to do these sequentially, because we can use the
intermediate results of the x * h; (3N, N) calculation to
make the x * h, (3N, N) calculation faster. In particular,
the same DFT of the input block is needed in both calcu-
lations. At time ¢t = 4N we also schedule two 2N-point
block calculations at medium priority and two 4N-point
block calculations at low priority.

3.2 Process Scheduler

The process scheduler can be very simple. Basically
the scheduler maintains a list of tasks to be completed,
in order of priority. The head of the list should be the
highest priority task. When the processor is not servicing
a sample interrupt, it returns to executing the highest
priority task on the list. Tasks running for the first time
are initiated via a jump to subroutine instruction, so that
when the task completes, we return to the scheduler,
and the next item on the list 1s executed. Every N samples
the interrupt routine will schedule new block tasks to be

130

PAPERS

completed. These must be added to the task list in sorted
order of priority. If we see that we are adding tasks to
the list at the same priority as existing tasks, then we
know we are not meeting the deadlines. This 1s because
all the M-point block tasks should be complete before
any new M-point tasks are scheduled.

We are always going to schedule high-priority tasks
every N samples. Presumably the processor was previ-
ously executing a lower priority task, and a sample inter-
rupt has occurred. We service the interrupt, perform the
direct-form FIR filter, and output the result sample by
sumpging the separate convolution results. Now we
would normally return from the interrupt to resume the
current task, but because this is an N-sample boundary,
there are higher priority tasks to be scheduled. Therefore
we save the context of the current task, add the new
tasks to the task list, and return to the process scheduler
to sequentially execute the new tasks. For a typical DSP
(such as the Motorola 56000), the state of a process
consists of the machine stack, the status register and
program counter, and all address and data registers.
Since we are currently in an interrupt routine, the status
register and PC are already on the stack, so we simply
need to copy the stack and registers to the current task’s
entry 1n the task list. After adding the new tasks to the
task list, we push the address of the process scheduler
onto the stack and execute a return from exception in-
struction, which will return us to the process scheduler.
The scheduler will in turn execute the high-priority task
that 1s first on the task list. High-priority tasks are never
Interrupted by another task (except the sample interrupt
routine), so we never have to restore their context. How-
ever, all lower priority tasks will be interrupted, so when
the process scheduler executes a lower priority task, it
must first check to see whether there 1s any context to
restore. If so, then this is done by restoring the stack
and registers, and executing a return from exception
instruction, which will restart the task as if we had just
returned from the sample interrupt that switched context
in the first place. Obviously, there are many ways to
do this sort of process scheduling, and implementation
details will depend on the target processor.

Because the algorithm as a whole is data independent
and time 1nvariant, we can expect the behavior of the
process scheduler to be completely periodic. Thus we
could replace the process scheduler with something
much simpler, but this would require splitting up the

Table 1. Task scheduling from Fig. 5.

Time t = 4N Task

x % hy(3N, N), x = h,(3N, N)
x * h,(2N, 2N), x * hy (2N, 2N)
x * hg(0, 4N), x * he(0, 4N)

High priority:
Medium priority:
Low priority:

t = SN
High priority: x * hiy(4N, N), x x h,(4N, N)
t = 6N

High priority:

Medium priority:
t = N

High priority:

x * hy(SN, N), x * h,(S5N, N)
x * hy(4N, 2N), x * hy (4N, 2N)

x * h(6N, N), x * h,(6N, N)

J. Audio Eng. Soc., Vol. 43, No. 3, 1825 March

PAPERS

large block tasks into smaller tasks with known computa-
tional requirements. It seems easier and more flexible
to have the process scheduler do all the work for us.

With the scheduler approach we can increase the size of

the filter response in blocks until the algorithm overruns,
then decrease the size of the response by one block so
that it runs on time. There will probably be some free
processor time left over, and we can increase the size
of the response by a small block to fill this remaining

processor time.

4 OPTIMIZATION

There are several ways the zero-delay convolution
algorithm can be optimized.

1) Precalculate the spectra of all filter response blocks.

2) Optimize the basic block convolution operation by
using real input FFTs, exploiting symmetry in the spec-
tral product, and so on.

3) Reuse input block spectra directly whenever possi-
ble. This happens quite often in this algorithm. For in-
stance, referring to Fig. 5, we see that every computation
involving A, can use the input spectra already calculated
for the h, computation. Theretore each A, block convolu-
tion operation only requires computing the spectral prod-
uct and the inverse FFT, since the forward FFT of the
input signal has already been calculated. This is true for
all even-numbered blocks of A (except h,, of course).

4) Calculate large input block spectra using the results
of smaller input block calculations. This is a subtle but
significant optimization, which 1s discussed in the next

section.

4.1 Calculation of Input Spectrum from Half-
Sized Results

We will consider the calculation of the forward DFT
of the block of input samples, as shown in Fig. 2. For
an M-point block convolution, the size of the actual
DFT calculated 1s 2M points. For instance, consider the
operation x * hy (2N, 2N). This requires that we calculate
the DFT of 4N 1nput samples beginning at sample O.
Similarly, calculating x * A, (N, N) involves the 2N-
point DFT of input samples O through 2N — 1, and
calculating x * h; (3N, N) involves the 2N-point DFT
of input samples 2N through 4N — 1. Referring to Fig.
5, and remembering how processes are prioritized, we
see that the two computations x * A; (N, N) and x * h,
(3N, N) will have completed before the com%tation
x * h, (2N, 2N) is started. Thus we already ki4ve the
spectra of the first and second halves of the input block
we are transforming. It 1s easy to see, that this trivially
yields the even points of the desired result spectrum by
summing the half-sized spectra, and it is only necessary
to calculate from scratch the odd points of the result.
Calculating the odd points of a spectrum requires slightly
more than half the total computation, so we have saved
nearly half the computation associated with transforming
blocks of input samples. This optimization is applicable
to the block convolvers associated with odd-numbered

blocks of h, except h;, for which no half-sized results

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

CONVOLUTION

are available. The details of calculating the odd points
of a spectrum using the “DFT-odd” operation are given
in Appendix 2.

5 COMPARISON OF ALGORITHMS

We now compare the computational cost of the zero-
delay algorithm with the direct FIR approach and the
large=-block, large-delay approach. To do this, we need
to specify an exact convolution algorithm and count op-
erations. As a measure of computational complexity, we
will count real multiplications and additions. A great
deal has been written on methods to optimize calculation
of the DFT and related methods to optimize convolution
[4]—[7]. A consideration of extensive optimization tech-
niques 1s beyond the scope of this paper. Instead, we
have prepared operation counts of the various computa-
tions assuming a reasonable amount of optimization, and
we will simply list these in tables without explaining
exactly how they were derived. The important factors
are the proportionality constants of the most significant
terms, and these agree with results from the literature.

5.1 Operation Cost

Unless explicitly stated otherwise, references to mul-
tiplications and additions will be assumed to be real,
and all references to the log operation are base 2. We
start with an N-point radix-2 complex DFT, which re-
quires (N/2) log (N/2) complex multiplications and N
log N complex additions. If complex multiplications are
implemented using four multiplications and two addi-
tions (an alternative approach requires three multiplica-
tions and three additions [5]), this yields 2N log N —
2N multiplications and 3N log N — N additions for an
N-point complex DFT. An N-point real DFT requires an
N/2-point complex DFT plus some other operations (see
Appendix 1). The summary of costs for the N-point real
DFT is given 1n Table 2.

Using a similar method, but paying more attention to
optimization details, Sorenson et al. [7] report N log N
PN — 6 multiplications and °2N log N — N/2 — 2
additions. The proportionality constants of the signifi-
cant terms agree with our results.

We now consider the cost of calculating an N-point
real DFT given we already have the half-sized spectral
results. These costs are summarized in Table 3. As dis-
cussed earlier, the even points of the result are obtained
by adding the half-sized spectra, and the odd points of
the result must be calculated from scratch. This algo-
rithm 1s described 1n detail in Appendix 2.

The block convolution operation requires computing

Table 2. Computational cost of N-point real DFT.

Multiplications Additions
N/2-point complex DFT N log N — 2N 3N log N — 2N
Spectral separation . 0 N
Spectral recombination 2N 2N
Total N log N 2N log N + N

131

GARDNER

the forward transform, the spectral product, and the 1n-
verse transform. The cost of the inverse transform 1s
assumed to be the same as the real input FFT shown 1n
Table 2. There are three possibilities for the forward
transform: 1) we have no prior result and must calculate
it from scratch (applicable to the 4, convolver); 2) we use
previously calculated half-sized spectra (odd-numbered
convolvers); and 3) we have already calculated the for-
ward transform and reuse it directly (even-numbered
convolvers). With these conditions, the costs of the N-
point block convolution are summarized in Table 4.

‘5.2 Cost of Zero-Delay Algorithm

For each block of the filter response, we determine
the cost to compute one block of partial output samples
(that is, one block of y,) and divide by the block size
to determine the cost per partial output sample. We then
sum this cost across all blocks of the filter response to
obtain the total cost per output sample.

The basic block size N is determined by the smallest
block size for which block convolution is faster than
direct-form filtering. For an N-point block, direct-form
filtering requires N multiplications per output and block

convolution requires 3 log N + 6 multiplications (which

assumes we have no prior results of the input spectrum).
Therefore, in terms of real multiplications, block convo-
lution will be more etficient starting at N = 32.

We have calculated the cost per output sample for the
zero-delay scheme with N = 32. Fig. 6 shows the num-
ber of multiplications required per output sample as a
function of filter response size for various convolution
algorithms. On one extreme is direct-form filtering,
which is a zero-delay algorithm but has linearly increas-
ing cost with filter size. On the other extreme is the very
efficient large-block convolution method whose cost
grows very slowly with increasing filter size, but whose
input—output delay increases with increasing filter size.
Bounded by these two is the cost for our zero-delay
hybrid block convolution algorithm. Also shown in the
figure 1s the minimum-cost, zero-delay solution ac-
cording to the filter decomposition shown in Fig. 3. Note
that the practical zero-delay algorithm 1s not much more
expensive than the minimum-cost zero-delay algorithm

- Table 3. Cost of N-point real DFT given previous
half-sized spectra.

Multiplications Additions
Even points 0 N/2
N-point real DFT-odd (N/2) log N + N 3N log N + 3N
Total (N/2) log N + N °Nlog N + °iN

Table 4. Cost of N-point block convolution.

Multiplications Additions

No prior results

Given previous half-
sized 1nput spectra

Given input spectrum

3NlogN + 6N %N log N + 8N

Nlog N + 4N °hN log N + 3N

132

2N logN + IN 3N log N + TN

PAPERS

and has a similar growth curvature.
It is possible to trade off fixed input—output delay for
decreased cost. For instance, we can eliminate the di-

rect-form filter and decompose the filter response 1nto
blocks of size N, N, 2N, 4N, 4N, and so on. This algo-

rithm will have an input—output delay of 1.5 ms for

N = 32 (at a 44.1-kHz sampling rate). The cost for this
algorithm is also shown in Fig. 6. It 1s simply the zero-
delay cost shifted down and to the left.

The cost of the zero-delay algorithm is approximately
34 logl(n) — 151 multiplies per output sample for filter
size p#Thus a filter of size 128K samples will require
approximately 427 multiplies per output sample. This
compares favorably with the 128K multiplies per output
sample required to implement a direct-form filter. A
single large-block convolution would require 68 multi-
plies per output sample, but would have an input—output
delay of 6 s.

6 MULTIPROCESSOR CONSIDERATIONS

Up till now we have only considered a.single processor
architecture. We will now briefly discuss a multiproces-
sor implementation of the zero-delay algorithm. Clearly,
1t makes sense to assign a different portion of the filter
response to each processor. Thus each processor needs
access to the input signal, and each creates a convolution
result that must be summed over all processors to gener-
ate the final result. Regardless of the architecture, this
communication overhead should be slight, since each
processor must receive and send only one sample per
sampling period. A more serious communication con-
straint involves the reuse of input signal spectra, which
are the source of significant optimization. In this case,
the processor that is convolving with A, must provide
spectral results to the processor convolving with A, .
If possible, this transfer should happen instantaneously
(that 1s, through shared memory). Otherwise the A,

300
direct form
c
0O
Q
>
S
3 200 . zero delay
O
o min. cost,
)
- zero delay
O |
I
O
= 1.5 ms delay
-
= 100
= /
O
E ,
‘ (23 ms) (46 ms)
large block
0
256 512 1024

Filter size, samples

Fig. 6. Comparison of different algorithms.

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

PAPERS

processor must wait for the result to be transterred before
it can use the result. If the size of A, equals the size of
h_ .., then it probably makes sense to wait, since 1t will
probably take less time to transfer the result between
processors than to compute 1t from scratch. If, however,
the size of h,,, 1s twice the size of h,, then the A,
processor can start on the DFT-odd portion of the input
spectrum computation while the A, processor sends the
half-sized results (even spectrum samples). One way to
minimize the communication requirement is to have each
processor compute contiguous blocks of the filter re-
sponse. Thus processor p, computes A, through h,, proc-
essor p, computes h, ., through h,, processor p, com-
putes h,,, through A, and so on. This scheme works
particularly well if high-bandwidth communication is
available between processors p, and p,, , , for transferring
input spectra (that 1s, a linear,cthain of processors). Of
course, there will be a maximum block size that a proces-
sor can compute continuously. Once all smaller blocks
of the filter response have been assigned to processors,
all remaining processors should compute using this max-
imum block size.

7 CONCLUSIONS

We have described a method of efficient convolution
that has no input—output delay. The method 1s a hybrid
approach combining direct-form filtering and over-
lap—save block convolution. Because block transform
techniques are used to render later portions of the filter
response, the algorithm 1s significantly faster than direct-
form filtering, though slower than the very etficient
large-block transform technique. Additional savings are
achieved through the reuse of input signal spectra, and
fixed delay can be traded for computational efficiency.
We have opted for a solution that keeps the processor
evenly loaded over time, which performs close to the
theoretical maximum. We have also described ways to
implement this algorithm on a multiprocessor archi-
tecture.

Devices that can render room reverberation in real
time by convolving an input signal with a measured
room response are already on the market. It 1s anticipated
that zero-delay convolution algorithms will play a role
in the success of these devices for real-time applications.

The author would like to thank Keith Martin, Paul
Beckman, and Dan Ellis for their help 1n producing
this paper. r

e

8 REFERENCES

[1] T. G. Stockham, Jr., “High-S;eed Convolution
and Correlation,” in Spring Joint Computer Conf.,
AFIPS Conf. Proc., vol. 28, pp. 229-233 (1966), re-

printed in Digital Signal Processing, Selected Reprints,
L. R. Rabiner and C. M. Rader, Eds. (IEEE Press, New

York, 1972).
[2] A. V. Oppenheim and R. W. Schafer, Digital Sig-

nal Processing (Prentice-Hall, Englewood Cliffs, NJ,
1975).

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

CONVOLUTION

[3] J. W. Cooley and J. W. Tukey, “An Algorithm
for the Machine Calculation of Complex Fourier Series,”
Mathe. of Comput., vol. 19, pp. 297-301 (1965); re-
printed in Digital Signal Processing, Selected Reprints,
L. R. Rabiner and C. M. Rader, Eds. (IEEE Press, New
York, 1972).

[4] C. S. Burrus, “Efficient Fourier Transform and
Convolution Algorithms,” in Advanced Topics in Signal
Processing,J.S.Limand A. V. Oppenheim, Eds. (Pren-
tice-Hall, Englewood Cliffs, NJ, 1988).

[5] C. S. Burrus and T. W. Parks, DFT/FFT and
Convolution Algorithms (Wiley, New York, 1984).

[6] M. Heideman and C. S. Burrus, “On the Number
of Multiplications Necessary to Compute a Length-2"
DFT,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-34 (1986 Feb.).

[7] H. V. Sorensen, D. L. Jones, M. T. Heideman,
and C. S. Burrus, “Real-Valued Fast Fourier Transform
Algorithms,” IEEE Trans. Acoust., Speech, Signal Pro-
cess., vol. ASSP-35 (1987 June).

[8] L. R. Rabiner and B. Gold, Theory and Applica-
tion of Digital Signal Processing (Prentice-Hall, Engle-
wood Cliffs, NJ, 1975).

APPENDIX 1
THE REAL INPUT DFT

It is well known that an N-point real input DFT can
be computed using an N/2-point complex DFT [7]. We
will quickly go through the derivation so we can refer
to it later in Appendix 2. The basic idea i1s that using
an N/2-point complex DFT we can do two N/2-point real
DFTs in parallel by assigning our two real sequences to
the real and imaginary parts, respectively, of the com-
plex input sequence. Because the real part of the input
yields a conjugate-symmetric result, and the imaginary
input yields a conjugate-antisymmetric result, we can
separate the two results from the result of the complex
DFT. If the two real input sequences are the even and
odd samples of an N-point real sequence, then the two
N/2-point DFT results can be combined with a set of
butterflies to give the N-point real DFT result according
to the decimation-in-time decomposition of the DFT.

The derivation for two N-point sequences 1s as follows
(see [2, problem 9.31]). Consider two N-point real se-
quences x,[n] and x,[n] with corresponding DFT's X, [k]
and X,[k], respectively. Let g[n] be the complex se-
quence x;[n] + jx,[n] with corresponding DFT G[k] =
Grlk] + jGy[k], and let Gogrlk], Gerlk], and Ggilk], and
G [k] denote the odd part of the real part, the even part
of the real part, the odd part of the imaginary part,
and the even part of the imaginary part, respectively,
according to

Gorlk] = {Gylk] = GlN — K] 5
1

Gerlk] = E{GR[’(] — GgrIN — kl} | (6)

133

GARDNER
Gorlk] = 2 {Gi[k] = G{IN — K} 7)
Gulk] = 2 {GilK] - GN — K})
Then X,[k] and X,[k] can be expressed as
X,[K] = Gerlk] + jGorlk])
X,lk] = Gkl + jGoglk] (10)

This shows how we would perform two independent N-
point real DFTs using a single N-point complex DFT.
A similar strategy applies for computing two N/2-point
real DFT's using a single N/2-point complex DFT.

The DFT X|[k] of an N-point sequence x[n] is defined

as follows:

NI
DFT{x[n]} = X[k] = D, x[n] W (11)
n=0
where
W, = e i2"N (12)

If we let x;[n] = x[2n] (even-numbered samples of x),
and let x,[n] x[2n + 1] (odd-numbered samples of
x), then we can express X|[k] as |

(N/2)—1 (N/2)—1
Xlk] = 2 x[2n] W%,nk + 2 x[2n + 1] “;(NZn+l)k
n=0 ne0
(13)
(N/2)—-1 (N/2) -1
- Zo x,[n] Wik, + Wk > x,[n] Wi, .
n= ne_0
(14)
N2 -1 |
X[k = 2r + 1] — 2 {xl[ﬂ] + e—Jﬂ(2r+1)x2[n]} w2r+1)
. n=0

N/2-1

2, talnl = xlnl} WiWy”

N/2 -1

Zo {xl[n] — x,[n]} Wx) Wy, .

A - —

This 1s the formulation of the decimation-in-time FFT
decomposition [2]. The two summations represent the
N/2-point DFTs of x; and x,. The expression shows how
the two N/2-point DFTs are recombined via a set of
butterfly operations to form the N-point DFT.

134

PAPERS

APPENDIX 2
THE DFT-ODD OPERATION

We will examine the method of computing the spec-
trum X[k] of an N-point sequence x[n] given that we
have the spectra of two N/2-point sequences x,[n] and
x,[n], which consist of the first N/2 points and the second
N/2 points of sequence x, respectively. Thus x,[n] =
x[n], x,[n] x[n + N/2], for 0 < n < N/2. All the
needed relatlonshlps fall out of the derivation for the
dcmmatlon -in-frequency FFT [8]. The N-point DFT of

x[nlkg,ﬂf‘ -

N

DFT{x[n]} = X[k] = D x[n] W
"~ (15)
= MZ_I x,[n] Wk + milxztn] Wy T2k
i " ' (16)
N2 1
= HZO {x,[n] + e~ i™ x,[n]} Wik (17)

Let us consider the even points of the spectrum X|[k],

N/2—-1

X[k =2r] = D, {x,[n] + e 7™ x,[n]} Wi
n=_ |

(18)

N/2 -1

Z {x,[n] + x,[n]} Wi,

n=0

(19)

N/i2—-1

Z x[n] Wy, + Zo x,[n] Wy, (20)

n=0

= X,[r] + X,[r] . (21)

Eq. (21) shows that the even poiﬁts of X[k] can be deter-

mined by adding the spectra of x, and x,. Let us consider
the odd points of X[k],

(22)

(23)

(24)

Eq. (24) shows that the odd points of X[k] can be deter-
mined by prealiasing and modulating x[n] and then per-
forming an N/2-point complex DFT. We will show how

~ the calculation of Eq. (24) can be done using an N/4-

point complex DFT when x[n] is real. This 1s exactly
analogous to the method used to compute an N-point
real DFT using an N/2-point complex DFT.

J. Audio Eng. Soc., Vol. 43, No. 3, 1225 March

PAPERS

CONVOLUTION

First let us redefine Eq. (24) and call it the “DFT-odd” operation,

N-1

DFT-odd{x[n]} = X[k = 2r+1] = X'[r] = D x[n] Wi¥*D

n=0

for 0 < r < N/2. If x[n] 1s real, than X'[r] will be
symmetric, |

X'[r] = X'*[N/2) — r — 1] . (26)

If x[n] is pure 1maginary, then X'[r] will be
antisymmetric,
X'[r] = — X'*[(N12) — r — 1] . (27)

Note that this i1s slightly different than the usual form
of spectral symmetry because-these are the odd points
of a conjugate-symmetric spectrum. The symmetry
allows us to perform two N-point real DFT-odd opera-
tions using a single N-point complex DFT-odd opera-

tion.

4

N-1

z x[n] Wzrﬂ)
n=0

X'[r]

(N/2)—1 (N/2)—1

n=_0Q

(N/2)— 1 (N/2)—-1

n=0 n=0_0

— i e —

The derivation exactly follows the real DFT derivation
except for the form of the symmetry. Consider two N-
point real sequences x,[n] and x,[n] with corresponding
N/2-point DFT-odd transforms X;[r] and X;[r], respec-
tively. Let g[n] be the complex sequence x,[n] + jx,[n]
with corresponding DFT-odd G'[r] = Gg + jGg[r], and
let Gorlr], Gerlrl, Goilr], and Gg[r] denote the odd part
of the real part, the even part of the real part, the odd
part of the imaginary part, and the even part of the
imaginary part, respectively, according to

Gonlr] = {GHIA = GV = r = 1} (28)

v W
Gialrl = S Gk — Gil(12) = r = 11}

4

(29)

Table 5. Cost of N-point complex DFT-odd operation.

Multiplications Additions
Aliasing 0 N
Modulation 2N N
N/2-point complex DFT N log N — 2N 3N log N — 2N
Total N log N 2N log N

J. Audio Eng. Soc., Vol. 43, No. 3, 1995 March

2 x[2n] Wﬁn(2r+l) 4 2 x[zn 4 1] W(]3n+l)(2r+l)
n=0

> xn) WaE+D + WHHL Y x[n] Wi D

(25)

Giulrl = 5 {G{Ir] = G{lwI2) — r — 1) (30)

Gilrl = S{Gil" - Gl = r = 1}, (D)
Then X![r] and X,[r] can be expressed as

X| = Giglr] + jGilr] (32)

X} = Giglrl + jGoglr] (33)

Let us return to the DFT-odd formulation of Eq. (25)
and consider summing over the even and odd samples
of x[n]. If we let x,[n] = x[2n] (even-numbered samples
of x) and let x,[n] = x[2n + 1] (odd-numbered samples
of x), then we can express X'[r]:

(34)

(35)

(36)

The summations in Eq. (36) are recognized as the
N/2-point DFT-odd transforms of x,[n] and x,[n]. The
expression shows how to combine the two N/2-point
transforms to create the N-point transform using a set
of butterfly operations.

In order to compute the N-point DFT-odd transform
of a real sequence x[n], we form the N/2-point sequences
consisting of the even and odd samples of x[n] and assign
these to the real and imaginary parts, respectively, of
an N/2-point complex sequence. We then compute the
DFT-odd of this sequence using Eq. (24), which only
requires doing an N/4-point complex DFT. We then per-
form a spectral separation according to Eqs. (28)—(33),

“and finally we perform the spectral recombination using

a set of butterflies according to Eq. (36).
Cost estimates for the complex and real DFT-odd op-
erations are given in Tables 5 and 6.

Table 6. Cost of N-point real DFT-odd operation.

Multiplications Additions
N/2-point complex (Ni2) log N — N/2 °LW1N log N — °IsN
DFT-odd -
Spectral separation N/2 N/2
Spectral recombination N N
Total (N/12) log N + N N log N + uN

135

GARDNER PAPERS

THE AUTHOR

e
v

0 0 T N A 3 s
,};&‘;&:ﬂ 3] :‘..‘_\::::.'-:_-.-1;:‘.-‘*.‘_:' ol e ﬁ‘-___::_ o L R ok el
R ;. [.]

. e
o 3 e F4
o .'_!'_ '-Z-..--.__.-_-C"-"‘.'q,'
Ao e e it

-

Bill Gardner was born in 1960 in Meriden, CT, and
grew up in the Boston, MA, area. He received a bache-
lor’s degree in computer science from MIT in 1982 and
shortly thereafter joined Kurzweil Music Systems as a
software engineer. For the next seven years, he helped
develop software and signal processing algorithms for
Kurzweil synthesizers. He left Kurzweil in 1990 to enter

e NIRRT
a s s ;.;.:_.-.-.:.'I':.-_

e

graduate school at the MIT Media Lab, where he is
currently pursuing a Ph.D. as a Motorola fellow. During
summers, he works at Lexicon developing audio effects
algorithms. His current interests are reverberation, spa-
tial audio, and real-time signal processing. Mr. Gardner
1s a member of the Audio Engineering Society and the
Acoustical Society of America.

B

	01.gif
	02.gif
	03.gif
	04.gif
	05.gif
	06.gif
	07.gif
	08.gif
	09.gif
	10.gif

