
Fast Algorithms
with Algebraic Monge Properties�

Wolfgang W. Bein1,��, Peter Brucker2,
Lawrence L. Larmore1,∗, and James K. Park3� � �

1 Department of Computer Science, University of Nevada,
Las Vegas, Nevada 89154, USA,

bein@cs.unlv.edu larmore@cs.unlv.edu
2 Universität Osnabrück, Fachbereich Mathematik/Informatik

D-49069 Osnabrück, Germany,
peter@mathematik.uni-osnabrueck.de

3 Bremer Associates, Inc.,
215 First Street, Cambridge, Massachusetts 02142, USA,

james.park@bremer-inc.com

Abstract. When restricted to cost arrays possessing the sum Monge
property, many combinatorial optimization problems with sum objec-
tive functions become significantly easier to solve. The more general
algebraic assignment and transportation problems are similarly easier
to solve given cost arrays possessing the corresponding algebraic Monge
property. We show that Monge-array results for two sum-of-edge-costs
shortest-path problems can likewise be extended to a general algebraic
setting, provided the problems’ ordered commutative semigroup satisfies
one additional restriction. In addition to this general result, we also show
how our algorithms can be modified to solve certain bottleneck shortest-
path problems, even though the ordered commutative semigroup natu-
rally associated with bottleneck problems does not satisfy our additional
restriction. We show how our bottleneck shortest-path techniques can
be used to obtain fast algorithms for a variant of Hirschberg and Lar-
more’s optimal paragraph formation problem, and a special case of the
bottleneck traveling-salesman problem.

1 Introduction

In an algebraic combinatorial optimization problem, we are given a collection
S of subsets of a finite nonempty set E as well as a cost function φ : E → H,
where (H, ∗,�) is an ordered commutative semigroup. It is further assumed
that the internal composition ∗ is compatible with the order relation �, i.e. for

� Conference Version.
�� Research of these authors supported by NSF grant CCR-9821009.

� � � This author’s work was done while the author was at Sandia National Laborato-
ries, and supported by the U.S. Department of Energy under Contract DE-AC04-
76DP00789.

K. Diks et al. (Eds): MFSC 2002, LNCS 2420, pp. 104–117, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Fast Algorithms with Algebraic Monge Properties 105

all a, b, c ∈ H, a ≺ b implies c ∗ a � c ∗ b. Then an algebraic combinatorial
problem is given by

min
S∈S

⊗
e∈S

φ(e)

with
⊗

e∈S := φ(e1) ∗ φ(e2) ∗ · · · ∗ φ(ek) for S = {e1, e2, . . . , ek} ⊂ E. When
the operation “∗” is the “+” operation we have a regular sum objective. Often
objectives more general than sum objectives accomodate practical optimization
problems more easily. Of particular interest are bottleneck objectives, where the
operation “∗” is replaced by the “max” operation. Many combinatorial opti-
mization problems with sum objectives have efficient algorithms for algebraic
objective functions (see Burkard and Zimmermann [7] for a survey of classical
results, as well as Burkard [6,8] and Seiffart [16]).

These generalizations are especially elegant for shortest path problems and
assignment problems. In this case the set E is a subset of U × V , where U =
{1, . . . ,m} and V = {1, . . . , n} for some m,n ∈ N . The cost function φ is then
expressed in terms of a cost array A = {a[i, j]} with φ(e) = a[i, j] if e = (i, j).
We say that an m×n array A = {a[i, j]} possesses the algebraic Monge property
if for all 1 ≤ i < k ≤ m and 1 ≤ j < � ≤ n, a[i, j] ∗ a[k, �] � a[i, �] ∗ a[k, j].
If operation “∗” is the “+” operation we just say that array A has the Monge
property, if the operation “∗” is replaced by the “max” operation we say that
array A has the bottleneck Monge property.

One of the earliest results concerning optimization problems with (sum)
Monge arrays goes back to Hoffman [13]. He showed the now classical result
that the transportation problem is solved by a greedy O(n) algorithm if the
underlying cost array is a Monge array and m = n.

For path problems, consider the complete directed acyclic graph G = (V,E),
i.e. G has vertices V = {1, . . . , n} and edges (i, j) ∈ E iff i < j. The unrestricted
shortest-path problem is the problem of finding the shortest path from vertex 1
to vertex n whereas the k-edge shortest-path problem is the problem of finding
such a path that has exactly k edges. Larmore and Schieber [15] have shown
that, for (sum) Monge distances, the unrestricted shortest path problem on a
complete directed acyclic graph can be solved in O(n), whereas the k-shortest
path problem can be solved in O(kn). Aggarwal, Schieber, and Tokuyama [3]
present an alternate O(n

√
k lg n) algorithm using parametric search.

In this paper we will derive such results for two path problems with algebraic
cost arrays.

Consider the complete directed acyclic graph G as above. Associated with the
edges are costs a[i, j], which are drawn from the ordered commutative semigroup
(H, ∗,�). An essential requirement of our algorithms will be that the internal
composition ∗ be strictly compatible with the order relation � (the operation ∗
is strictly compatible with the order relation � if for all a, b, c ∈ H, a ≺ b implies
c ∗ a ≺ c ∗ b).

As mentioned earlier, an important case for practical applications of algebraic
objective functions is bottleneck objective functions. Gabow and Tarjan [10] give
results concerning bottleneck shortest path problems. In [5], Burkard and Sand-

106 Wolfgang W. Bein et al.

holzer identify several families of cost arrays in which the bottleneck traveling-
salesman problem can be solved in polynomial time; their results include bot-
tleneck Monge arrays as an important special case. Klinz, Rudolf, and Woeg-
inger [14] have developed an algorithm to recognize bottleneck Monge matrices
in linear time. We derive here an O(n) algorithms for the unrestricted short-
est path bottleneck problem, as well as an O(kn) algorithm and an alternative
O(n3/2 lg5/2 n) for the k-shortest path bottleneck problems.

Consider the ordered commutative subgroup (�,max,≤) naturally associ-
ated with bottleneck combinatorial optimization problems. Note that the com-
position max is compatible with the order relation ≤ but not strictly compatible
with it. (For example, 5 < 7 but max{8, 5} �< max{8, 7}.) For an example of
an ordered commutative semigroup (H, ∗,�) whose internal composition ∗ is
strictly compatible with its order relation �, consider the set T of ordered tu-
ples (r1, r2, . . . , rn) such that n ≥ 0, ri ∈ � for 1 ≤ i ≤ n, and r1 ≥ r2 ≥ · · · ≥ rn.
Furthermore, suppose we define “ ⊕” so that

(q1, q2, . . . , qm) ⊕ (r1, r2, . . . , rn) = (s1, s2, . . . , sm+n) ,

where s1, s2, . . . , sm+n is the sorted sequence obtained by merging the sequences
(q1, q2, . . . , qm) and (r1, r2, . . . , rn), and we define ≺ so that (q1, q2, . . . , qm) ≺
(r1, r2, . . . , rn) if and only if there exists an i in the range 1 ≤ i ≤ m such that
qi < ri and qj = rj for 1 ≤ j < i or m < n and qj = rj for 1 ≤ j ≤ m. It is
not hard to see that (T,⊕,�) is an ordered commutative semigroup and ⊕ is
strictly compatible with �. As we will see later this semigroup can be used to
model strict bottleneck Monge conditions.

In Section 2 we derive the general algorithm for algebraic shortest path prob-
lems with the Monge property. The results follows fairly directly from the fact
that if matrix A possesses the algebraic Monge property, then A is totally mono-
tone. Section 3 develops the algorithm for the bottleneck case. As discussed in
the previous paragraph, the results for the bottleneck case is more intricate. Sec-
tion 4 contains an alternate algorithm that in some sense generalizes Aggarwal,
Schieber, and Tokuyama’s [3] algorithm. In Section 5 we apply our results to a
variant of Hirschberg and Larmore’s optimal-paragraph-formation problem [11]
and in Section 6 we obtain a fast algorithms for a special case of the bottleneck
traveling-salesman problem.

2 Algorithms for Algebraic Shortest-Path Problems

We will now show that both the unrestricted and the k-edge variants of the al-
gebraic shortest-path problem for an ordered commutative semigroup (H, ∗,�)
are significantly easier to solve given edge costs with the algebraic Monge prop-
erty, provided the internal composition ∗ is strictly compatible. An m× n array
A = {a[i, j]} is totally monotone if for all 1 ≤ i < k ≤ m and 1 ≤ j < � ≤ n,
either a[i, j] � a[i, �] or a[k, j] � a[k, �]. (We say that A is transpose totally mono-
tone if the transpose of A is totally monotone; i.e., if the same condition holds
with the role of rows and columns reversed.) Strict compatibility is necessary

Fast Algorithms with Algebraic Monge Properties 107

to insure that every array possessing the algebraic Monge property is also to-
tally monotone, the crucial property exploited by our algorithms. The following
lemma makes this last claim precise.

Lemma 2.1. Let (H, ∗,�) denote an ordered commutative semigroup whose in-
ternal composition ∗ is strictly compatible with its order relation �, and let
A = {a[i, j]} denote an array whose entries are drawn from (H, ∗,�). If A
possesses the algebraic Monge property, then A is totally monotone and also
transpose totally monotone.

Proof. By contradiction. Suppose that (H, ∗,�) is an ordered commutative semi-
group whose internal composition ∗ is strictly compatible with its order relation
�, A = {a[i, j]} is an algebraic Monge array whose entries are drawn from
(H, ∗,�), and A is not totally monotone. Then for some i, j, k, and � satisfying
1 ≤ i < k ≤ m and 1 ≤ j < � ≤ n, a[i, j] � a[i, �] and a[k, j] � a[k, �]. Because
the composition ∗ is strictly compatible with �, we have that a[i, j] ∗ a[k, �] �
a[i, �] ∗ a[k, �] and a[i, �] ∗ a[k, �] � a[i, �] ∗ a[k, j]. By transitivity of the order
relation, we have a[i, j] ∗ a[k, �] � a[i, �] ∗ a[k, j], which contradicts the Monge
property of A. The proof that A is transpose totally monotone is similar, as the
algebraic Monge property is invariant under tansposition.

Note that if the semigroup’s composition ∗ is compatible with its order re-
lation � but not strictly compatible with it, then an array whose entries are
drawn from the semigroup may possess the algebraic Monge property without
being totally monotone. For example, consider again the ordered commutative
subgroup associated with bottleneck combinatorial optimization problems. The
array [

1 0
1 1

]

satisfies the inequality max{a[i, j], a[k, �]} ≤ max{a[i, �], a[k, j]} for all i < k and
j < �, but it is not totally monotone.

The total monotonicity of arrays possessing the algebraic Monge property
allows us to locate these arrays’ smallest entries using the array-searching al-
gorithms of Aggarwal et al. [1] (called the SMAWK algorithm) and Larmore
and Schieber [15]. However, before we can obtain the desired shortest-path al-
gorithms, we need one more lemma. (Note that this lemma does not require the
strict-compatibility assumption.)

Lemma 2.2. Let (H, ∗,�) denote an ordered commutative semigroup whose
internal composition ∗ is compatible with its order relation �, and let C =
{c[i, j]} denote an array whose entries are drawn from (H, ∗,≤). Furthermore,
let B = {b[i]} denote any vector, and let A = {a[i, j]} denote the array given by
a[i, j] = b[i] ∗ c[i, j]. If C possesses the algebraic Monge property, then so does
A.

Proof. If C is algebraic Monge, then for all i < k and j < �, c[i, j] ∗ c[k, �] �
c[i, �] ∗ c[k, j]. Since the order relation is compatible, and the composition ∗ is

108 Wolfgang W. Bein et al.

commutative, we have

c[i, j] ∗ c[k, �] ∗ b[i] ∗ b[k] � c[i, �] ∗ c[k, j] ∗ b[i] ∗ b[k]
b[i] ∗ c[i, j] ∗ b[k] ∗ c[k, �] � b[i] ∗ c[i, �] ∗ b[k] ∗ c[k, j]

a[i, j] ∗ a[k, �] � a[i, �] ∗ a[k, j] .

Theorem 2.3. Let (H, ∗,�) denote an ordered commutative semigroup whose
internal composition ∗ is strictly compatible with its order relation �, and let
G denote a complete directed acyclic graph on vertices 1, . . . , n whose edge costs
C = {c[i, j]} are drawn from H. If C possesses the algebraic Monge property,
then the algebraic k-edge shortest-path problem for G can be solved in O((ta +
tc)kn) time, where ta is the worst-case time required for performing a composition
∗ and tc is the worst-case time required for comparing two elements of H.

Proof. Let 1 ↪→ j denote a path from vertex 1 to vertex j. Define a[i, j] to be
the length of the shortest �-edge 1 ↪→ j path that contains the edge (i, j), and
d[i] to be the length of the shortest �-edge 1 ↪→ i path. Then

a[i, j] =
{
d−1[i] ∗ c[i, j] if i < j
∞ otherwise and d[j] =

{
min1≤i<j a

[i, j] if � > 1
c[i, j] if � = 1

where the min operation is performed over the order relation �. By Lemma 2.2,
for 2 ≤ � ≤ k, the array A = {a[i, j]} is algebraic Monge.

Our algorithm contains k phases. In phase �, we use d−1[1] through d−1[n]
to compute d[1] through d[n]. Note that d[1] through d[n] are simply the
minima of column 1 through column n of array A. In phase �, any entry a[i, j]
of array A can be computed in ta time, since d−1[i] is already known. Thus,
using the algorithm of Aggarwal et al. [1], the column minima of A can be found
in O((ta + tc)n) time. Since our algorithm has k phases, the total running time
is O((ta + tc)kn).

Theorem 2.4. Let (H, ∗,�) denote an ordered commutative semigroup whose
internal composition ∗ is strictly compatible with its order relation ≤, and let G
denote a complete directed acyclic graph on vertices 1, . . . , n whose edge costs are
drawn from H. If G’s edge costs possess the algebraic Monge property, then the
algebraic unrestricted shortest-path problem for G can be solved in O((ta + tc)n)
time, where ta is the worst-case time required for computing d[i] ∗ c[i, j] and tc
is the worst-case time required for comparing two entries of A.

Proof. This proof is very similar to the proof of Theorem 2.3 and is given in the
journal version.

3 Algorithms for the Bottleneck Shortest-Path Problems

In this section, we show how our two algebraic shortest-path algorithms can
be modified to handle the bottleneck shortest-path problems. As mentioned in

Fast Algorithms with Algebraic Monge Properties 109

Section 1, the ordered commutative subgroup (�,max,≤) naturally associated
with bottleneck combinatorial optimization problems has a composition that
is not strictly compatible with its order relation. Thus, we need to model the
bottleneck problems with a different semigroup.

To obtain our results we assume that the cost array possesses what we call
the strict bottleneck Monge property, which requires that for all i < k and j <
�, either max{c[i, j], c[k, �]} < max{c[i, �], c[k, j]} or both max{c[i, j], c[k, �]} =
max{c[i, �], c[k, j]} and min{c[i, j], c[k, �]} ≤ min{c[i, �], c[k, j]}.

Define the cost of the bottleneck shortest-path to be an ordered tuple con-
taining the costs of all the edges on this path sorted into non-increasing order.
Define the bottleneck-cost of the bottleneck shortest-path to be the first (i.e. the
largest) entry in the cost of the bottleneck shortest-path. For example, if the
bottleneck shortest 1 ↪→ j path consists of edges (1, i1), (i1, i2), (i2, i3), (i3, j)
with the costs c[1, i1] = 6, c[i1, i2] = 3, c[i2, i3] = 9, c[i3, j] = 5, then the cost
of this path is (9, 6, 5, 3) and its bottleneck-cost is 9. We model the bottleneck
shortest-path problems using the ordered commutative semigroup (T,⊕,�) that
was defined in Seciton 1, where the set T contains the costs of the bottleneck
shortest-paths. To be able to use our results for the algebraic Monge property,
we need the following lemma.

Lemma 3.1. Let C = {c[i, j]} be the array of edge costs. Let CT = {cT [i, j]}
denote an array where each entry cT [i, j] is a tuple consisting of a single element
c[i, j]. If C possesses the strict bottleneck Monge property, then CT possesses the
algebraic Monge property under (T,⊕,�).

Proof. We need to prove that (cT [i, j]) ⊕ (cT [k, �]) � (cT [i, �]) ⊕ (cT [k, j]). Let
L1 = max{c[i, j], c[k, �]}, L2 = min{c[i, j], c[k, �]}, R1 = max{c[i, �], c[k, j]} and
R2 = min{c[i, �], c[k, j]}. Using this notation, (cT [i, j])⊕(cT [k, �]) = (L1, L2) and
(cT [i, �])⊕(cT [k, j]) = (R1, R2). Thus, we need to prove that (L1, L2) � (R1, R2).

If C possesses the strict bottleneck Monge property, then for all i < k and
j < �, we have one of two cases

Case 1: max{c[i, j], c[k, �]} < max{c[i, �], c[k, j]}

Case 2: both max{c[i, j], c[k, �]} = max{c[i, �], c[k, j]} and min{c[i, j], c[k, �]} ≤
min{c[i, �], c[k, j]}

In Case 1, we have L1 < R1, which implies that (L1, L2) ≺ (R1, R2). In Case
2, we have L1 = R1 and L2 ≤ R2, which implies that (L1, L2) � (R1, R2).

As was discussed in Section 1, the composition ⊕ is strictly compatible with
the order relation �. Thus, given Lemma 3.1, if we use array CT as our cost array,
all the lemmas and theorems of Section 2 apply to the bottleneck shortest-path
problems modelled by (T,⊕,�). Note that once the algorithms in Section 2
return their answers for the cost of the shortest-path, the bottleneck-cost of the
shortest-path can be determined by taking the largest element in the cost tuple.
We now state our results:

110 Wolfgang W. Bein et al.

Theorem 3.2. The bottleneck k-edge shortest-path problem for an n-vertex di-
rected acyclic graph whose edge costs possess the strict bottleneck Monge property
can be solved in O(kn) time.

We only give the motivation for the proof of Theorem 3.2 here: Adapting
the proof of Theorem 2.3 to our semigroup, recall that we called the SMAWK
algorithm to determine the column minima of the array A = {a[i, j]}, where

a[i, j] =
{
d−1[i] ⊕ cT [i, j] if i < j
∞ otherwise and d[j] =

{
min1≤i<j a

[i, j] if � > 1
cT [i, j] if � = 1

In order to improve the running time of Theorem 2.3 on the semigroup (T,⊕,�),
we need to take a close look at the kinds of comparisons performed in the proof
of that theorem. All the work in that proof is done by the SMAWK algorithm
(Aggarwal et al. [1]). The key idea is that instead of storing and manipulating
an entire tuple, we can simply keep first two element of a[i, j]. The resulting
matrix (in the ordered semi-group consisting of unordered pairs, instead of k-
tuples) is still algebraically Monge. Thus, the times ta and tc are reduced to
O(1), and using the proof of Theorem 2.3, we can solve the bottleneck k-edge
shortest-path problem in O(kn) time.

By analyzing the algorithm of Larmore and Schieber [15], instead of SMAWK,
we similarly obtain:

Theorem 3.3. The bottleneck unrestricted shortest-path problem for an n-
vertex directed acyclic graph whose edge costs possess the strict bottleneck Monge
property can be solved in O(n) time.

4 An Alternate Algorithm
for the Bottleneck k-Edge Shortest-Path

In this section we present a second algorithm for the bottleneck k-edge shortest-
path problem that in some sense generalizes Aggarwal, Schieber, and Tokuyama’s
[4] algorithm. Our algorithm is based on a O(n)-time query subroutine for deter-
mining whether the graph contains a k-edge 1 ↪→ n path using only edges whose
costs are less than or equal to some threshold T . To create the query subroutine,
we need two technical lemmas. We say that a path satisfies the threshold if every
edge on the path is less than or equal to T .

Define the following two graphs with the same vertex and edge sets at G,
but with different cost functions: a graph G′

T = (V,E) with edge costs

c′[i, j] =
{
1 if c[i, j] ≤ T
+∞ otherwise

and a graph G′′
T = (V,E) with edge costs

c′′[i, j] =
{−1 if c[i, j] ≤ T
+∞ otherwise

Fast Algorithms with Algebraic Monge Properties 111

Lemma 4.1. If the cost array C = {c[i, j]} is bottleneck Monge, then the arrays
C ′ = {c′[i, j]} and C ′′ = {c′′[i, j]} are Monge.

Proof. The proof is routine and is given in the journal version.

Lemma 4.2. Suppose the unrestricted shortest 1 ↪→ n path P in G′
T contains

k′ edges and has length that is less than +∞. Also, suppose the unrestricted
shortest 1 ↪→ n path Q in G′′

T contains k′′ edges and has length that is less than
+∞. Then there exists a k-edge 1 ↪→ n path in G that satisfies the threshold if
k′ ≤ k ≤ k′′.

Proof. The proof is ommited here and is given in the journal version.

We are now ready to design the query subroutine for determining whether
the given graph contains a k-edge 1 ↪→ n path that uses only edges whose costs
are less than or equal to some threshold T . Given Lemmas 4.2, such a path
exists if k′ ≤ k ≤ k′′, where k′ is the length of the unrestricted shortest 1 ↪→ n
path in G′

T and k′′ is the length of the unrestricted shortest 1 ↪→ n path in G′′
T .

Using the algorithm of Larmore and Schieber [15], we can determine the length
of the unrestricted shortest 1 ↪→ n path in a graph with Monge property in
O(n) time. Since the cost arrays of both G′

T and G′′
T satisfy the Monge property

(Lemma 4.1), our query subroutine runs in O(n) time.

Theorem 4.3. The bottleneck k-edge shortest-path problem for an n-vertex
graph whose edge costs possess the strict bottleneck Monge property can be solved
in O(n3/2 lg2 n) time (or in O(n lg2 n) time if the problem’s cost array is also
bitonic1).

Proof. We use the result of Agarwal and Sen [2], who show how to find the d-th
smallest entry in an m × n totally monotone array in O((m + n)

√
n lg n) time.

For our n × n totally monotone array, this translates into O(n3/2 lg n) time.
There are n2 entries in the n × n cost array CT of the bottleneck shortest-path
problem. We perform a binary search on these n2 entries by calling the procedure
Binary-Search(CT , 1, n2). Binary-Search(CT , i, j) does the following. We
use Agarwal and Sen [2] to find the � j+i

2 �-th smallest entry in CT , which we call
τ . We use our query algorithm to test if the graph contains a k-edge 1 ↪→ n path
that uses only edges whose costs are less than or equal to τ . If the query answers
“yes,” then we call Binary-Search(CT , i, � j+i

2 �); otherwise we call Binary-
Search(CT , � j+i

2 �, j). The binary search returns the smallest entry τ∗ in CT

for which there exists a k-edge 1 ↪→ n path that uses only edges whose costs are
less than or equal to τ∗. Thus, τ∗ is the bottleneck-cost of the bottleneck k-edge
shortest-path.

To find the actual path, we consider Lemma 4.2. We compute the unrestricted
shortest 1 ↪→ n paths P and Q, |P | = k′, |Q| = k′′, in the graphs G′

τ∗ and G′′
τ∗ .

1 An n-entry vector B = {b[i]} is called bitonic if there exists an i satisfying 1 ≤ i ≤ n
such that b[1] ≥ · · · ≥ b[i − 1] ≥ b[i] ≤ b[i + 1] ≤ · · · ≤ b[n]. We call a 2-dimensional
array bitonic if its rows or its columns are bitonic.

112 Wolfgang W. Bein et al.

Scanning vertices in increasing order starting at 1, we then look for an edge (i, t)
in P and an edge (s, j) in Q that satisfy i < s < j ≤ t and |1 P

↪→ t| = |1 P
↪→ s|.

Let Q′ consist of 1
P
↪→ i, followed by the edge (i, j), followed by j

Q
↪→ n; and

P ′ consist of 1
Q
↪→ s, followed by the edge (s, t), followed by t

P
↪→ n. From

Lemma 4.2, we know that P ′ and Q′ are both 1 ↪→ n paths that satisfy τ∗

and that |P ′| = k′ + 1 and |Q′| = k′′ − 1. If k = k′ + 1 or k = k′′ − 1, we
are done. Otherwise, we repeat this procedure, except that we start our search
for the new edges where we want to switch the paths not from vertex 1, but
from vertices i and s. Thus, the total running time to find the path given τ∗ is
O(n+k) = O(n). The total running time to find the bottleneck k-edge shortest-
path is O(lg n2(n3/2 lg n+ n)) = O(n3/2 lg2 n).

In the case of a bitonic cost array, the selection problem is simpler. The selec-
tion algorithm of Frederickson and Johnson [9] computes the n largest elements
overall in O(n) sorted lists in O(n) time. When the array is bitonic, we can easily
decompose it into 2n sorted lists in O(n lg n) time. Applying Frederickson and
Johnson [9], we can compute the d-th smallest entry in an n × n bitonic array
in O(n lg n) time. Thus, for cost arrays that satisfy the string bottleneck Monge
property and are bitonic, the k-edge shortest-path can be found in O(n lg2 n)
time.

Using a similar query technique, we can also obtain the following result for
unbalanced assignment problem.

Theorem 4.4. The bottleneck assignment problem for an m×n bipartite graph,
where m ≤ n and the edge costs possess the strict bottleneck Monge property can
be solved in O((m

√
n lgm+ n) lg2 n) time (or in O(m lg2 n+ n lg n) time if the

problem’s cost array is also bitonic).

Proof. We say that a matching satisfies the threshold T if all the edges of the
matching have weight T or less. First, we design a query algorithm analogous to
the one used in Theorem 4.3. The query algorithm, given a bipartite graph G and
a threshold T , determines if there is a perfect matching of G that satisfies the
threshold. The query algorithm is greedy. It works by finding the minimum value
j1 such that w[1, j1] ≤ T , then the minimum value j2 such that w[2, j2] ≤ T and
j2 > j1, then minimum value j3 such that w[3, j3] ≤ T and j3 > j2, and so forth.
This algorithm takes O(n) time. If this algorithm produces a perfect matching,
then clearly this matching satisfies the threshold. Furthermore, it is not diffi-
cult to see that if there exists a perfect matching that satisfies the threshold,
then our algorithm finds one such matching. To see this, consider any perfect
matching M that satisfies the threshold. Consider the first vertex i such that
(i, ji) �∈ M . We show how to get another perfect matching M ′ in which the first
vertex i′ such that (i′, ji′) �∈ M ′ is greater than i. Suppose that i is matched
to � in M . Our computation of ji guarantees that � > ji. If ji is unmatched
in M , then we can simply remove (i, �) and add (i, ji) to get another perfect
matching M ′ that satisfies the threshold and contains (i, ji). Hence, assume
that ji is matched in M to s, s > i. By the strict bottleneck Monge property, we

Fast Algorithms with Algebraic Monge Properties 113

have that max{c[i, ji], c[s, �]} < max{c[i, �], c[s, ji]} or both max{c[i, ji], c[s, �]} =
max{c[i, �], c[s, ji]} and min{c[i, ji], c[s, �]} ≤ min{c[i, �], c[s, ji]}. Thus, if M sat-
isfies the threshold, then M ′ = M − {(i, �), (s, ji)} + {(i, ji), (s, �)} is another
perfect matching and it contains (i, ji).

To complete the proof, we use the query algorithm just as in the proof of
Theorem 4.3. We use the algorithm of Agarwal and Sen [2] in our binary search,
and for each d-th smallest value T in them×n cost array, we query to see if there
exists a perfect matching that satisfies the threshold T . The total running time
is O(lg(mn)((m+ n)

√
n lg n+ n)) = O(n3/2 lg2 n). Similarly, if the cost array is

bitonic, then the running time is O(lg(mn)(m lg n+ n)) = O(m lg2 n+ n lg n).

5 A Paragraph-Formation Problem

We discuss a variant of Hirschberg and Larmore’s optimal-paragraph-formation
problem [11]. A slightly simplified version of their problem is to break a sequence
of words w1, . . . , wn into lines in order to form a paragraph. Define c[i, j] to be
the cost of a line consisting of words wi through wj−1. Let L be the optimal
line width and |wi| be the length of word wi plus one for the cost of the space
after word wi. Then, following the ideas of Hirschberg and Larmore, the cost
function is c[i, j] = (|wi+1| + |wi+2| + . . .+ |wj | − 1 − L)2. Their objective is to
construct a paragraph minimizing the sum of the paragraph’s line costs. This
problem is easily transformed into an instance of the sum unrestricted shortest-
path problem. Consider a directed acyclic graph G = (V,E), where the vertices
are numbered 0 through n and (i, j) ∈ E if and only if i < j. The cost of edge (i, j)
is c[i, j] defined above. A 0 ↪→ n path p = 〈(0, i1), (i1, i2), . . . , (is, n)〉 corresponds
to putting words w1 through wi1 into the first line, words wi1+1 through wi2 into
the second line, and so forth, with words wis through wn forming the last line.
The shortest 0 ↪→ n path in this graph corresponds to the minimum sum of
the paragraph’s line costs. Hirschberg and Larmore prove that the above cost
function satisfies the sum Monge property, and thus it can be solved in O(n)
time. (Credit for the linear-time algorithm belongs to Wilber [17], as well as to
Larmore and Schieber [15].)

If we instead seek to minimize the maximum line cost, we obtain an instance
of the bottleneck unrestricted shortest-path problem. The following two lemmas
prove that the edge costs in this problem possess the strict bottleneck Monge
property. We call a line cost function f [i, j] strictly bitonic if any sequence of
costs f [i1, j1], f [i2, j2], . . . , f [is, js], which satisfies the following conditions for
every 1 ≤ � < s:

1. either i = i+1 and j < j+1,
2. or j = j+1 and i > i+1

is strictly decreasing then strictly increasing. Note that either the strictly de-
creasing subsequence or the strictly increasing subsequence may have length
zero.

114 Wolfgang W. Bein et al.

Lemma 5.1. Let F = {f [i, j]}, where f [i, j] is a line cost function that is strictly
bitonic. Then F satisfies the strict bottleneck Monge property.

Proof. The proof is routine.

Lemma 5.2. Cost function c[i, j] = (|wi+1| + |wi+2| + . . . + |wj | − 1 − L)2 is
strictly bitonic.

Proof. The proof is routine and is given in the full paper version.

From these two lemmas, we conclude that any strictly bitonic line cost func-
tion f(i, j) satisfies the strict bottleneck Monge property, and thus, by Theo-
rem 3.3, a variant of Hirschberg and Larmore’s problem which uses f(i, j) can
also be solved in O(n) time. In particular, the variant with cost function c[i, j]
can be solved in O(n) time.

We have thus far considered a simplified version of Hirshberg and Larmore
cost function. There are three other factors about paragraph formation which
they include in their cost. One is the ability to hyphenate a word at a fixed cost
per hyphenation. Another is the fact that in addition to penalizing quadratically
lines that differ too much from the ideal line length, there may be some lower
and upper limits beyond which the line length is simply not allowed. And finally,
the last line in the paragraph should not be penalized for being too short. We
now attempt to incorporate these factors into our cost function.

The second factor is fairly easy to incorporate. Suppose that that the maxi-
mum and the minimum allowed length for a line are maxlen and minlen. Then
define the cost function to be

c[i, j] =
{
(p[i, j] − 1 − L)2 if minlen ≤ p[i, j] ≤ maxlen
M i+j otherwise

where M is a very large number (say the sum of all the word lengths). It is not
hard to see that the proof that c[i, j] is bitonic holds with this new definition of
the cost function.

To take into account the last factor, we would need to define a new cost
function

c′[i, j] =

0 if j = n and p[i, j] ≤ L
(p[i, j] − 1 − L)2 if minlen ≤ p[i, j] ≤ maxlen
M i+j otherwise

Unfortunately, this new cost function c′[i, j] is not strictly bitonic and further-
more not even bottleneck Monge. Thus, we stick to c[i, j] as our cost function,
but we modify the algorithm. Instead of computing the 1 ↪→ n bottleneck short-
est path in Theorem 3.3, we compute the bottleneck cost of the 1 ↪→ n − 1
bottleneck shortest path. The algorithm in the proof of this theorem actually
computes all d[i]’s for 1 ≤ i ≤ n − 1, where d[i] is the bottleneck cost of the

Fast Algorithms with Algebraic Monge Properties 115

bottleneck shortest 1 ↪→ i path. To find the bottleneck shortest 1 ↪→ n path, we
evaluate the following, which takes O(n) time:

d[n] = min
1≤i≤n−1

d[i] if p[i, n] ≤ L
max{d[i], (p[i, n] − 1 − L)2} if L ≤ p[i, n] ≤ maxlen
∞ otherwise

Unfortunately, it is not possible to incorporate the first factor into the bot-
tleneck framework. If we are to assign a fixed penalty function B for breaking a
word in the middle and hyphenating it, the cost function is no longer bottleneck
Monge. More specifically, we assume that each wi is now a syllable. Suppose we
have i < k < j < � and j-th syllable is not the last syllable of its word, but the
�-th syllable is. Then for the cost function to be bottleneck Monge, we would
need to have

max
{
(p[i, j] − 1 − L)2 +B, (p[k.�] − 1 − L)2

}
≤ max

{
(p[k, j] − 1 − L)2 +B, (p[i.�] − 1 − L)2

}

It is easy to come up with a numerical example when this does not hold.
We also consider one variation of the cost function. In some circumstances, a

more accurate portrayal of a typical text formatting application would be that
instead of having an ideal line length and penalizing for both running under and
running over this ideal length, the application has L as the available line width.
In this case, there is a very large penalty for running over this available line
width and a quadratic penalty for running under this width. The cost function
in this case is

c[i, j] =
{
(p[i, j] − 1 − L)2 if p[i, j] ≤ L
M i+j otherwise

where M is a very large number (say the sum of all the word lengths). It is not
hard to see that this c[i, j] is strictly bitonic.

6 A Special Case
of the Bottleneck Traveling-Salesman Problem

For our final application, we consider a special case of the bottleneck traveling-
salesman problem. Given a complete directed graph G on vertices {1, . . . , n} and
a cost array C = {c[i, j]} assigning cost c[i, j] to the edge (i, j), we seek a tour
of G that visits every vertex of G exactly once and minimizes the maximum
of the tour’s edges’ costs. We call such a tour the bottleneck shortest-tour. In
[5], Burkard and Sandholzer identified several families of cost arrays correspond-
ing to graphs containing at least one bottleneck-optimal tour that is pyramidal.
A tour T is called pyramidal if (1) the vertices on the path T starting from
vertex n and ending at vertex 1 have monotonically decreasing labels, and (2)
the vertices on the path T starting from vertex 1 and ending at vertex n have
monotonically increasing labels. For example, a tour T = 〈4, 2, 1, 3, 6, 8, 7, 5, 4〉

116 Wolfgang W. Bein et al.

is pyramidal, but a tour T = 〈4, 2, 1, 6, 3, 8, 7, 5, 4〉 is not. Thus, since there is a
simple O(n2)-time dynamic-programming algorithm for computing a pyramidal
tour whose maximum edge cost is minimum among all pyramidal tours, the bot-
tleneck traveling-salesman problem for any graph whose cost array is a member
of one of Burkard and Sandholzer’s families can be solved in O(n2) time. We
show that if a graph’s edge cost array possesses the strict bottleneck Monge
property, then it is possible to find the graph’s bottleneck-shortest pyramidal
tour in O(n lg2 n) time.

Theorem 6.1. Given a graph G whose cost array C satisfies the strict bottleneck
Monge property, the bottleneck pyramidal shortest-tour of G can be found in
O(n lg2 n) time.

Proof. The proof is given in the full paper version. The basic idea is to reduce
the problem to two instances of the on-line monotone matrix searching problem,
and solve both of them using the algorithm of [15]. The two on-line processors,
each using the on-line matrix searching algorithm, run simultaneously, passing
information to each other at each step. The total number of queries needed is
O(n).

The reduction is not constant cost, however. A query in the reduced problem
may require the computation of the cost of a path from i to j which passes
through every intermediate point. We can use O(n lg n) preprocessing time to
create a data structure and then satisfy each query in O(lg2 n) time, as given in
[12].

References

1. A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric appli-
cations of a matrix-searching algorithm. Algorithmica, 2(2):195–208, 1987.

2. P. K. Agarwal and S. Sen. Selection in monotone matrices and computing kth

nearest neighbors. In Proceedings of the 4th Scandinavian Workshop on Algorithm
Theory, 1994.

3. A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum weight k-link
path in graphs with Monge property and applications. In Proc. 9th Annu. ACM
Sympos. Comput. Geom., pages 189–197, 1993.

4. A. Aggarwal, B. Schieber, and T. Tokuyama. Finding a minimum-weight k-link
path in graphs with the concave Monge property and applications. Discrete Com-
put. Geom., 12:263–280, 1994.

5. R. E. Burkard and W. Sandholzer. Efficiently solvable special cases of bottleneck
travelling salesman problems. Discrete Applied Mathematics, 32(1):61–76, 1991.

6. R. E. Burkard. Remarks on some scheduling problems with algebraic objective
functions. Operations Research Verfahren, 32:63–77, 1979.

7. R. E. Burkard and U. Zimmermann. Combinatorial optimization in linearly or-
dered semimodules: A survey. In B. Korte, editor, Modern Applied Mathematics:
Optimization and Operations Research, pages 391–436. North-Holland Publishing
Company, Amsterdam, Holland, 1982.

Fast Algorithms with Algebraic Monge Properties 117

8. R. E. Burkard and B. Klinz and R. Rudolf. Perspectives of monge properties in
optimization. Discrete Applied Mathematics, 70:95–161, 1996.

9. G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking
in X + Y and matrices with sorted columns. Journal of Computer and System
Sciences, 24(4):197–208, 1982.

10. H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization prob-
lems. Journal of Algorithms, 9(3):411–417, 1988.

11. D. S. Hirschberg and L. L. Larmore. The least weight subsequence problem. SIAM
Journal on Computing, 16(4):628–638, 1987.

12. D. S. Hirschberg and D. J. Volper. Improved update/query algorithms for the
interval valuation problem. Information Processing Letters, 24:307–310, 1987.

13. A.J. Hoffman. On simple linear programming problems. In Convexity, Proc. Sym-
posia in Pure Mathematics, volume 7, pages 317 – 327, Providence, RI, 1961.
American Mathematical Society.

14. B. Klinz, R. Rudolf, and G.J. Woeginger. On the recognition of bottleneck monge
matrices. Discrete Applied Mathematics, 63:43–74, 1995.

15. L. L. Larmore and B. Schieber. On-line dynamic programming with applications to
the prediction of RNA secondary structure. Journal of Algorithms, 12(3):490–515,
1991.

16. E. Seiffart. Algebraic transportation and assignment problems with “Monge-
property” and “quasi-convexity”. Discrete Applied Mathematics, 1993.

17. R. Wilber. The concave least-weight subsequence problem revisited. Journal of
Algorithms, 9(3):418–425, 1988.

	1 Introduction
	2 Algorithms for Algebraic Shortest-Path Problems
	3 Algorithms for the Bottleneck Shortest-Path Problems
	4 An Alternate Algorithm for the Bottleneck k-Edge Shortest-Path
	5 A Paragraph-Formation Problem
	6 A Special Case of the Bottleneck Traveling-Salesman Problem
	References

