
On Testing Convexity and Submodularity

Michal Parnas1, Dana Ron2�, and Ronitt Rubinfeld3

1 The Academic College of Tel-Aviv-Yaffo. michalp@mta.ac.il
2 Department of EE – Systems, Tel-Aviv University. danar@eng.tau.ac.il

3 NEC Research Institute, Princeton, NJ. ronitt@research.nj.nec.com

Abstract. Submodular and convex functions play an important role in
many applications, and in particular in combinatorial optimization. Here
we study two special cases: convexity in one dimension and submodu-
larity in two dimensions. The latter type of functions are equivalent to
the well known Monge matrices. A matrix V = {vi,j}i=n1,j=n2

i,j=0 is called
a Monge matrix if for every 0 ≤ i < r ≤ n1 and 0 ≤ j < s ≤ n2, we
have vi,j + vr,s ≤ vi,s + vr,j . If inequality holds in the opposite direc-
tion then V is an inverse Monge matrix (supermodular function). Many
problems, such as the traveling salesperson problem and various trans-
portation problems, can be solved more efficiently if the input is a Monge
matrix.
In this work we present a testing algorithm for Monge and inverse Monge
matrices, whose running time is O ((logn1 · logn2)/ε), where ε is the
distance parameter for testing. In addition we have an algorithm that
tests whether a function f : [n] → R is convex (concave) with running
time of O ((logn)/ε).

1 Introduction

Convex functions and their combinatorial analogs, submodular functions, play
an important role in many disciplines and applications, including combinatorial
optimization, game theory, probability theory, and electronic trade. Such func-
tions exhibit a rich mathematical structure (see Lovász [14]), which often makes
it possible to efficiently find their minimum [10,12,18], and thus leads to efficient
algorithms for many important optimization problems.

Submodular functions are defined as follows: Let I = I1×I2× . . .×Id, d ≥ 2,
be a product space where Iq ⊆ R. In particular, we are interested in discrete
domains Iq = {0, . . . , nq}. The join and meet operations are defined for every

x, y ∈ I: (x1, . . . , xd) ∨ (y1, . . . , yd)
def= (max{x1, y1}, . . . ,max{xd, yd})

and (x1, . . . , xd) ∧ (y1, . . . , yd)
def= (min{x1, y1}, . . . ,min{xd, yd}),

respectively.

Definition 1 (Submodularity and Supermodularity) A function f : I →
R is submodular if for every x, y ∈ I, f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y). The
function f is supermodular if for every x, y ∈ I, f(x∨y)+f(x∧y) ≥ f(x)+f(y).

� Supported by the Israel Science Foundation (grant number 32/00-1).

J.D.P. Rolim and S. Vadhan (Eds.): RANDOM 2002, LNCS 2483, pp. 11–25, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

12 M. Parnas, D. Ron, and R. Rubinfeld

Certain subclasses of submodular functions are of particular interest. One
such subclass is that of submodular set functions, which are defined over binary
domains. That is, Iq = {0, 1} for every 1 ≤ q ≤ d, and so each x ∈ I corresponds
to a subset of {1, . . . , d}. Another important subclass is the class of Monge
functions, which are obtained when the domain is large but the dimension is
d = 2. Since such functions are 2-dimensional, it is convenient to represent them
as 2-dimensional matrices, which are referred to as Monge matrices. When the
function is a 2-dimensional supermodular function the corresponding matrix is
called an inverse Monge matrix .

The first problem that was shown to be solvable more efficiently if the un-
derlying cost matrix is a Monge matrix is the classical Hitchcock transportation
problem (see Hoffman [11]). Since then it has been shown that many other com-
binatorial optimization problems can be solved more efficiently in this case (e.g.
weighted bipartite matching, and NP-hard problems such as the traveling sales-
person problem). See [2] for a comprehensive survey on Monge matrices and
their applications.

Testing Submodularity and Convexity. In this paper we approach the question
of submodularity and convexity from within the framework of property testing
[17,9]. Let f be a fixed but unknown function, and let P be a fixed property
of functions (such as the convexity or submodularity of a function). A testing
algorithm for the property P should determine, by querying f , whether f has the
property P, or whether it is ε-far from having the property for a given distance
parameter ε. By ε-far we mean that more than an ε–fraction of the values of f
should be modified so that f obtains the desired property P.

Our Results. We present efficient testing algorithms for Monge matrices and for
discrete convexity in one dimension. Specifically:
• We describe and analyze a testing algorithm for Monge and inverse Monge

matrices whose running time is O ((log n1 · log n2)/ε), when given an n1×n2
matrix.
Furthermore, the testing algorithm for inverse Monge matrices can be used to
derive a testing algorithm, with the same complexity, for an important sub-
family of Monge matrices, named distribution matrices. A matrix V = {vi,j}
is said to be a distribution matrix, if there exists a non-negative density
matrix D = {di,j}, such that every entry vi,j in V is of the form vi,j =∑

k≤i

∑
�≤j dk,�. In other words, the entry vi,j corresponds to the cumulative

density of all entries dk,� such that k ≤ i and � ≤ j.
• We provide an algorithm that tests whether a function f : [n]→ R is convex

(concave). The running time of this algorithm is O (log n/ε).

Techniques. As stated above, it is convenient to represent 2-dimensional sub-
modular functions as 2-dimensional Monge matrices. Thus a function f :
{0, . . . , n1} × {0, . . . , n2} → R can be represented as the matrix V =
{vi,j}i=n1,j=n2

i,j=0 where vi,j = f(i, j). Observe that for every pair of indices

On Testing Convexity and Submodularity 13

(i, s), (r, j) such that i < r and j < s we have that (i, s) ∨ (r, j) = (r, s) and
(i, s)∧ (r, j) = (i, j). It follows from Definition 1 that V is a Monge matrix (f is
a 2-dimensional submodular function) if and only if:

∀i, j, r, s s.t. i < r, j < s : vi,j + vr,s ≤ vi,s + vr,j

and V is an inverse Monge matrix (f is a 2-dimensional supermodular function)
if and only if: ∀i, j, r, s s.t. i < r, j < s : vi,j + vr,s ≥ vi,s + vr,j .

That is, in both cases we have a constraint for every quadruple vi,j , vr,s, vi,s,
vr,j such that i < r and j < s.1 Our algorithm selects such quadruples according
to a particular (non-uniform) distribution and verifies that the constraint is sat-
isfied for every quadruple selected. Clearly the algorithm always accepts Monge
matrices. The main thrust of the analysis is in showing that if the matrix V is
far from being Monge then the probability of obtaining a “bad” quadruple is
sufficiently large.

A central building block in proving the above, is the following combinatorial
problem, which may be of independent interest. Let C be a given matrix, possibly
containing negative values, and let R be a subset of positions in C. We are
interested in refilling the entries of C that reside in R with non-negative values,
such that the following constraint is satisfied: for every position (i, j) that does
not belong to R, the sum of the modified values in C that are below2 (i, j), is
the same as in the original matrix C. That is, the sum of the modified values in
entries (k, �), such that k ≤ i and j ≤ �, remains as it was.

We provide sufficient conditions on C and R under which the above is pos-
sible, and describe the corresponding procedure that refills the entries of C that
reside in R. Our starting point is a simple special case in which R corresponds to
a sub-matrix of C. In such a case it suffices that for each row and each column in
R, the sum of the corresponding entries in the original matrix C is non-negative.
Under these conditions a simple greedy algorithm can modify C as required. Our
procedure for general subsets R is more involved but uses the sub-matrix case
as a subroutine.

Previous Work. Property testing was first defined in the context of algebraic
properties of functions [17]. It was extended in [9] and in particular applied to
properties of graphs. In recent years it has been studied in a large variety of
contexts. For surveys on property testing see [16,6].

One testing problem that is probably most related to ours is testing whether
a function is monotone [8,4,5,7,1]. A function f : [n] → R is monotone non-
decreasing if for every 0 ≤ i < n, the differences f(i+1)−f(i) are non-negative,
whereas f is convex if and only if for every 1 ≤ i ≤ n − 1, the differences of
differences [f(i+ 1)− f(i)]− [f(i)− f(i− 1)] are non-negative. In other words,
f is convex if and only if the function f ′(i) = f(i) − f(i − 1), is monotone
non-decreasing. We note though that testing f for convexity cannot be done by

1 It is easy to verify that for all other i, j, r, s (with the exception of the symmetric
case where r < i and s < j), the constraint holds trivially (with equality).

2 We denote the lower left position of the matrix C by (0, 0).

14 M. Parnas, D. Ron, and R. Rubinfeld

simply testing f ′ for monotonicity. Specifically, if f ′ is close to monotone then
it does not necessarily follow that f is close to convex.

Further Research. We suggest the following open problems. First it remains open
to determine the complexity of testing submodular functions when the dimension
d of the input domain is greater than 2. It seems that our algorithm and its
analysis can be extended to work for testing the special case of distribution
matrices of dimension d > 2, where the complexity of the resulting algorithm
is O

(
(
∏d

q=1 log nq)/ε
)
. However, as opposed to the d = 2 case, where Monge

matrices are only slightly more general than distribution matrices, for d > 2
Monge matrices seem to be much more expressive. Hence it is not immediately
clear how to adapt our algorithm to testing Monge matrices of higher dimensions.

It would also be interesting to find an efficient testing algorithm for the sub-
class of submodular set functions, which are used for example in combinatorial
auctions on the internet (e.g. [3],[13]).

Finally, in many optimization problems it is enough that the underlying cost
matrix is a permutation of a Monge matrix. In such cases it may be useful to
test whether a given matrix is a permutation of some Monge matrix or far from
any permuted Monge matrix.

Organization. In Section 2 we describe several building blocks that will be used
by our testing algorithm for Monge matrices. In Section 3 we describe a testing
algorithm for Monge matrices whose complexity is O(n/ε), where we assume for
simplicity that the matrix is n × n. Building on this algorithm and its analy-
sis, in Section 4 we present a significantly faster algorithm whose complexity
is O

(
(log2 n)/ε

)
. We conclude this section with a short discussion concerning

distribution matrices. The testing algorithm for convexity can be found in the
full version of this paper [15]. All missing details of the analysis together with
helpful illustrations appear in [15] as well.

2 Building Blocks for Our Algorithms for Testing Inverse
Monge

From this point on we focus on inverse Monge matrices. Analogous claims hold
for Monge matrices. We also assume for simplicity that the dimensions of the
matrices are n1 = n2 = n. In what follows we provide a characterization of
inverse Monge matrices that is exploited by our algorithm. Given any real valued
matrix V = {vi,j}i,j=n

i,j=0 we define an (n + 1) × (n + 1) matrix C ′
V = {ci,j}i,j=n

i,j=0
as follows:

– c0,0 = v0,0; ∀i > 0 : ci,0 = vi,0 − vi−1,0; ∀j > 0 : c0,j = v0,j − v0,j−1;
– ∀i, j > 0 : ci,j = (vi,j−vi−1,j)−(vi,j−1−vi−1,j−1) = (vi,j−vi,j−1)−(vi−1,j−
vi−1,j−1).

Let CV = {ci,j}i,j=n
i,j=1 be the sub-matrix of C ′

V that includes all but the first
(0’th) row and column of C ′

V . The following two claims are well known and easy
to verify.

On Testing Convexity and Submodularity 15

Claim 1 For every 0 ≤ i, j ≤ n, vi,j =
∑i

i′=0
∑j

j′=0 ci′,j′ .

Claim 2 A matrix V is an inverse Monge matrix if and only if CV is a non-
negative matrix.

It follows from Claim 2 that if we find some entry of CV that is negative,
then we have evidence that V is not an inverse Monge matrix. However, it is
not necessarily true that if V is far from being an inverse Monge matrix, then
CV contains many negative entries. For example, suppose CV is 1 in all entries
except the entry cn/2,n/2 which is −n2. Then it can be verified that V is very far
from being an inverse Monge matrix (this can be proved by showing that there
are Θ(n2) disjoint quadruples vi,j , vr,s, vi,s, vr,j in V such that from any such
quadruple at least one value should be changed in order to transform V into
a Monge matrix). However, as our analysis will show, in such a case there are
many sub-matrices in CV whose sum of elements is negative. Thus our testing
algorithms will sample certain sub-matrices of CV and check that the sum of
elements in each sub-matrix sampled is non-negative. We first observe that it is
possible to check this efficiently.

Claim 3 Given access to V it is possible to check in time O(1) if the sum of
elements in a given sub-matrix A of CV is non-negative. In particular, if the
lower-left entry of A is (i, j) and its upper-right entry is (r, s) then the sum of
elements of A is vr,s − vr,j − vi,s + vi,j.

2.1 Filling Sub-matrices

An important building block for the analysis of our algorithms is a procedure
for “filling in” a sub-matrix. That is, given constraints on the sum of elements
in each row and column of a given sub-matrix, we are interested in assigning
values to the entries of the sub-matrix so that these constraints are met.

Specifically, let a1, ..., as and b1, ..., bt be non-negative real numbers such that∑s
i=1 ai ≥

∑t
j=1 bj . Then it is possible to construct an s × t non-negative real

matrix T , such that the sum of elements in column j is exactly bj and the sum of
elements in row i is at most ai. In the special case that

∑s
i=1 ai =

∑t
j=1 bj , the

sum of elements in row i will equal ai. In particular, this can be done by applying
the following procedure, which is the same as the one applied to obtain an initial
feasible solution for the linear-programming formulation of the transportation
problem.

Procedure 1 [Fill Matrix T = (ti,j)
i=s,j=t
i,j=1 .]

Initialize āi = ai for i = 1, ..., s and b̄j = bj for j = 1, ..., t.
(In each of the following iterations, āi is an upper bound on what remains to be
filled in row i, and b̄j is what remains to be filled in column j.)
for j = 1,...,t:

for i = 1,...,s:
Assign to entry (i, j) the value x = min{āi, b̄j}
Update āi = āi − x, b̄j = b̄j − x.

16 M. Parnas, D. Ron, and R. Rubinfeld

3 A Testing Algorithm for Inverse Monge Matrices

We first present a simple algorithm for testing if a matrix V is an inverse Monge
Matrix, whose running time is O(n/ε). In the next section we show a significantly
faster algorithm that is based on the ideas presented here. We may assume
without loss of generality that n is a power of 2. This is true since our algorithms
probe the coefficients matrix CV , and we may simply “pad” it by 0’s to obtain
rows and columns that have lengths which are powers of 2 and run the algorithm
with ε← ε/4. We shall need the following two definitions for both algorithms.

Definition 2 (Sub-Rows, Sub-Columns and Sub-Matrices.) A sub-row
in an n×n matrix is a consecutive sequence of entries that belong to the same row.
The sub-row ((i, j), (i, j+1), . . . , (i, j+t−1)) is denoted by []1,ti,j . A sub-column is
defined analogously, and is denoted by []s,1

i,j = ((i, j), (i+1, j), . . . , (i+ s− 1, j)).
More generally, an s × t sub-matrix whose bottom-left entry is (i, j) is denoted
[]s,t

i,j .

Definition 3 (Legal Sub-Matrices.) A sub-row in an n×n matrix is a legal
sub-row if it can result from bisecting the row of length n that contains it in a
recursive manner. That is, a complete (length n) row is legal, and if []1,ti,j is legal,

then so are []1,t/2i,j and []1,t/2i,j+t/2. A legal sub-column is defined analogously. A
sub-matrix is legal if both its rows and its columns are legal.

Note that the legality of a sub-row []1,ti,j is independent of the actual row i it
belongs to, but rather it depends on its starting position j and ending position
j + t− 1 within its row. An analogous statement holds for legal sub-columns.

Although a sub-matrix is just a collection of positions (entries) in an n × n
matrix, we talk throughout the paper about sums of elements in certain sub-
matrices A of CV . In this we mean the sum of elements of CV determined by
the set of positions in A.

Definition 4 (Good sub-matrix.) We say that a sub-matrix A of CV is good
if the sum of elements in each row and each column of A is non-negative.

Definition 5 (Good Point.) We say that point (i, j) is good if all legal square
sub-matrices A of CV which contain (i, j) are good.

Algorithm 1 [Test Monge I.]

1. Choose 8/ε points in the matrix CV and check that they are good.
2. If all points are good then accept, otherwise reject.

By Claim 3, it is possible to check in constant time that the sum of elements
in a sub-row (sub-column) of CV is non-negative. Therefore, it is possible to
test that an s× s square sub-matrix A of CV is good in time Θ(s). Notice that
every point in an n× n matrix is contained in logn square sub-matrices. Hence
the time required to check whether a point is good is O(n) + O(n/2) + . . . +
O(n/2i) + . . .+O(1) = O(n), and the complexity of the algorithm is O(n/ε).

On Testing Convexity and Submodularity 17

Theorem 1 If V is an inverse Monge matrix then it is always accepted, and if
V is ε-far from being an inverse Monge matrix, then the algorithm rejects with
probability at least 2/3.

Proof. The first part of the theorem follows directly from Claim 2. In order to
prove the second part of the theorem, we show that if V is ε-far from being
inverse Monge, then CV contains more than (ε/4)n2 bad points. The second
part of the theorem directly follows because the probability in such a case that
no bad point is selected by the algorithm, is at most (1− ε/4)(8/ε) < e−2 < 1/3.

Assume contrary to the claim that CV contains at most (ε/4)n2 bad points.
We shall show that by modifying at most εn2 entries in V we obtain an inverse
Monge matrix (in contradiction to our assumption concerning V). Let us look at
the set of bad points in CV , and for each such bad point look at the largest bad
square sub-matrix in CV which contains this bad point. By our assumption on
the number of bad points, it must be the case that the area of all these maximal
bad sub-matrices is at most (ε/4)n2, because all the points in a bad sub-matrix
are bad.

For each maximal bad (legal square) sub-matrix B of CV we will look at the
smallest good (legal square) sub-matrix A which contains B. First observe that
such a good sub-matrix must exist. Indeed, since B is maximal, if it is of size
s× s where s < n, then the legal square sub-matrix of size 2s× 2s that contains
it must be good. But if s = n, then B = CV implying that all n2 points in
CV are bad, contradicting our assumption on the number of bad points. Next
observe that for every two maximal sub-matrices B and B′, the corresponding
good sub-matrices A and A′ that contain them are either the same sub-matrix,
or are totally disjoint. Finally, the sum of areas of all these good sub-matrices is
at most 4 · (ε/4)n2 = εn2.

We now correct each such good sub-matrix A so that it contains only non-
negative elements, and the sum of elements in each row and column of A remains
as it was. This can be done by applying Procedure 1 to A as described in Sec-
tion 2.1.

Note that after correcting all these good sub-matrices of CV , the new matrix
CV is non-negative, and thus the corresponding new matrix V must be an inverse
Monge matrix. We must show however, that at most εn2 values were changed
in V following the changes to CV . Notice that we made sure that the sum of
elements in each row and column of each corrected sub-matrix A remains as it
was. Therefore the values of all points vk,� in V that are outside A are not affected
by the change to A, since by Claim 1 we have that vk,� =

∑k
i=0

∑�
j=0 ci,j .

4 A Faster Algorithm for Inverse Monge Matrices

Though the above algorithm has running time sub-linear in the size of the matrix,
which is n2, we would further like to improve its dependence on n. We next
suggest a variant of the algorithm whose running time is O(log2 n/ε) and explain
what needs to be proved in order to argue its correctness. We first redefine the
concepts of good sub-matrices and good points.

18 M. Parnas, D. Ron, and R. Rubinfeld

Definition 6 (Good sub-matrix.) A (legal) sub-matrix T of CV is good if
the sum of all its elements is non-negative. Otherwise, T is bad.

Definition 7 (Good Point.) We say that a point is good if every legal sub-
matrix of CV that contains it is good. Otherwise the point is bad.

For the sake of the presentation, we shall assume that every row and every
column in CV (that is, every sub-row and sub-column of length n) have a non-
negative sum. In the full version of this paper [15] we explain how this assumption
can be easily removed. Note that this assumption implies that every s× n sub-
matrix is good, and similarly for every n× s sub-matrix (but of course it has no
implications on smaller sub-matrices).

Algorithm 2 [Test Monge II.]

1. Uniformly select 8/ε points in the matrix CV and check that they are good.
2. If all points are good then accept, otherwise reject.

Note that by Definition 3, each point in an n × n matrix is contained
in O(log2 n) legal sub-matrices. Thus by Claim 3, checking that a point is
good takes time O(log2 n). Therefore the running time of the algorithm is
O((log2 n)/ε).

Theorem 2 If V is an inverse Monge matrix then it is always accepted, and if
V is ε-far from being an inverse Monge matrix, then the algorithm rejects with
probability at least 2/3.

4.1 Outline of the Proof of Theorem 2

If V is an inverse Monge matrix then by Claim 2 all elements in CV are non-
negative, and so the algorithm always accepts. Suppose V is ε-far from being
inverse Monge. We claim that in such a case CV must contain more than (ε/4)n2

bad points, causing the algorithm to reject with probability at least 1 − (1 −
ε/4)(8/ε) > 1 − e−2 > 2/3. Assume contrary to the claim that CV contains at
most (ε/4)n2 bad points. Our goal from this point on is to show that in such a
case V is ε-close to being an inverse Monge matrix.

Consider the union of all bad legal sub-matrices of CV . Since within each
bad legal sub-matrix, all points are bad, then the area occupied by this union is
at most (ε/4)n2.

Definition 8 (Maximal bad legal sub-matrix.) A bad legal sub-matrix T
of CV is a maximal bad legal sub-matrix of CV if it is not contained in any
larger bad legal sub-matrix of CV .

Now consider all such maximal bad legal sub-matrices of CV . For each such
sub-matrix B let us take the legal sub-matrix that contains it and has twice the
number of rows and twice the number of columns. Then by the maximality of B

On Testing Convexity and Submodularity 19

(and our assumption that all full rows and columns have a non-negative sum),
the resulting sub-matrix is good. We now take the union of all these good legal
sub-matrices, and get a total area of size at most εn2. Denote the union of all
these sub-matrices by R. See for example Figure 1.

n/2

7n/8

3n/4

5n/8

n=32

R

1 n/8 n/4 3n/8 n/2 5n/8 3n/4 7n/8 n=32

3n/8

Fig. 1. An example of the structure of a subset R (outlined by a bold line). The bad
legal sub-matrices determining R are the gray sub-matrices. Each is contained inside
a good legal sub-matrix that has twice the number of rows and twice the number of
columns (marked by dashed rectangles). Observe that maximal bad-legal sub-matrices
may overlap.

Definition 9 (Maximal (legal) sub-row/column.) Given a subset R of en-
tries in an n × n matrix, a sub-row T is a maximal (legal) sub-row with respect
to R if T is contained in R and there is no larger (legal) sub-row T ′ such that
T ⊂ T ′ ⊆ R. A maximal (legal) sub-column with respect to R is defined analo-
gously.

For sake of succinctness, whenever it is clear what R is, we shall just say maximal
(legal) sub-row and drop the suffix, “with respect to R”. Note that a maximal
sub-row is simply a maximal consecutive sequence of entries in R that belong to
the same row, while a maximal legal sub-row is a more constrained notion. In
particular, a maximal sub-row may be a concatenation of several maximal legal
sub-rows.

We would like to show that it is possible to change the at most εn2 entries
of CV within R to non-negative values so that the following property holds:

Property 1 (Sum Property for R.) For every point (i, j) outside of R, the
sum of the elements in the modified entries (i′, j′) within R such that i′ ≤ i and
j′ ≤ j is as it was in the original matrix CV .

20 M. Parnas, D. Ron, and R. Rubinfeld

Let C̃V be the matrix obtained from CV by modifying R so that Property 1
holds, and let Ṽ be the matrix which corresponds to C̃V . Then it follows from
Claim 1 that Ṽ is at most ε-far from the original matrix V .

4.2 Fixing R

Let R be the subset of entries in the matrix CV that consists of a union of good
legal sub-matrices. In the following discussion, when we talk about elements in
sub-matrices of R we mean the elements in CV determined by the corresponding
set of positions in R.

Lemma 4 The sum of elements in every maximal legal sub-row and every max-
imal legal sub-column in R is non-negative.

Proof. Assume, contrary to the claim, that R contains some maximal legal sub-
row L = []1,ti,j whose sum of elements is negative. Let T be the maximal bad
legal sub-matrix in CV that contains L. By the maximality of L, necessarily
T = []s,t

i′,j for some i′ ≤ i and s ≥ 1. That is, the rows of T (one of which is L)
are of length t. By the construction of R, R must contain a good legal sub-matrix
T ′ that contains T and is twice as large in each dimension. But this contradicts
the maximality of L.

Maximal Blocks. We will partition R into disjoint blocks (sub-matrices) and
fill each block separately with non-negative values, so that the sum property for
R is maintained (see Property 1). We define blocks as follows.

Definition 10 (Maximal Block.) A maximal block B = []s,t
i,j in R is a sub-

matrix contained in R which has the following property: It consists of a maximal
consecutive sequence of maximal legal sub-columns of the same height. The maxi-
mality of each sub-column is as in Definition 9. That is, for every j ≤ r ≤ j+t−1,
the column []s,1

i,r is a maximal legal sub-column (with respect to R).

The maximality of the sequence of sub-columns in a block means that we cannot
extend the sequence of columns neither to the left nor to the right. That is,
neither []s,1

i,j−1 nor []s,1
i,j+t are maximal legal sub-columns in R. (Specifically,

each is either not fully contained in R or R contains a larger legal sub-column
that contains it.)

We shall sometimes refer to maximal blocks simply as blocks. Observe that
by this definition, R is indeed partitioned in a unique way into maximal disjoint
blocks. See Figure 2 for an example of R and its partition into maximal blocks.

Definition 11 (Size of a Maximal Block.) Let B be a maximal block. The
size of B is the height of the columns in B (equivalently, the number of rows in
B).

On Testing Convexity and Submodularity 21

B6
B4

B3

B1

B2

B5

B7

B8

B9

R

Fig. 2. An example of the partition of R into maximal blocks (numbered B1–B9). Note
that the ratio between the sizes of any two blocks is always a power of 2. Furthermore,
the blocks are “oriented” in the following sense. Suppose a block B has size s and a
block B′ has size s′ ≤ s and some of their sub-rows belong to the same row of the
matrix (e.g., B4 and B2, or B9 and B6). Then the smaller block B′ must be aligned
either with the first or second half of B, or with one of the quarters of B, or with one
of its eighth’s, etc.

Fig. 3. An illustrations for Lemma 5.

Bounded Sub-matrices. As we have shown in Lemma 4, the sum of elements
in every maximal legal sub-column in R is non-negative. It directly follows that
every maximal block has a non-negative sum. We would like to characterize other
sub-matrices of R whose sum is necessarily non-negative.

Definition 12 For a given sub-matrix T , we denote the sum of the elements in
T by sum(T).

Lemma 5 Consider any two maximal blocks B = []s,t
i,j and B′ = []s,t′

i,j′ where
j′ > j + t. That is, both blocks have the same size s and both start at row i and
end at row i+ s− 1. Consider the sub-matrix T = []s,j′−(j+t)

i,j+t “between them”.
Suppose that T ⊂ R. Then sum(T) ≥ 0.

See Figure 3 for an illustration of Lemma 5.

Definition 13 (Covers.) We say that a collection A of sub-rows covers a given
block B with respect to R, if B ⊂ A ⊂ R and the number of rows in A equals the

22 M. Parnas, D. Ron, and R. Rubinfeld

size of B. We say that A is a maximal row-cover with respect to R if A consists
of maximal sub-rows with respect to R.

Definition 14 (Borders.) We say that a sub-matrix A = []s,t
i,j in R, borders a

maximal block B = []s
′,t′

i′,j′ if i ≤ i′ ≤ i+s−1, i′ +s′ ≤ i+s, and either j′ = j+ t
(so that A borders B from the left), or j′ + t′ = j (so that A borders B from
then right).

By Lemma 5 and using the above terminology, we get the following corollary
whose proof is illustrated in Figure 4.

(i,j+t)

B2s

t

B1 B3

A

D1

D2

T0 T1 T2 T3

(i,j)
t’

(i,j’) (i,j+t)

Fig. 4. An illustration for Corollary 6. Here A covers the blocks B1, B2 and B3, and
borders the blocks D1 and D2. The sub-matrices T0–T4 are parts of larger blocks (that
extend above and/or below A).

Corollary 6 Let A be a sub-matrix of R which covers a given block B. If on
each of its sides A either borders a block smaller than B or its border coincides
with the border of R, then sum(A) ≥ sum(B).

The Procedure for Refilling R. We now describe the procedure that refills
the entries of R with non-negative values. Recall that R is a disjoint union of
maximal blocks. Hence if we remove a maximal block from R, then the maximal
blocks of the remaining structure, are simply the remaining maximal blocks of
R. The procedure described below will remove the blocks of R one by one, in
order of increasing size, and refill each block separately using Procedure 1. After
removing each block, the sum of the elements in each remaining column in R
remains the same, however the row sums must be updated. Procedure 1 is used
here as well.

Procedure 2 [Refill R.]

1. We assign with each maximal sub-row L in R a designated sum of elements
for that row, which is denoted by sum(L), and initially set to be sum(L) =
sum(L).

On Testing Convexity and Submodularity 23

2. Let m be the number of maximal blocks in R, and let R1 = R.
3. for p = 1, ...,m:

a) Let Bp be a maximal block in Rp whose size is minimum among all
maximal blocks of Rp, and assume that Bp is an s × t sub-matrix. Let
Ap be a maximal row-cover of Bp with respect to Rp. For 1 ≤ � ≤ s, let
L� denote the sub-row of Ap that covers the �’th sub-row of Bp.

b) Refill Bp by applying Procedure 1 (see Section 2.1), where the sum filled
in the k’th sub-column of Bp, 1 ≤ k ≤ t, should be the original sum
of this sub-column in CV , and the sum filled in the �’th sub-row of Bp,
1 ≤ � ≤ s, is at most sum(L�).
For each 1 ≤ � ≤ s, let x� denote the sum of elements filled by Procedure 1
in the �’th sub-row of Bp.

c) Let Rp+1 = Rp \Bp and assign designated sums to the rows of Rp+1 that
have been either shortened or broken into two parts by the removal of Bp

from Rp. This is done as follows:
The set Ap \ Bp is the union of two non-consecutive sub-matrices, A′

and A′′, so that A′ borders Bp from the left and A′′ borders Bp from the
right. Let L′

� and L′′
� be the sub-rows in A′ and A′′ respectively that are

contained in sub-row L� of Ap. We assign to L′
� and L′′

� non-negative
designated sums, sum(L′

�) and sum(L′′
�), that satisfy the following:

sum(L′
�) + sum(L′′

�) = sum(L�)− x�,

and furthermore,
∑

row L∈A′
sum(L) = sum(A′),

∑
row L∈A′′

sum(L) = sum(A′′).

This is done by applying Procedure 1 to a 2 × s matrix whose sums of
columns are sum(A′) and sum(A′′) and sums of rows are sum(L�)−x�,
where 1 ≤ � ≤ s.
(Note that one or both of A′ and A′′ may not exist. This can happen if
Bp bordered Ap \Bp on one side and its boundary coincided with Rp, or
if Ap = Bp. In this case, if, for example, A′ does not exist then we view
it as a sub-matrix of size 0 where sum(A′) = 0.)

4.3 Proving That Procedure 2 Works

Recall that for each 1 ≤ p ≤ m, Rp is what remains of R at the start of the p’th
iteration of Procedure 2. In particular, R1 = R. We would first like to show that
the procedure does not “get stuck”. That is, for each iteration p, Procedure 1
can be applied to the block Bp selected in this iteration, and the updating of the
designated sum for the rows that have been shortened by the removal of Bp can
be performed. Note that since the blocks are selected according to increasing
size, then in each iteration the maximal row cover Ap of Bp must actually be a
sub-matrix.

24 M. Parnas, D. Ron, and R. Rubinfeld

Proving that Procedure 2 Does not Get Stuck. For every 1 ≤ p ≤ m,
let sp be the minimum size of the maximal blocks of Rp, where s0 = 1. Observe
that whenever sp increases, it does so by a factor of 2k for some k. This is true
because the columns of maximal blocks are legal sub-columns.
Lemma 7 For every 1 ≤ p ≤ m, Procedure 1 can be applied to the block Bp

selected in Rp, and the updating process of the designated sum of rows can be
applied. Moreover, if A is a sub-matrix of Rp with height of at least sp−1, whose
columns are legal sub-columns and whose rows are maximal rows with respect to
Rp, then

∑
row L∈A sum(L) = sum(A).

Proving that Procedure 2 is Correct. Let C̃V = {c̃i,j} be the matrix
resulting from the application of Procedure 2 to the matrix CV = {ci,j}. For
any sub-matrix T of CV (and in particular of R), we let s̃um(T) denote the sum
of elements of T in C̃V . By definition of the procedure, s̃um(K) = sum(K) for
every maximal legal sub-column K of R. Hence this holds also for every maximal
sub-column of R. We next state a related claim concerning rows.
Lemma 8 For every sub-row L in R, such that L is assigned sum(L) as a des-
ignated sum at some iteration of Procedure 2, we have that s̃um(L) = sum(L).

Observe that in particular we get that for every maximal sub-row L of R,
s̃um(L) = sum(L) = sum(L).
Definition 15 (Boundary.) We say that a point (i, j) is on the boundary of
R if (i, j) ∈ R, but either (i+ 1, j) /∈ R, or (i, j + 1) /∈ R, or (i+ 1, j + 1) /∈ R.
We denote the set of boundary points by B.
Definition 16 For a point (i, j), 1 ≤ i, j ≤ n let R≤(i, j) denote the subset of
points (i′, j′) ∈ R, i′ ≤ i, j′ ≤ j, and let sumR(i, j) =

∑
(i′,j′)∈R≤(i,j) ci′,j′ and

s̃um
R(i, j) =

∑
(i′,j′)∈R≤(i,j) c̃i′,j′ .

Property 1 and therefore Theorem 2 will follow directly from the next two
lemmas.
Lemma 9 For every point (i, j) ∈ B, s̃umR(i, j) = sumR(i, j).

Lemma 10 Let (i, j) be any point such that (i, j) /∈ R. Then s̃um
R(i, j) =

sumR(i, j).

4.4 Distribution Matrices

As noted in the introduction, a sub-family of inverse Monge matrices that is of
particular interest is the class of distribution matrices. A matrix V = {vi,j} is
said to be a distribution matrix, if there exists a non-negative density matrix
D = {di,j}, such that every entry vi,j in V is of the form vi,j =

∑
k≤i

∑
�≤j dk,�.

In particular, if V is a distribution matrix then the corresponding density matrix
D is simply the matrix C ′

V (as defined in Section 2). Hence, in order to test that
V is a distribution matrix, we simply run our algorithm for inverse Monge matrix
on C ′

V instead of CV .

On Testing Convexity and Submodularity 25

Acknowledgments. We would like to thank Noam Nisan for suggesting to
examine combinatorial auctions in the context of property testing.

References

1. T. Batu, R. Rubinfeld, and P. White. Fast approximate pcps for multidimensional
bin-packing problems. In Proceedings of RANDOM, pages 245–256, 1999.

2. R.E. Burkard, B. Klinz, and R. Rudolf. Perspectives of monge properties in opti-
mization. Discrete Applied Mathematics and Combinatorial Operations Research
and Computer Science, 70, 1996.

3. S. de Vries and R. Vohra. Combinatorial auctions: a survey. available from:
http://www.kellogg.nwu.edu/faculty/vohra/htm/res.htm, 2000.

4. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnit-
sky. Improved testing algorithms for monotonocity. In Proceedings of RANDOM,
pages 97–108, 1999.

5. F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-
checkers. In Proceedings of the Thirty-Second Annual ACM Symposium on the
Theory of Computing, pages 259–268, 1998.

6. E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin
of the European Association for Theoretical Computer Science, 75:97–126, 2001.

7. E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Sam-
rodnitsky. Monotonicity testing over general poset domains. In Proceedings of the
Thirty-Sixth Annual ACM Symposium on the Theory of Computing, 2002.

8. O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing
monotonicity. Combinatorica, 20(3):301–337, 2000.

9. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. JACM, 45(4):653–750, 1998.

10. M. Grotschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1, 1981.

11. A.J. Hoffman. On simple linear programming problems. In In Proceedings of Sym-
posia in Pure Mathematics, Convexity, volume 7, pages 317–327, 1963. American
Mathematical Society.

12. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on the Theory of Computing, pages 96–107, 2000.
To appear in JACM.

13. B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing
marginal utilities. In ACM Conference on Electronic Commerce, pages –, 2001.

14. L. Lovász. Submodular functions and convexity. Mathematical Programming: The
State of the Art, pages 235–257, 1983.

15. M. Parnas, D. Ron, and R. Rubinfeld. On testing convexity and submodularity.
Available from: http://www.eng.tau.ac.il/˜danar/papers.html, 2002.

16. D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597–
649, 2001.

17. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applica-
tions to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

18. A. Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory B, 80:346–355, 2000.

	Introduction
	Building Blocks for Our Algorithms for Testing Inverse Monge
	Filling Sub-matrices

	A Testing Algorithm for Inverse Monge Matrices
	A Faster Algorithm for Inverse Monge Matrices
	Outline of the Proof of Theorem ref {monge2.thm}
	Fixing R
	Proving That Procedure T @ref {fillR.alg} Works
	Distribution Matrices

