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Abstract. We address the problem of designing optimal prefix-free sader an encoding alpha-
bet with unequal integer letter costs. The most efficiertritigm proposed so far h&(n©+?) time
complexity, wheren is the number of codewords addlis the maximum letter cost. For the special
case when the encoding alphabet is binary, a faster soltésnproposed, namely 6f(n) time
complexity, based on a more sophisticated modeling of tbblpm, and on exploiting the Monge
property of the cost function. However, those techniquesnsal not to extend to theletter alpha-
bet. This work proves that, on the contrary, the generadinab ther-letter case is possible, thus
leading to a0 (n®) time complexity algorithm for the case of arbitrary numbgietters.
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1. Introduction

Assume messages are drawn from a source alphdbet {aq,a9,--- ,ay}, €ach source symbai
having probabilityp; > 0, >°" , p; = 1. Let the encoding alphabet B& = {1, a9, -+ , o}, where
each letteky; has a cost;. Assume the costs are integers, &nd ¢; < ¢s < --- < ¢, = C. The cost
ofawordu = uy - up, u,- -+ ,u, € %, is defined asost(u) = >, cost(u;), wherecost(u;) is the
cost of the lettew;.

A code is a subsdl/ of X.* together with a one-to-one mapping frodnto W, which assigns to each
source symbok; a codewordw; € W. A codeW is prefix-free if no codeword is a prefix of another

*Address for correspondence: Department of Electrical aomhfiliter Engineering, McMaster University, Hamilton, ON,
Canada L8S 4K1
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codeword. The cost of the code is

C(W) = i cost(w;)p;- ()
=1

The Optimal Prefix-Free Coding Problem is the problem of figdh prefix-free code of minimum cost,
given the probabilitiep; and the letters’ cosis, 1 < i < n.

Given a fix set of n codewords, these codewords can be assigned in various wélys source
symbolsa;, thus yielding codes with different costs. Let us assumbanuit restricting the generality that
p1 > pe > -+ > p, > 0. Then, as noted in [3], the minimal cost is obtained by angassent such that
cost(wy) < cost(ws) < -+ < cost(wy,). Therefore we will assume from now on that the assignment
of codewords to source symbols is optimal for the given satoofewords, and consequently we will
identify the code with the sév’.

Any prefix-free code can be associated withraary lopsided tred” ( a tree where the edges have
lengths). Each node of the tree can have at magiildren. Each edge is labeled by a letter from the
alphabet:, distinct edges that leave from the same node, having didtbels. Any edge labeled by
«; has the length;. Thedepthof a nodev € T, denoted bylepth(v), is the sum of the lengths of the
edges on the path connecting the root to that node. The raoddyath0. Any leafv can be identified
with the sequence of letters us - - - us, which labels the path from the root to Thendepth(v) =
cost(ujug - - - ug). Throughout the rest of the paper we will referrtary lopsided trees whose edge
lengths are:y, co,- -+ , ¢, as(cy, ca, -+ - , ¢ )-trees, or even simply, as trees, whentheple of lengths
is understood.

Any prefix-free codéV of sizen can be associated in a one-to-one manner to a tree whose Eave
respond to the codewords Wi. If v; is the leaf associated to the codeward then clearlycost(W) =
>z, depth(v;)p;. Therefore, given a tré€ we can define its cost with respect to the non-increasing se-
quence of probabilitie® = (p1,p2,- - ,pn), ascost(T, P) = .7 | depth(v;)p;, wherevy, vg, -+ , vy,
are its leaves ordered in increasing order of depth.

Consequently, the optimization problem becomes equivadetie following.

Problem 1. Given ther-tuple of integerdci, co,- -+ , ¢.) and the non-increasing sequence of probabil-
ities P = (p1,p2,- -+ ,pn), find then-leaves(cy, ¢z, - - - , ¢;)-treeT,,;, of minimum cost with respect
to P.

This problem was first studied by Karp in [5]. His solution &skd on the problem formulation as an
integer programming problem and has exponential time cexityglin ». Golin and Rote [3] proposed
a dynamic programming solution with polynomial time conxig in n, namelyO(n*?), which is
currently the most efficient algorithm for generaland smallC. Shortly after, Bradforcet al. [4]
introduced a different approach for the case of binary ttees 2), yielding anO(n®) time algorithm
to solve the problem. The authors of [4] explicitly statedtttheir method was limited to binary trees
because the techniques employed seemed not to extendrt@atliease. We prove in this paper that, on
the contrary, the idea of [4] can be generalized torttaey case as well, thus leading tadn) time
solution for generat.
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2. Recasting the Problem in Terms of Full Trees

For eachm > n denote byP,, the sequence of values obtained by padding with m — n zeros at
the end. A tree is callefllll tree, if any internal node has the full setrothildren. Denote by’(m) the
minimum cost full tree among all full trees af leaves, with respect to the sequerég. In [3] it was
shown that Problem 1 can be recast as the problem of findinfyllitese 777, with m, leaves such that
n<my<n(r—1)and

cost(Typys Prmg) = min ){cost(T, P,,) | T is full tree withm leaves. (2

mn<m<n(r—1

Topt 1s further obtained fron¥y,, by peeling away thé@-probability leaves (i.e., thewy — n deepest
leaves).

We make the observation that in (2) it is not necessary tachdar the optimalng in the whole
range between andn(r — 1), but it is enough to search among the full trees with—- 1)(r — 1) + 1
leaves and those with leaves, if such full trees exist. This observation is justifby the following
lemma.

Lemma 2.1. If the optimal tre€T,,,,; is not a full tree, then
cost(Topt, P) = min{cost(T, P,,) | T is full tree withm leaveg, (3)
wherem = (n — 1)(r — 1) + 1.

Proof:

Let full(T,y:) be the full tree obtained by completing the missing childséthe internal nodes df,;.
Let / be the number of internal nodes ®f,;. Then/ < n — 1 ([3]). SinceT,, is not full itself,
then at least one leaf gfull(T,,:) is not leaf inTyy. If £ = n — 1 setT” = full(T,,:). Otherwise,
construct a full tree witm — 1 — £ internal nodes. By replacing leafwith this tree, a full treer”
with n — 1 internal nodes is obtained. Tha@H has(n — 1)(r — 1) + 1 leaves. The set of leaves Bf
contains the set of leaves ®f,;, and some new leaves. Label the new leaves, oy, - ,vy,. Then
cost(T', Pp) < Y%, depth(vi)p; = > i depth(v;)p; = cost(Tops, P), which implies

cost(Topt, P) > min{cost(T, P,,) | T is full tree withm leaveg. 4)

On the other side, Ief’ be an arbitrary full tree withn leaves. Lefl" be the tree with leaves obtained
from T’ by removing the deepest — n leaves and the unnecessary internal nodes (i.e., the ahtern
nodes which are descendants of some removed leaves, bubtadgestendants of any retained leaf).
Since the leaves df’ are exactly the leaves @ assigned to non-zero probabilities, it follows that
cost(T', Py,) = cost(T, P), which further implies

cost(Typt, P) < min{cost(T, Py,) | T is full tree withm leaveg. (5)
Relations (4) and (5) prove the lemma. O

According to the above lemma, Problem 1 can be solved asfsilo
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1) If n— 1is not a multiple ofr — 1, find the full tre€T’(m) of m leavesn = (n —1)(r — 1) + 1, of
minimal cost with respect t&,,. Then constructy,; from 7'(m) by removing then — n deepest
leaves and the unnecessary internal nodes.

2) If n — 1 is a multiple ofr — 1, then findT(m) as above, and find the full tréB(n) of n leaves
of minimal cost with respect t®. If cost(T'(n), P) < cost(T(m), Py) then setl,,; = T(n).
Otherwise, construct,,; from 7'(m) as above.

Therefore, in order to prove our complexity claim, it is egbuo show that the optimah-leaves
full tree T'(m) can be found irO(n®) time. To this aim, we will follow the general idea of [4]. Nalpe
we will recast the problem in terms of the so-called monat@eiquences, step which will account for a
linear factor decrease in time complexity, and further upeoperty of the cost function, known as the
Monge property, which allows for another linear factor éese in complexity.

3. Problem Formulation in Terms of Monotonic Sequences

From now on we will only consider full trees, and will refertttem simply as trees. Thechildren of
an internal node of a tree are ordered from left to right in increasing ordethef edge length from,
and we will refer to them by using their position in this segee Therefore, the length fromto its j-th
child is ¢;. The rightmost child o is its r-th child. The depth of the tre€, denoted bylepth(T), is
the largest depth of all nodes. A nodef the treeT is said to be at level if i = depth(T') — depth(v)
(i.e.,v is1 levels far from the bottom of the tree).

The following sequences were introduced in [4]. Occaslgnaé use slightly different notation.

The numbers-of-leaves sequenaa treeT is A(T') = (6o(T), 61(T),- -+ ,d4—1(T)), whered is
the depth off’ andé;(T') is the number of leaves below or at the leugbr1 <i < d — 1.

The characteristic sequencef a treeT is T'(T) = (yo(T),v1(T), -+ ,va-1(T)), whered =
depth(T) and~;(T) is the number of right children at or below levglfor 1 < i < d — 1. Clearly,
sinceT is a(cy, o, - - , ¢ )-tree, the last, components of the sequence are all equal because the high-
est level where a rightmost child can appeat is c;.

For any positive integek, define the setM,, of k-ended monotonic sequencesthe set of all finite
sequences with at least components, whose components are non-negative integarendecreasing
order, and the last, components are equal fo In other wordsM, is the set of sequenced =
(bo, -+ ,b4—1) forsomed > ¢, and0 < by < by < -+ <bg_e, =+ =bg—1 = k.

LetT be atree ofn leaves and le® = (¢4, - - , ¢n) be a non-increasing sequenceroprobabilities
(ile.qn >+ >qm>0,>7", =1). Clearly, the costost(T, Q) depends only on the number of
leaves at each level @f and on the sequence of probabiliti@s Moreover, as proved in [4ost(T, Q)
can be expressed in terms of the sequerdc€s) and@.

Definition 3.1. Fori, 1 <i < m, letSuf;(Q) denote the sum of the lasvalues in the sequeneg, i.e.,
Sufi(Q) =3, _is1 qj- FOri > m, let Sufi(Q) = oc.

The following equality was proved in [4] (even if the refeced paper treats only the case of binary
trees, the proof is valid for-ary trees):

depth(T)—1

)
cost(T, Q) = Sufs, 1) (Q). ©)

k=0
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Further we show that the number-of-leaves sequence of adarebe obtained from its characteristic
sequence.

Lemma 3.1. For any tre€l” and for alli, 0 < i < depth(T') — 1, the following relation holds
T
61’ (T) = Z Yitcj—cr (T) — Yi—cr (T)a (7)
j=1

where, by conventiony, (T') = 0 if £ < 0.

Proof:

Let us fix some, 0 < i < depth(T) — 1. The nodes at or below leve| together with the connecting
edges, form a forest (i.e., a union of trees), denotedrpy The quantityd;(7') equals the number of
leaves of this forest, which further equals+ (r — 1)int;, wheren; is the number of trees of fore$t,
andint; is the number of its internal nodes.

Clearly,int; coincides with the number of internal nodesigfsituated at or below levél Since for
eachk there is a one-to-one correspondence between internas modlevelk and the rightmost children
situated at levet — c,, it follows thatint; = v;_., (T).

Let us identify now the number of trees. The roots of these trees are those node¥' efhose
parents are above level The set of roots coincides with the unioh<;<,V;, whereV; denotes the set
of nodes at or below level which are thej-th child of some node above levglforall1 < j < r.
Clearly, the parent of some node ) is an internal node situated at a level betwéen1 andi: + c;
(including both). Conversely, any internal node situatesbane level betweein- 1 and: + ¢; (including
both) has itg-th child below or at level. Therefore| V; |= int;yc; —int; = Yite;—c, (T) = Yie, (T)-

It follows thatn; = 37_ [ Vj = Y5—; (Yisey—e (T) = ieer (T)) = Y=y Vi -0 (T) = 1%, (T).
Thus,

6(T) = Z Yitcj—cr (T) = 1Yi—e, (T) + (r = 1)%i—c, (T') = Z Yitcj—cr (T) = Yiee, (T). (8)
j=1 j=1
O

Relation (6) together with Lemma 3.1 imply that the optintiza problem can be recast in terms of
characteristic sequences rather than trees. Note firsiftifats a tree withn — 1 internal nodes (i.e.,
withm =1+ (r — 1)(n — 1) leaves), thed(T") € M,,_;. However, not anyn — 1)-ended monotonic
sequencd? € M,, 1 is the characteristic sequence of some tree with1 internal nodes. On the other
side, following the idea of [4] we will define a cost for afiy — 1)-ended monotonic sequence, and we
will show that the minimum cost ovér. — 1)-ended monotonic sequences coincides with the minimum
cost ovemn-leaves trees.

Definition 3.2. For anyn > 2, and anyB = (bg, by, -+ ,bs_1) monotonic sequence iM,,_1, denote
Ni(B) = 3 bkgej—e, — br—e,, fOrallk,0 < k < d — 1, where, by conventioriy; = 0 if j < 0.
Letm =1+ (r—1)(n—1). For any non-increasing sequenceroprobabilitiesQ = (g1, - ,qm),

define the cost oB with respect taQ ascost(B, Q) = z;}] Sufn,()(Q)-

Remark 3.1. It is easy to check that by adding leading zeros to a monot®tcence, its cost does not
change.
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Clearly, applying the above definition to the charactarisiequence of a tre&, we obtain that
cost(T'(T), Q) = cost(T, Q), which further implies

1 t(B < 1 t(T . 9
Berf\l/llilf1cos (B,Q) < Tg%lnfilcos (T,Q) (9)

Denote by7;. the set of trees witlk internal nodes. The following proposition is essential tw o
development.

Proposition 3.1. For anyn > 2 and@ = (q1,- - ,qm), Wherem = (n — 1)(r — 1) + 1,

i #B,Q)> mi HT, Q). 10
pluin cost( Q)_Tg;rlnrilcos( Q) (10)

n—1

In order to prove the above proposition, the following twmiaas are needed.

Lemma 3.2. There is a minimum codin — 1)-ended monotonic sequené&,,; = (bo,b1,--- ,b4—1)
such thab; # b;4., foralli,1 <i<d—1—c¢,.

Proof:
Let Boye = (bo, b1, - -+ ,bs—1) be optimal and assume that there is sarsach thab; = b;,., for some
i. Thenb; = bip1 = --- = biy,,. ConstructB’ by deletingb;,., from the sequenc®,,;. In other
words,B" = (b, --- b, ), whereb;- =bjforj <i+ec —1, andb} = bjyq for j > i+ ¢,. Clearly,
B' € M,,_1, too. Sinceh; = b1 = -+ = bj,, it also follows tha‘b} = bjq forj > 1.

Further we haveVy(B') = >77_, b;HCFCT —bj_. - Whenk <i+c, — 1, Ny(B') = Ni(Bopt)-

Whenk > i + ¢, we havek + ¢; — ¢, > i andk — ¢, > i, therefore, N (B') = Nj41(Bopt). Thus,

cost(Bopy, Q) = cost(B', Q) + Sufn,,. (Q). SinceSufy,, . (Q) > 0, it follows thatcost(B’, Q) <
cost(Bopt, Q). Therefore,B' is optimal, too. O

Lemma3.3. Foralll,1 <[ < ¢, denoten; =| {j | ¢; = I} |. For any(n — 1)-ended monotonic
sequence3 = (bg, b1, - ,bg_1), With by > 1, we haveNy(B) > n., and

Ne,—1(B) — Ncr—l—l(B) > ny, (11)

1
foralll,1<i<¢. —1.

Proof:
For eacht,0 < k < ¢, — 1, by removing the terms with negative subscripts (which(alog convention)
from the expression @V (B) in Definition 3.2, we obtain

Ni(B) = Z bk+cj —cr- (12)
j71§j§7nvcj >cr—k

By replacingc; by ¢t we get further

Np(B) = > biyhec,nt- (13)
k

t=c,—
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ThenNy(B) = bgn., > n.,. Further, forl,1 <1 < ¢, — 1, we have

Ne,—1(B) = Ne,—1—1(B) = Z by_imi — Z by—1—1my = bony + Z (bt = byg—1)ne. (14)
t=I t=l+1 t=I+1

The last sum is non-negative becabgg > b; ; 1. Sinceby > 1, the conclusion follows. O

We are prepared now to present the proof of Proposition 3.1.

Proof of Proposition 3.1.:

We will give the proof by induction om.

Base case.Letn = 2. Any l-ended monotonic sequence without leadifgy has all components
equal tol. Further, Lemma 3.3 implies that the sequence with exagtigomponents, all equal tb
has minimum cost. This monotonic sequence is the charsiitesequence of the tree with one internal
node.

Inductive step. Assume Proposition 3.1 is satisfied for— 1. We will show that it is satisfied fon
too. LetB,y = (bg, -+ ,ba—1) € My_1 be the(n — 1)-ended monotonic sequence of minimum cost
with respect ta). Assume all possible leading zeros have been removed. diogpto Remark 3.1,
by removing leading zeros the cost is not affected. The apiiynof the sequence,,; implies that
m > Ni(Bopt) for eachk, 0 < k < d — 1 (otherwiseSu f, (p,,.)(€) would becc). Moreover, Lemma
3.3 implies that

m — Ne,—1(Bopt) < m — N¢,—2(Bopt) < -+ <m — No(Bopt), (15)
and that, forj, 1 < 5 <r, with¢; < ¢,, we have
m — Ne,—¢; (Bopt) +ne; <m — Ne,—c;—1(Bopt), (16)
and forj,1 < j <r, with ¢; = ¢,, we have
m — Ne,—¢; (Bopt) + ne; < m. a7)

Constructky, ko, - - - k, as follows. For each,1 < j < r, leti; denote the minimal such that; = c;.
Then defingi;, = m — N, ; (Bopt) +1 andk;; ; = k;; +iforalls,1 <7 < n. — 1. Relation (16)
implies that

m— Ncr—c]- (Bopt) +1<kj<m-— NC'r_Cj—l(BOPt)’ (18)

for1 < j <rsuchthat; < ¢, and
m — Ne, ¢, (Bopt) +1 < kj <m, (19)

for1 < j <rsuchthat; = ¢,. Corroborating further with (15) we obtain thiat< m — N, _1(Bop) <
ki <ky<- - <k, <m.
Letq = qx, + - - + qx, and choosé;, such that

Tko—1 > G > Gry- (20)

Sinceq’ > ¢y, , and the sequena®@ is non-increasing, it follows thafy < k.
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Construct the sequencg’ of m’ = m — (r — 1) nonnegative values by applying the following list
operations to the lisf): delete the entriegy, , - - - , gx,, and insert the new valug at positionk,. Then
Q' is also sorted in non-increasing order, and the sum of afllé@ments equals the sum of elements of
Q, i.e.,1. Moreover, denote byref;(Q), Pref;(Q’) the sum of the first elements in the sequenég
respectively))’. After a moment of thought it can be seen that

Prefi(Q') > Prefi(Q) (21)
foralli,0 <i<m—(r—1).

Consider now th¢n—2)-ended monotonic sequenge = (b, - - - ,b;_,) € M, _o whereb,, = b;,—
1forallk,1 < k < d—1. Because the number of elements in the sequéhéem’ = (n—2)(r—1)+1
and the sequence is non-increasiagst(B’, Q') is well defined according to Definition 3.2.

Next we will show that

T
cost(Bopt, Q) > cost(B', Q') + Z Qk; Cj- (22)
j=1

For this we will investigate the relation betwesn fy, 5 (Q') and Sufy,(z,,)(Q) forall ;1 <1 <
d—1.

Case 1:] > ¢,. In this case we hav&/(B') = > 7, bff(cﬁcj) = b = 2oy — 1) —
(bi—¢, — 1) = Ni(Bgpt) — (r — 1). Then

Sufnp)(Q) =1~ Prefp ri1-npB)(Q) =1— Prefr_nB,,)(Q) <
1- Plrefm—Nl(Bopt)(Q) = SUle(Bopt)(Q)- (23)

The inequality in the above sequence of relations followmf{21).

Case 2.0 < I < ¢ — 1. It is more convenient to writé = ¢, — s, wherel < s < ¢.. Then the
following sequence of equalities follows by using relat{@B): N;(B') = N, _s(B') = Y ;- b;_,ni =
S bi—sne — i ng = Neo—s(Bopt) — Y- ne. Denote byjs the smallesy such thate; > s.
In other words,j; = Zf;ll n; + 1. According to (15), (18) and (19) is the smallesy such that
m — Ne,—s(Bopt) < kj. We further distinguish between two subcases.

Subcase 2.aky < m—N,,_s(Bypt)+1. Thenthe lasiV, _s(B)—> ;" n: elements of)’ are obtained

from the lastV,, s (Bpt) elements of), by removinggy; , - - - , g, . Therefore,

Sufn,p)(Q) = Sufn(Bo,) (@) — (ar;, + - + a,)- (24)
Subcase 2.b:m — Ng,_s(Bopt) + 1 < ko. Then the lastVe, _s(Bopt) — >y, i €lements of)’ are
obtained from the lasV,, - s(Bop:) — 1 elements of by removingg; ,- - , gx,, and adding;’. Since
q' < Gm—N.,_,(Bop)+1 it fOllows that

Sufn,p)(Q) < Sufn(Bo,) (@) — (qr;, + -+ ak,)- (25)

Summarizing we obtain
cost(B', Q') = 21;01 Sufn, ) (Q) <
Y0 SUL N (Bop) (Q) = iy S ary =
cost(Bopt, Q) — 2?21 ;st qk; =
cost(Bopt, Q) — D251 ;5 (26)
which proves (22).
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Let nowTy,, be the tree wit—2 internal nodes such thewst(T,,,;, Q') =mingc7, _, cost(T",Q").

According to the inductive hypothesis, we have
cost(B', Q") > cost(T,,;, Q"). (27)

Now construct the tre€ by transforming the leaf correspondinggtanto an internal node whose all chil-
dren are leaves. ThuSis a tree withn — 1 internal nodes. By assigning the probabilitigs, - - - , g, to
the new leaves, and keeping the old assignments of protiebiior the old leaves, possibly a suboptimal
assignment of probabilities ¢ to the leaves dI" is obtained, whose costdsst(T;,,, Q’)+Z§:1 k; Cj-
This implies that

T
cost(T, Q) < cost(T,,, Q') + Z Qk; Cj- (28)
j=1

Finally, relations (22), (27) and (28) lead to
cost(T, Q) < cost(Bopt; Q), (29)

which concludes the inductive step and the proof. O

Proposition 3.1 together with (9) show that the minimum dos¢ 7'(m) of m leaves (orn — 1
internal nodes) can be constructed by first finding(the- 1)-ended monotonic sequence of minimum
cost, B,,¢, and then applying the recursive procedgtTree(n, By, Q) described as follows:

OptTree(n, Bopt, Q)
l) Identifykg, ki, - k.
2) Construct)’ from (Q as described in the proof of Proposition 3.1.
3) ConstructB’ by decrementing by each component of the sequerigg;.
4) If n = 2 setT” to be the tree with one internal node it~ 2 setT” to beOptTree(n — 1, B', Q').
5) Build 7" from T" by transforming the leaf corresponding to probabidiy into an internal node with
r children. Assign probabilitiegy,, . - - - , gx, to the new leaves.
6) ReturnT”.
Itis easy to see thdf(m) can be constructed from,,; as described above i (n?) time.

4. O(n%) Time Algorithm for Finding the Minimum Cost Monotonic
Sequence

Construct the weighted directed acyclic gra@pk= (V, E), where the set of vertices¥ = {(ug, u1,- - ,
Uep—1) | 0 <up <uy <--- <wue,—1 < n— 1}, and the sef of edges consists of all ordered pairs

of vertices[(ug, w1, , e, —1), (U1, U, —1, U, )] SUCh thatuy # u... Such an edge will be simply
denoted bye(ug, u1, -+ , uc, ). The weight of the edge(ug, u1,- -+ ,u,, ) is
w(u(]a U,y ,UCT) = Sufz;=1 Ue; 7u0(Q) = Sufzi% utntfuo(Q)' (30)

Let the source of the graph be the vertex with all componenéd the let the final node be the vertex
with all components—1. Let B = (bg, b1, - ,bg_1) be an arbitraryn —1)-ended monotonic sequence
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with no leading0’s (i.e., b; > 1) and with the additional property that # b, for all ;. Denote by
Path(B) the following path in the grapty, from the source to the final node

(0,0,---,0,0,0) = (0,0,---,0,0,b9) — (0,0,--- ,0,bg,b1) = -+ —
(bo,br, -+ s be,—1) = (bryba, -+ b, ) —> - —
(B3, bi 1, s bige,—1) = (big1, bigo, +  bige,) = -0 =
(bg—e,—1,m—1,--- ,n—1) = (n—1,n—1,--- ;n—1). (32)

It is easy to check that the weight of the above path (i.e. stima of the weights of its edges) equals
cost(B, Q). Moreover, the mappingath(-) defines a one-to-one correspondence betweefmthel )-
ended monotonic sequences with no leadifgy(i.e., by > 1) and with the additional property that
b; # biy., for all 7, and the paths 6 from the source to the final node. Lemma 3.2 implies that there
exists a minimum cost monotonic sequence with the propeesgtioned above. Therefore, finding an
optimal sequence reduces to solving the shortest pathegsroinl the graplt.

Note that the graph ha3(n°") vertices and) (n ') edges, consequently, the shortest path problem
can be solved by standard algorithms i +1) = O(n“*1) time. In order to solve it faster we start
from the dynamic programming solution and further show thedin be sped up by using the fast matrix
search technique in totally monotone matrices introdundd]i

For each vertexug, u1, - - - , u.,—1) denote byo(ug, ui, - - - , uc,—1) the weight of the minimum path
from the source to that vertex.
For each(c, — 1)-tupleu = (u1, -+ ,ue,—1) With 0 < ug < -+ < ue -1 < m — 1, consider

the matrix A,, with elementsA(ug, u,, ), 0 < ug < wuy, Ue,—1 < u,, < n — 1, defined as follows:
A(ug, ue, ) = @(ug, u) + w(ug, u, uc, ). Then, for anyu,, , ue,—1 < u., < n — 1, we have

w(u,ue,) = uo,Oguorgirll,uoyéuCT A(ug, ue, ). (32)
This implies that findingv(u, u., ) for all u, is finding all column minima in the matrid. This problem
would be normally solved if)(n?) time. However, there are situations when it can be solvedifaSuch
a situation is the case of totally monotone matrices defindd]i for which all column minima can be
solved inO(n) time as shown in [1]. The matrid is said to be totally monotone if the following
implication holds

A(UU,’LLCT) > A(uz]aucr) = A(’LLO,’LLICT) > A(u{)aulcr) (33)
for all integersd < ug < uy < uy, te,—1 < Ue, < u,, <n—1,
It is known that the total monotonicity for matrit is satisfied if the following property holds (also
known as the Monge property) [2]:
A(ug,ue,) + Alug + 1,ue, +1) < A(uo + 1,u, ) + A(ug, ue, +1) (34)

for all ug andu,, . Ref (34) is equivalent to

w(ug, u) + w(ug, u,ue, ) + @(up + 1,u) + w(ug + 1, u,ue, + 1)
S GJ(UU + 17 u) + CU(U(] + 17 uauCr) + (IJ(U(], u) + CU(U(], u, U, + 1)’ (35)
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further equivalent to

Sufz;ll UENE—UQ (Q) + Sufz;ll wgnE+ne, —uo—l(Q) <

Sufz;ll wusng—uo—1 (Q) + SUfZ§;1 wgng+ne, —uo (Q) (36)
Denotea = Y ;" | uyny — ug. Then (36) can be written as
Sufa(Q) + Sufa-l-ncr—l(Q) < Sufa-1(Q) + Sufa-l-ncr (Q), (37)

which is equivalent t@,, —a+1 < ¢m—a—n., +1,.Which is true.

We conclude that the fast matrix search technique of [1] eaafplied to solve (32) for givea and
all u,, in O(n) time. By processing alle, — 1)-tuplesu in lexicographical order, the shortest path can
be computed i) (n°) = O(n®) time.
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