
Fundamenta Informaticae 73 (2006) 107–117 107

IOS Press

Faster Algorithm for Designing Optimal Prefix-Free Codes with
Unequal Letter Costs

Sorina Dumitrescu
�

Department of Electrical and Computer Engineering

McMaster University, Hamilton, ON, Canada L8S 4K1

sorina@mail.ece.mcmaster.ca

Abstract. We address the problem of designing optimal prefix-free codes over an encoding alpha-
bet with unequal integer letter costs. The most efficient algorithm proposed so far has

������� time
complexity, where� is the number of codewords and� is the maximum letter cost. For the special
case when the encoding alphabet is binary, a faster solutionwas proposed, namely of

����� time
complexity, based on a more sophisticated modeling of the problem, and on exploiting the Monge
property of the cost function. However, those techniques seemed not to extend to the	-letter alpha-
bet. This work proves that, on the contrary, the generalization to the	-letter case is possible, thus
leading to a

����� time complexity algorithm for the case of arbitrary number of letters.

Keywords: Prefix-free codes, unequal letter costs, lopsided trees, optimization, Monge property.

1. Introduction

Assume messages are drawn from a source alphabet
 � �
��
�� � � � �
��, each source symbol
�
having probability�� � �, ������� � �. Let the encoding alphabet be� � ������� � � � ����, where
each letter�� has a cost��. Assume the costs are integers, and� � �� � �� � � � � � �� � . The cost
of a word! � !� � � � !�, !�� � � � �!� " �, is defined as�#$%&!' � ����� �#$%&!�', where�#$%&!�' is the
cost of the letter!�.

A code is a subset(of �� together with a one-to-one mapping from
 to(, which assigns to each
source symbol
� a codeword)� " (. A code(is prefix-free if no codeword is a prefix of another
*
Address for correspondence: Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON,

Canada L8S 4K1

108 S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes

codeword. The cost of the code is

 &(' �
��
��� �#$

%&)�'�� � (1)

The Optimal Prefix-Free Coding Problem is the problem of finding a prefix-free code of minimum cost,
given the probabilities�� and the letters’ costs��, � � � � �.

Given a fix set(of � codewords, these codewords can be assigned in various ways to the source
symbols
�, thus yielding codes with different costs. Let us assume without restricting the generality that
�� � �� � � � � � �� � �. Then, as noted in [3], the minimal cost is obtained by an assignment such that
�#$%&)�' � �#$%&)�' � � � � � �#$%&)�'. Therefore we will assume from now on that the assignment
of codewords to source symbols is optimal for the given set ofcodewords, and consequently we will
identify the code with the set(.

Any prefix-free code can be associated with an�-ary lopsided tree� (a tree where the edges have
lengths). Each node of the tree can have at most� children. Each edge is labeled by a letter from the
alphabet�, distinct edges that leave from the same node, having distinct labels. Any edge labeled by�� has the length��. Thedepthof a node� " � , denoted by�	�%
&�', is the sum of the lengths of the
edges on the path connecting the root to that node. The root has depth�. Any leaf � can be identified
with the sequence of letters!�!� � � �!�, which labels the path from the root to�. Then�	�%
&�' �
�#$%&!�!� � � � !�'. Throughout the rest of the paper we will refer to�-ary lopsided trees whose edge
lengths are��� ��� � � � � ��, as

&��� �� � � � � � ��'-trees, or even simply, as trees, when the�-tuple of lengths
is understood.

Any prefix-free code(of size� can be associated in a one-to-one manner to a tree whose leaves cor-
respond to the codewords in(. If �� is the leaf associated to the codeword)�, then clearly�#$%&(' �
����� �	�%
&�� '��. Therefore, given a tree� we can define its cost with respect to the non-increasing se-
quence of probabilities� � &������ � � � ���', as�#$%&� �� ' � ����� �	�%
&��'��, where������ � � � ���
are its leaves ordered in increasing order of depth.

Consequently, the optimization problem becomes equivalent to the following.

Problem 1. Given the�-tuple of integers
&��� �� � � � � � ��' and the non-increasing sequence of probabil-

ities � � &������ � � � ���', find the�-leaves
&��� �� � � � � � ��'-tree�
��, of minimum cost with respect

to � .

This problem was first studied by Karp in [5]. His solution is based on the problem formulation as an
integer programming problem and has exponential time complexity in �. Golin and Rote [3] proposed
a dynamic programming solution with polynomial time complexity in �, namely�&����', which is
currently the most efficient algorithm for general� and small . Shortly after, Bradfordet al. [4]
introduced a different approach for the case of binary trees(� � �), yielding an�&��' time algorithm
to solve the problem. The authors of [4] explicitly stated that their method was limited to binary trees
because the techniques employed seemed not to extend to the�-ary case. We prove in this paper that, on
the contrary, the idea of [4] can be generalized to the�-ary case as well, thus leading to a�&��' time
solution for general�.

S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes 109

2. Recasting the Problem in Terms of Full Trees

For each� � � denote by�� the sequence of� values obtained by padding� with � � � zeros at
the end. A tree is calledfull tree, if any internal node has the full set of� children. Denote by� &�' the
minimum cost full tree among all full trees of� leaves, with respect to the sequence��. In [3] it was
shown that Problem 1 can be recast as the problem of finding thefull tree� �
�� with �� leaves such that
� ��� � �&� � �' and

�#$%&� �
�� ���� ' � ���
���	�	�
������#$%&� ���'
 � is full tree with� leaves�� (2)

�
�� is further obtained from� �
�� by peeling away the�-probability leaves (i.e., the�� � � deepest
leaves).

We make the observation that in (2) it is not necessary to search for the optimal�� in the whole
range between� and�&� � �', but it is enough to search among the full trees with

&� � �'&� � �' � �
leaves and those with� leaves, if such full trees exist. This observation is justified by the following
lemma.

Lemma 2.1. If the optimal tree�
�� is not a full tree, then

�#$%&�
�� �� ' � �����#$%&� ���'
 � is full tree with� leaves�� (3)

where� � &� � �'&� � �'� �.
Proof:
Let �!��&�
��' be the full tree obtained by completing the missing childrenof the internal nodes of�
��.
Let � be the number of internal nodes of�
��. Then � � � � � ([3]). Since�
�� is not full itself,
then at least one leaf of�!��&�
��' is not leaf in�
��. If � � � � � set� � � �!��&�
��'. Otherwise,
construct a full tree with� � � � � internal nodes. By replacing leaf� with this tree, a full tree� �
with � � � internal nodes is obtained. Then� � has

&� � �'&� � �' � � leaves. The set of leaves of� �
contains the set of leaves of�
��, and some new leaves. Label the new leaves by����� � � � ���. Then
�#$%&� � ���' � ����� �	�%
&��'�� � ����� �	�%
&�� '�� � �#$%&�
�� �� ', which implies

�#$%&�
�� �� ' ������#$%&� ���'
 � is full tree with� leaves�� (4)

On the other side, let� � be an arbitrary full tree with� leaves. Let� be the tree with� leaves obtained
from � � by removing the deepest� � � leaves and the unnecessary internal nodes (i.e., the internal
nodes which are descendants of some removed leaves, but are not descendants of any retained leaf).
Since the leaves of� are exactly the leaves of� � assigned to non-zero probabilities, it follows that
�#$%&� � ���' � �#$%&� �� ', which further implies

�#$%&�
�� �� ' ������#$%&� ���'
 � is full tree with� leaves�� (5)

Relations (4) and (5) prove the lemma. ��

According to the above lemma, Problem 1 can be solved as follows:

110 S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes

1) If �� � is not a multiple of� � �, find the full tree� &�' of � leaves� � &� � �'&� � �'� �, of
minimal cost with respect to��. Then construct�
�� from � &�' by removing the� �� deepest
leaves and the unnecessary internal nodes.

2) If � � � is a multiple of� � �, then find� &�' as above, and find the full tree� &�' of � leaves
of minimal cost with respect to� . If �#$%&� &�'�� ' � �#$%&� &�'���' then set�
�� � � &�'.
Otherwise, construct�
�� from � &�' as above.

Therefore, in order to prove our complexity claim, it is enough to show that the optimal�-leaves
full tree� &�' can be found in�&��' time. To this aim, we will follow the general idea of [4]. Namely,
we will recast the problem in terms of the so-called monotonic sequences, step which will account for a
linear factor decrease in time complexity, and further use aproperty of the cost function, known as the
Monge property, which allows for another linear factor decrease in complexity.

3. Problem Formulation in Terms of Monotonic Sequences

From now on we will only consider full trees, and will refer tothem simply as trees. The� children of
an internal node� of a tree are ordered from left to right in increasing order ofthe edge length from�,
and we will refer to them by using their position in this sequence. Therefore, the length from� to its�-th
child is �� . The rightmost child of� is its �-th child. The depth of the tree� , denoted by�	�%
&� ', is
the largest depth of all nodes. A node� of the tree� is said to be at level� if � � �	�%
&� ' � �	�%
&�'
(i.e.,� is � levels far from the bottom of the tree).

The following sequences were introduced in [4]. Occasionally we use slightly different notation.
The numbers-of-leaves sequenceof a tree� is �&� ' � &�� &� '���&� '� � � � �����&� '', where� is

the depth of� and
�� &� ' is the number of leaves below or at the level�, for � � � � � � �.

The characteristic sequenceof a tree� is �&� ' � &�� &� '���&� '� � � � �����&� '', where � �
�	�%
&� ' and�� &� ' is the number of right children at or below level�, for � � � � � � �. Clearly,
since� is a

&��� �� � � � � � ��'-tree, the last�� components of the sequence are all equal because the high-
est level where a rightmost child can appear is� � ��.

For any positive integer�, define the set�	 of �-ended monotonic sequencesas the set of all finite
sequences with at least�� components, whose components are non-negative integers, in nondecreasing
order, and the last�� components are equal to�. In other words�	 is the set of sequences
 �&�� � � � � � ����' for some� � ��, and� � �� � �� � � � � � ����
 � � � � � ���� � �.

Let� be a tree of� leaves and let� � &��� � � � ���'be a non-increasing sequence of� probabilities
(i.e., �� � � � � � �� � �, ����� � �) . Clearly, the cost�#$%&� ��' depends only on the number of
leaves at each level of� and on the sequence of probabilities�. Moreover, as proved in [4]�#$%&� ��'
can be expressed in terms of the sequences�&� ' and�.

Definition 3.1. For �� � � � ��, let �!�� &�' denote the sum of the last� values in the sequence�, i.e.,
�!�� &�' � ��������� �� . For � ��, let �!�� &�' ��.

The following equality was proved in [4] (even if the referenced paper treats only the case of binary
trees, the proof is valid for�-ary trees):

�#$%&� ��' �
�����
� ����

	��
�!���
� �&�'� (6)

S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes 111

Further we show that the number-of-leaves sequence of a treecan be obtained from its characteristic
sequence.

Lemma 3.1. For any tree� and for all�� � � � � �	�%
&� ' � �, the following relation holds

�� &� ' �
��
���

�������
 &� ' �����
 &� '� (7)

where, by convention,�	 &� ' � � if � � �.
Proof:
Let us fix some�� � � � � �	�%
&� ' � �. The nodes at or below level�, together with the connecting
edges, form a forest (i.e., a union of trees), denoted by��. The quantity

�� &� ' equals the number of
leaves of this forest, which further equals�� � &� � �'��%�, where�� is the number of trees of forest��,
and��%� is the number of its internal nodes.

Clearly,��%� coincides with the number of internal nodes of� , situated at or below level�. Since for
each� there is a one-to-one correspondence between internal nodes at level� and the rightmost children
situated at level� � ��, it follows that��%� � ����
 &� '.

Let us identify now the number of trees��. The roots of these trees are those nodes of� whose
parents are above level�. The set of roots coincides with the union��	�	��� , where�� denotes the set
of nodes at or below level�, which are the�-th child of some node above level�, for all � � � � �.
Clearly, the parent of some node in�� is an internal node situated at a level between� � � and � � ��
(including both). Conversely, any internal node situated at some level between�� �and���� (including
both) has its�-th child below or at level�. Therefore,
 ��
� ��%���� � ��%� � �������
 &� '�����
 &� '.
It follows that�� � �����
 ��
� �����&�������
 &� ' �����
 &� '' � ������������
 &� ' � �����
 &� '.
Thus,

�� &� ' �
��
���

�������
 &� ' � �����
 &� '� &� � �'����
 &� ' �
��
���

�������
 &� ' �����
 &� '� (8)

��

Relation (6) together with Lemma 3.1 imply that the optimization problem can be recast in terms of
characteristic sequences rather than trees. Note first thatif � is a tree with� � � internal nodes (i.e.,
with � � �� &� � �'&� � �' leaves), then�&� ' "����. However, not any

&� � �'-ended monotonic
sequence
 "���� is the characteristic sequence of some tree with� � � internal nodes. On the other
side, following the idea of [4] we will define a cost for any

&� � �'-ended monotonic sequence, and we
will show that the minimum cost over

&� � �'-ended monotonic sequences coincides with the minimum
cost over�-leaves trees.

Definition 3.2. For any� � �, and any
 � &�� � ��� � � � � ����'monotonic sequence in����, denote�	 &
' � ����� �	�����
 � �	��
, for all �� � � � � � � �, where, by convention,
�� � � if � � �.

Let� � �� &�� �'&�� �'. For any non-increasing sequence of� probabilities� � &��� � � � ���',
define the cost of
 with respect to� as�#$%&
 ��' � ����	�� �!���
�� &�'.
Remark 3.1. It is easy to check that by adding leading zeros to a monotonicsequence, its cost does not
change.

112 S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes

Clearly, applying the above definition to the characteristic sequence of a tree� , we obtain that
�#$%&�&� '��' � �#$%&� ��', which further implies

���
������ �#$%&
 ��' � ���� ����� �#$%&� ��'� (9)

Denote by�	 the set of trees with� internal nodes. The following proposition is essential to our
development.

Proposition 3.1. For any� � � and� � &��� � � � ���', where� � &� � �'&� � �'� �,
���

������ �#$%&
 ��' � ���� ����� �#$%&� ��'� (10)

In order to prove the above proposition, the following two lemmas are needed.

Lemma 3.2. There is a minimum cost
&� � �'-ended monotonic sequence

�� � &�� � ��� � � � � ����'

such that
�� �� ����
 for all �� � � � � � � �� ��.

Proof:
Let

�� � &�� � ��� � � � � ����' be optimal and assume that there is some� such that

�� � ����
 for some
�. Then

�� � ���� � � � � � ����
. Construct
� by deleting
����
 from the sequence

��. In other

words,
� � &��� � � � � � �����', where
��� � �� for � � � � �� � �, and

��� � ���� for � � � � ��. Clearly,

� "����, too. Since

�� � ���� � � � � � ����
, it also follows that
��� � ���� for � � �.

Further we have
�	 &
�' � ����� ��	�����
 � ��	��
. When� � � � �� � �, �	 &
�' � �	 &

��'.

When� � � � ��, we have� � �� � �� � � and� � �� � �, therefore,
�	 &
�' � �	��&

��'. Thus,

�#$%&

�� ��' � �#$%&
� ��' � �!���	

 &�'. Since�!���	

 &�' � �, it follows that �#$%&
� ��' �
�#$%&

�� ��'. Therefore,
� is optimal, too. ��

Lemma 3.3. For all �� � � � � ��, denote�� �
 ��
 �� � ��
. For any
&� � �'-ended monotonic

sequence
 � &�� � ��� � � � � ����', with
�� � �, we have

��&
' � ��
 and

��
�� &
' ���
����&
' � �� � (11)

for all �� � � � � �� � �.
Proof:
For each�� � � � � �� � �, by removing the terms with negative subscripts (which are� by convention)
from the expression of

�	 &
' in Definition 3.2, we obtain

�	 &
' � �
� ��	�	������
�	

�	�����
 � (12)

By replacing�� by
%

we get further

�	 &
' �
�
�

���
�	
���	��
��� (13)

S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes 113

Then
�� &
' � ����
 � ��
. Further, for�� � � � � �� � �, we have

��
�� &
' ���
����&
' �
�
�
���

������ �
�
�

�����
�������� � ���� �

�
�
�����

&���� � ������'��� (14)

The last sum is non-negative because
���� � ������. Since

�� � �, the conclusion follows. ��

We are prepared now to present the proof of Proposition 3.1.

Proof of Proposition 3.1:
We will give the proof by induction on�.
Base case.Let � � �. Any �-ended monotonic sequence without leading�’s, has all components
equal to�. Further, Lemma 3.3 implies that the sequence with exactly�� components, all equal to�
has minimum cost. This monotonic sequence is the characteristic sequence of the tree with one internal
node.
Inductive step. Assume Proposition 3.1 is satisfied for� � �. We will show that it is satisfied for�
too. Let

�� � &�� � � � � � ����' "���� be the

&� � �'-ended monotonic sequence of minimum cost
with respect to�. Assume all possible leading zeros have been removed. According to Remark 3.1,
by removing leading zeros the cost is not affected. The optimality of the sequence

�� implies that
� ��	 &

��' for each�� � � � � � � � (otherwise�!���
����

�&�'would be�). Moreover, Lemma
3.3 implies that

� ���
��&

��' �� ���
��&

��' � � � � �� ���&

��'� (15)

and that, for� � � � � � �, with �� � ��, we have

� ���
��� &

��'� ��� �� ���
�����&

��'� (16)

and for� � � � � � �, with �� � ��, we have

� ���
��� &

��'� ��� ��� (17)

Construct������ � � ��� as follows. For each� � � � � � �, let �� denote the minimal� such that�� � �� .
Then define��� � � ���
��� &

��'� � and����� � ��� � � for all �� � � � � ��� � �. Relation (16)
implies that

� ���
��� &

��'� � � �� �� ���
�����&

��'� (18)

for � � � � � such that�� � ��, and

� ���
��� &

��'� � � �� ��� (19)

for � � � � � such that�� � ��. Corroborating further with (15) we obtain that� �����
��&

��' �
�� � �� � � � � � �� ��.

Let �� � �	� � � � �� �	
 and choose�� such that

�	��� � �� � �	� � (20)

Since�� � �	�, and the sequence� is non-increasing, it follows that�� � ��.

114 S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes

Construct the sequence�� of �� � � � &� � �' nonnegative values by applying the following list
operations to the list�: delete the entries�	� � � � � ��	
, and insert the new value�� at position��. Then
�� is also sorted in non-increasing order, and the sum of all itselements equals the sum of elements of
�, i.e., �. Moreover, denote by��	�� &�', ��	�� &��' the sum of the first� elements in the sequence�,
respectively��. After a moment of thought it can be seen that

��	�� &��' � ��	�� &�' (21)

for all �� � � � �� � &� � �'.
Consider now the

&���'-ended monotonic sequence
� � &��� � � � � � �����' "����where
��	 � �	�

� for all �� � � � � ���. Because the number of elements in the sequence�� is�� � &���'&���'��
and the sequence is non-increasing,�#$%&
� ���' is well defined according to Definition 3.2.

Next we will show that

�#$%&

�� ��' � �#$%&
� ���'�
��
���

�	� �� � (22)

For this we will investigate the relation between�!���
���&��' and�!���
����
�&�' for all �� � � � �

� � �.
Case 1: � � ��. In this case we have

�� &
�' � ����� ����
�
��� � � �����
 � �����&���
�
��� � � �' �&����
 � �' � �� &

��' � &� � �'. Then

�!���
���&��' � ����	���������
���&��' � ����	�����
����
�&��' �

����	�����
����
�&�' � �!���
����

�&�'� (23)

The inequality in the above sequence of relations follows from (21).
Case 2: � � � � �� � �. It is more convenient to write� � �� � $, where� � $ � ��. Then the
following sequence of equalities follows by using relation(13):

�� &
�' � ��
��&
�' � ��
��� ������� �
��
��� ������ ���
��� �� � ��
��&

��' ���
��� ��. Denote by�� the smallest� such that�� � $.
In other words,�� � ������� �� � �. According to (15), (18) and (19),�� is the smallest� such that
� ���
��&

��' � �� . We further distinguish between two subcases.
Subcase 2.a:�� �����
��&

��'��. Then the last

��
��&
'���
��� �� elements of�� are obtained
from the last

��
��&

��' elements of�, by removing�	�� � � � � ��	
. Therefore,

�!���
���&��' � �!���
����
�&�' � &�	�� � � � �� �	
 '� (24)

Subcase 2.b:� ���
��&

��' � � � ��. Then the last
��
��&

��' ���
��� �� elements of�� are

obtained from the last
��
��&

��' � � elements of� by removing�	�� � � � � ��	
, and adding��. Since�� � ����

��
����

��� it follows that

�!���
���&��' � �!���
����
�&�' � &�	�� � � � �� �	
 '� (25)

Summarizing we obtain

�#$%&
� ���' � ������� �!���
���&��' �
������� �!���
����

�&�' ���

��������� �	� �

�#$%&

�� ��' ���

��������� �	� �

�#$%&

�� ��' ������ �	� �� � (26)

which proves (22).

S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes 115

Let now� �
�� be the tree with��� internal nodes such that�#$%&� �
�� ���'����� ������ �#$%&� � ���'.
According to the inductive hypothesis, we have

�#$%&
� ���' � �#$%&� �
�� ���'� (27)

Now construct the tree� by transforming the leaf corresponding to�� into an internal node whose all chil-
dren are leaves. Thus� is a tree with�� � internal nodes. By assigning the probabilities�	� � � � � ��	
 to
the new leaves, and keeping the old assignments of probabilities for the old leaves, possibly a suboptimal
assignment of probabilities of� to the leaves of� is obtained, whose cost is�#$%&� �
�� ���'������ �	� �� .
This implies that

�#$%&� ��' � �#$%&� �
�� ���'�
��
���

�	� �� � (28)

Finally, relations (22), (27) and (28) lead to

�#$%&� ��' � �#$%&

�� ��'� (29)

which concludes the inductive step and the proof.
�

Proposition 3.1 together with (9) show that the minimum costtree� &�' of � leaves (or� � �
internal nodes) can be constructed by first finding the

&� � �'-ended monotonic sequence of minimum
cost,

��, and then applying the recursive procedure��%��		&��

�� ��' described as follows:

��%��		&��

�� ��'
1) Identify �� ���� � � � ���.
2) Construct�� from � as described in the proof of Proposition 3.1.
3) Construct
� by decrementing by�each component of the sequence

��.
4) If � � � set� � to be the tree with one internal node. If� �� � set� � to be��%��		&� � ��
� ���'.
5) Build � �� from � � by transforming the leaf corresponding to probability��	� into an internal node with
� children. Assign probabilities�	� � � � � ��	
 to the new leaves.
6) Return� ��.

It is easy to see that� &�' can be constructed from

�� as described above in�&��' time.

4.
����� Time Algorithm for Finding the Minimum Cost Monotonic
Sequence

Construct the weighted directed acyclic graph� � &���', where the set of vertices is
� � �&!� �!�� � � � �

!�
��'
 � � !� � !� � � � � � !�
�� � � � ��, and the set� of edges consists of all ordered pairs
of vertices	&!� �!�� � � � �!�
��'� &!�� � � � �!�
���!�
 '
 such that!� �� !�
. Such an edge will be simply
denoted by	&!� �!�� � � � �!�
 '. The weight of the edge	&!� �!�� � � � �!�
 ' is

� &!� �!�� � � � �!�
 ' � �!��
�
��
� ��� &�' � �!��

�
�������� &�'� (30)

Let the source of the graph be the vertex with all components�, and the let the final node be the vertex
with all components���. Let
 � &�� � ��� � � � � ����'be an arbitrary

&���'-ended monotonic sequence

116 S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes

with no leading�’s (i.e.,
�� � �) and with the additional property that

�� �� ����
 for all �. Denote by
�
%
&
' the following path in the graph�, from the source to the final node

&���� � � � � �����' � &���� � � � � ���� ��'� &���� � � � � �� �� � ��'� � � ��&�� � ��� � � � � ��
��'� &��� ��� � � � � ��
 '� � � ��&�� � ����� � � � � ����
��'� &����� ����� � � � � ����
 '� � � ��&����
���� � �� � � � �� � �'� &� � ��� � �� � � � �� � �'� (31)

It is easy to check that the weight of the above path (i.e., thesum of the weights of its edges) equals
�#$%&
 ��'. Moreover, the mapping�
%
&�' defines a one-to-one correspondence between the

&� � �'-
ended monotonic sequences with no leading�’s (i.e.,

�� � �) and with the additional property that�� �� ����
 for all �, and the paths in� from the source to the final node. Lemma 3.2 implies that there
exists a minimum cost monotonic sequence with the property mentioned above. Therefore, finding an
optimal sequence reduces to solving the shortest path problem in the graph�.

Note that the graph has�&��
 ' vertices and�&��
��'edges, consequently, the shortest path problem
can be solved by standard algorithms in�&��
��' � �&����' time. In order to solve it faster we start
from the dynamic programming solution and further show thatit can be sped up by using the fast matrix
search technique in totally monotone matrices introduced in [1].

For each vertex
&!� �!�� � � � �!�
��'denote by�� &!� �!�� � � � �!�
��' the weight of the minimum path

from the source to that vertex.
For each

&�� � �'-tuple � � &!�� � � � �!�
��' with � � !� � � � � � !�
�� � � � �, consider
the matrix

��
with elements

�&!� �!�
 ', � � !� � !�, !�
�� � !�
 � � � �, defined as follows:�&!� �!�
 ' � �� &!� ��'�� &!� ���!�
 '. Then, for any!�
, !�
�� � !�
 � � � �, we have

�� &��!�
 ' � ����� ��	��	����� ���

�&!� �!�
 '� (32)

This implies that finding�� &��!�
 ' for all !�
 is finding all column minima in the matrix
�

. This problem
would be normally solved in�&��' time. However, there are situations when it can be solved faster. Such
a situation is the case of totally monotone matrices defined in [1], for which all column minima can be
solved in�&�' time as shown in [1]. The matrix

�
is said to be totally monotone if the following

implication holds �&!� �!�
 ' � �&!�� �!�
 '��&!� �!��
 ' � �&!�� �!��
 ' (33)

for all integers� � !� � !�� � !�, !�
�� � !�
 � !��
 � � � �.
It is known that the total monotonicity for matrix

�
is satisfied if the following property holds (also

known as the Monge property) [2]:

�&!� �!�
 '��&!� � ��!�
 � �' � �&!� � ��!�
 '��&!� �!�
 � �' (34)

for all !� and!�
. Ref (34) is equivalent to

�� &!� ��'�� &!� ���!�
 '� �� &!� � ���' �� &!� � ����!�
 � �'
� �� &!� � ���'�� &!� � ����!�
 '� �� &!� ��'�� &!� ���!�
 � �'� (35)

S. Dumitrescu / Faster Algorithm for Designing Optimal Prefix-Free Codes 117

further equivalent to

�!��

�
�������� &�'� �!��

�
�������

�����&�' �
�!��

�
����������&�'� �!��

�
�������

��� &�'� (36)

Denote� � ��
��� !��� �!�. Then (36) can be written as

�!��&�'� �!����

��&�' � �!����&�'� �!����

 &�'� (37)

which is equivalent to������ � ������

��,which is true.
We conclude that the fast matrix search technique of [1] can be applied to solve (32) for given� and

all !�
, in �&�' time. By processing all
&�� � �'-tuples� in lexicographical order, the shortest path can

be computed in�&��
 ' � �&��' time.

References

[1] A. Aggarwal, M. Klave, S. Moran, P. Shor, R. Wilber: Geometric applications of a matrix-searching algorithm.
Algorithmica, 2 (1987), 195–208.

[2] A. Apostolico, Z. Galil, eds.:Pattern Matching Algorithms. Oxford Univ. Press., New York, 1997.

[3] M. Golin, G. Rote: A dynamic programming algorithm for constructing optimal prefix-free codes for unequal
letter costs.IEEE Trans. Inform. Th., 44 (1998), 1770–1781.

[4] P. Bradford, M. Golin, L. Larmore, W. Rytter: Optimal prefix-free codes for unequal letter costs and dynamic
programming with the Monge property.J. Algorithms, 42 (2002), 277–303.

[5] R.M. Karp: Minimum-redundancy coding for the discrete noiseless channel.IRE Transactions on Inform. Th.,
7 (1961), 27–39.

