
Computing 60, 109-119 (1998) ~ 1 ~

© Springer-Verlag 1998
Printed in Austria

Spanning Trees and Shortest Paths in Monge Graphs*

T. Dudfis and R. Rudolf, Graz

Received December 3, 1996; revised August 1, 1997

Abstract

We investigate three problems on Monge graphs, i.e. complete, undirected weighted graphs whose
distance matrix is a Monge matrix: (A) the minimum spanning tree problem, (B) the problem of
computing all-pairs shortest paths and (C) the problem of determining a minimum weighted 1-to-all
shortest path tree. For all three problems best possible algorithms (in terms of complexity) are
presented.

AMS Subject Classifications: 90C27, 05C50, 05C05, 05C12.

Key words: Minimum spanning tree, Monge matrix, shortest paths.

I. Introduction

Let G = (V, E) be an undirected graph with node set V= {1,..., n} and edge set
E ___ VX V, ([E[= m). Moreover, to each edge (i,j) in E we associate the weight

/ \

(distance) cij. If additionally G is a complete graph, i.e. m = [~}, and the

associated symmetric distance matrix C fulfills the property that

Cij-[-Ckl~Cil-[-Ckj for all 1 <i <k <n, 1 <j < l < n , i--/=j, k4~l, i4=l, kv~j (1)

then we call G a Monge graph.

In this paper we revisit three classical graph problems under the assumption
that the underlying graph G is a Monge graph. For all three problems we derive
algorithms which are best possible in terms of running time complexity.

The first problem under investigation is the problem of finding a minimum
spanning tree in G. It is well known that a minimum spanning tree can be found

*This research has been supported by the Spezialforschungsbereich F 003 'Optimierung und
Kontrolle'/Projektbereich Diskrete Optimierung.

110 T. Dudfis and R. Rudolf

in O(n 2) time in case that G is a complete graph (Prim [12]), and in
O(mlog fl(m, n)) time, if G has m edges, where /3(m, n) = min{illog(i)n < re~n}
(Gabow, Galil, Spencer and Tarjan [8]). In this paper we present an algorithm
which constructs a minimum spanning tree in a Monge graph G in O(n) time.

As a second problem we revisit the problem of computing shortest paths in an
undirected weighted graph G, if all weights are nonnegative. Due to Dijkstra's
classical algorithm (Dijkstra [5]) a shortest path from a source to a sink can be
computed in O(n logn + m) time using an implementation based on Fibonacci-
Heaps given in Fredman and Tarjan [7]. Moreover, the same algorithm may be
used to solve the 1-to-all shortest path problem. All-pairs shortest paths, i.e. the
shortest paths from each node to each other node, can be found in O(n 3) time
using the Floyd-Warshall algorithm (Floyd [6]). If we assume G to be a Monge
graph, then the 1-to-all shortest path tree (and therefore also the shortest path
from 1 to n) may be computed in O(n) time due to an algorithm by Wilber [14].
Pferschy et al. [11] have investigated the problem of computing a longest path in
a bipartite Monge graph. Our contribution is an algorithm computing all-pairs
shortest paths in a Monge graph in O(n z) time.

The third problem treated here is somehow a combination of a minimum
spanning tree problem and the problem of computing a 1-to-all shortest path
problem, namely the problem of finding a minimum weighted 1-to-all shortest
path tree. That means, we are searching for a 1-to-all shortest path tree, which
has minimum weight among all 1-to-all shortest path trees. In Section 5 we will
show that Dijkstra's algorithm is applicable and therefore this problem may be
solved in O(nlogn + m) time for general undirected graphs. Khuller,
Raghavachari and Young [9] have shown that the minimum weighted 1-to-all
shortest path tree can be found in O(n + m) time in general directed graphs
with nonnegative weights, if an arbitrary 1-to-all shortest path tree is already at
hand. Our main result concerning this problem is an O(n) time algorithm for
Monge graphs.

The paper is organized as follows: Section 2 summarizes some preliminary
considerations and basic properties of Monge matrices used later on. Section 3
is dedicated to the minimum spanning tree problem, Section 4 contains the
algorithm for computing all-pairs shortest paths in Monge graphs and Section 5
deals with the problem of finding a minimum weighted 1-to-all shortest path
tree.

2. Basic Properties

In this section we mention the basic properties of Monge structures which we
will explicitly use in the paper. For a survey concerning Monge properties and
their applications in combinatorial optimization we refer to Burkard et al. [3].

Spanning Trees and Shortest Paths in Monge Graphs 111

First of all note that in (1) diagonal elements are not involved, meaning that
loops may have an arbitrary weight. However, in the problems treated in this
paper loops are never part of a feasible solution. Therefore the diagonal
elements may be replaced by arbitrary values. It has been shown in Burkard [2]
that in the case that C is a symmetric matrix and fulfills conditions (1), the
diagonal elements can always be redefined in such a way that the new matrix is a
symmetric Monge matrix, i.e. fulfills the Monge property, namely

cij + CkZ < C~t + Ckj for all 1 < i < k < n, 1 < j < l < n. (2)

Moreover, this redefinition of the diagonal elements can be done in O(n) time.
Therefore we may assume w.l.o.g, for the remainder of the paper that the
associated weight matrix of a Monge graph is a symmetric Monge matrix, i.e. the
diagonal entries of C are already defined in an appropriate way.

It should also be mentioned that symmetric matrices C fulfilling (1) also arise in
the context of efficiently solvable travelling salesman problems and are known in
this area as Supnick matrices (e.g. Supnick [13], Burkard et al. [4]).

A basic property of Monge matrices is the fact that each Monge matrix is also a
totally monotone matrix. An n × n matrix C is called totally monotone, if

cij > c,, =~ c 0 > Cr, for all 1 < i < r < n, 1 _<j < s < n. (3)

If we let r(i) denote the column index of the leftmost minimum entry in row i of
a totally monotone matrix C, 1 < i < n, then

r (1) < r (2) _ < - - - < r (n) . (4)

Since Monge matrices form a proper subclass of totally monotone matrices,
property (4) holds for Monge matrices as well.

3. MST for Complete Graphs with Totally Monotone Distance Matrices

In this section an O(n) time algorithm for computing a minimum spanning tree
in Monge graphs with n nodes is presented. Additionally we will see that this
algorithm is also suited for graphs with weight matrices which are symmetric and
totally monotone.

Before describing the algorithm in detail we start with some basic definitions
and notations.

A cut (S, V \ S) of G = (V, E) is a partition of V. An edge (u, v) is said to cross
the cut (S, V \ S) if one of its endpoints lies in S and the other one lies in V \ S .
Finally, given an n × n matrix C we denote by C[q r2][s I ,s 2] the
(r 2 - r I + 1)× (s 2 - s I + 1) matrix which results from C by deleting all rows
except those contained in {r l , . . . , r 2} and all columns except those contained in

{SI, . . . , $2}.

112

Algorithm MST:

T. Dudfis and R. Rudolf

(1) Given an n × n totally montone matrix C determine the values r(i),
i = 1 , . . . , n .
Set T := {(i, r(i))ll < i <__ n, i ~ r(i)}.

(2) For all l < i < n do:
If r (i) <_i and r (i + 1) > i + 1 then
(a) Let ckt be the minimum entry of the

D~ := C[i + 1 ,r(i + 1)][r(i) i].
(b) Set T := TU{(k , I)} .

(3) Ou tpu t T.

matrix D, where

Theorem 3.1. The time complexity of Algorithm M S T / s O(n).

Proof." Note that the minimum entry of an n I x n 2 totally monotone matrix can
be found in O(n 1 + n 2) time and that the leftmost minimum entries in each row
of an n x n totally monotone matrix can be computed in O(n) time (Aggarwal et
al. [1]). Thus Step (1) can be performed in O(n) time. Next, it is shown that the
time complexity of Step (2) is also O(n). This is due to the fact that the search
for the minimum entry of the matrix Di takes at most O(r(i + 1) - r(i) + 1)
operations. Summing over all indices i, we have E n-i=la O(r(i + 1) - r(i) + 1) =
O(n + r(n) - r(1)) = O(n), thus the total time is bounded by O(n). •

After having proven the time complexity of Algorithm MST the correctness
needs to be shown. Therefore consider the following lemma.

Lemma 3.2. The set T defined in Step (1) of Algorithm MST is a subset of a
minimum spanning tree.

Proof." Suppose that after Step (1) T = {(il, r(il)) (ik, r(ik))} , where i 1 < ... <
i~. First of all we show that T contains no cycle, i.e. is a subset of a spanning
tree. To this end investigate the directed graph T ' corresponding to T where
each edge (il, r(it)) of T is directed from i t to rut). It is clear that the outdegree
of any node is exactly one, therefore a cycle in T exists if and only if this cycle is
a directed cycle in T ' . So assume that such a cycle C exists in T ' . Let i be the
minimal node in C. Then r (i)> i and there exists a node k > i in C such that
r(k) = i. But this contradicts property (4), since r(i) < r(k). Therefore no cycle is
contained in T ' and T is indeed a subset of a spanning tree.

In order to show that T is a subset of a minimum spanning tree, it is sufficient
to investigate the cuts ({it}, V \ {il}) for all 1 < l < k. Due to the definitions of the
edges (it, rut)) it is clear that these edges are minimal edges crossing the above
cuts and therefore they are contained in a minimum spanning tree. •

Now we are prepared to prove the correctness of Algorithm MST.

Spanning Trees and Shortest Paths in Monge Graphs 113

Theorem 3.3. Given a totally monotone, symmetric n x n matrix C. Then Algorithm
MST constructs a min imum spanning tree.

Proof." Lemma 3.2 implies that after Step (1) of Algorithm MST T is a subset of
a minimum spanning tree. In the sequel it is shown that whenever in Step (2) an
edge is added to T, T remains a subset of a minimum spanning tree. So suppose
that there exists an index l _ < i < n such that r (i) < i and r (i + l) > i + l :
Consider the cut ({1,.. . , i}, {i + 1 , n}). It is clear that no edge of T obtained
so far crosses this cut. Due to the properties of a minimum spanning tree, the
smallest edge crossing this cut must be included in the set T, i.e. the edge
corresponding to the minimum entry in the matrix C' :-- C[I , i] [i + 1 , . . . , n].
Due to the total monotonicity of C (and also C') we will see that the minimum
entry in C' is always contained in the submatrix Di, defined in Step (2a). To that
end distinguish two cases:

Case (i): 1 < p < i + 1 and r(i + 1) < q < n: Then Cpq > Cp,r(i+l). Assume that
Cp,r(i+ 1) > Cpq. Since C is totally monotone, ci+ 1,r0+ 1) > C~+ 1,q which is a contra-
diction to the fact that ci+ 1,r(i+ 1) is the leftmost minimum entry in row i + 1.

Case (ii): 1 _<p < r(i) and i + 1 <_ q < r(i + 1): Then Cpq >_ G(i),q. Assume that
Cpq < Cr(O, q, Since C~p > ci,,(0 (Ci,r~ o is the leftmost minimum entry in row i), it
follows from the total monotonicity of C that Cqp > cq,r(i). But this contradicts
our assumption, since C is symmetric.

Thus it is sufficient to investigate only the matrix C[r(i) , . . . , i] [i + 1 , . . . , r(i + 1)]
in order to obtain the minimal edge from {1,.. . , i} to {i + 1 , . . . , n}. Since C is
symmetric, this task is equivalent with finding the minimum entry in matrix D v

Finally it remains to be proven that Algorithm MST stops with a set T where
IT[= n - 1. Let r : : [{ilr(i) = i, i = 1 , . . . , n}l. After executing Step (1) T consists
of exactly n - r edges. In Step (2) exactly r - 1 times an edge is added to T.
Thus T is indeed the edge set of a minimum spanning tree. •

4. Shortest Paths in Monge Graphs

This section deals with the problem of determining all-pairs shortest paths in a
Monge graph G having n nodes under the assumption that G contains no
negative cycle. (This is e.g. achieved if the associated distance matrix C is
nonnegative.) The main result is an algorithm with optimal running time O(n2),
thereby improving Floyd's O(n 3) time algorithm for complete graphs with
arbitrary distances.

First of all we recall a property of shortest paths from 1 to n in Monge graphs:

Lemma 4.1. (e.g. [3])
In a Monge graph G there always exists a shortest path P from 1 to n which is an
ascendingpath, i.e. P = (Pl , P2 ,Pl) with 1 = P l <P2 < ..- <Pt = n.

114 T. Dud~s and R. Rudolf

As an immediate consequence of Lemma 4.1 the following may be concluded: if
we restrict the node set to the set {i, . . . , j}, 1 < i < j < n, and ask for a shortest
(restricted) path from i to j then there always exists an ascending path between
i and j which is also a shortest path. However, it is obvious that by dropping the
restriction on the node set the shortest ascending path from i to j may not be a
shortest path, i.e. there may exist a shorter path from i to j visiting some nodes
from V \ {i,. . . , j}. In the sequel we explore the structure of a shortest path from
i to j which may visit any node in the graph G.

To make things easier to illustrate we use some definitions and notations.
Denote by P~,s the subpath of P starting at node r and ending in node s using
the same edges as P and by the reverse subpath according to Pr,, we understand
the subpath of P with opposite orientation, i.e. this is a path from s to r using
all edges of P~., in opposite direction. Furthermore, given a path P =
(Pl, P2 , Pk) we denote by/ze and Vp the minimum and the maximum inner
node visited by path P, i.e. tz e := min{pill < i < k} and v e := max{pill < i < k}.
Finally L (P) denotes the total length of path P.

Theorem 4.2. In a Monge graph G there always exists a shortest path P f rom node i

to j , i <j , such that P = (i =PI, P2 pk = j) with P2 < "'" < P k - 1.

Proof." We show that there always exists a shortest path P from i to j fulfilling
these conditions. Let Q = (i = q l , q 2 , . . . , q t = J) b e an arbitrary shortest path
from i to j visiting at least four distinct nodes (if Q contains less nodes, Q itself
fulfills all conditions). Now let r and s be those indices such that qr = ~l/~a and
qs = Va. (Since Q contains at least two distinct inner nodes, r 4: s.)

First suppose that r < s, i.e. node JI£Q is visited before b'Q. We show that there
always exists a shortest path Q such that

(a) q~ < qr + 1 < " ' " < qs"
(b) q2 =/t/ ,Q, i.e. the smallest node is the first inner node of path Q.
(c) qt-1 = vQ, i.e. the last inner node is always the largest one.

Property (a) follows directly from the remarks following Lemma 4.1. If the
subpath Qr,~ is not ascending we may always replace it by an equivalent shortest
ascending path from qr to q~. Thus we may assume w.l.o.g, that Q has already
property (a).

To show property (b) suppose the contrary, i.e. that q2 :~ /J,Q. Due to the
definition of/ZQ, it follows that q2 > qr = I, ZQ. Distinguish two cases:

Case (i): In the case that i = ql > q2 we proceed as follows: Since Qrs is an
ascending path and qr < q2 < qs, there exists an edge (qk, qk+ 1) on Qr~ such that
qk < q2 < q,+l. Next we construct another path Q' = (ql, qk+l qt)" From the
Monge property and the assumption that G does not contain negative cycles it
follows that L (Q) - L (Q ') = Ci,q2 + L(Qq2,qk) q- Cqk,qk+ 1 - - Ci,qk+l ~ Cqk,q 2 -]- Ci,qk+l

Spanning Trees and Shortest Paths in Monge Graphs 115

+ L(Qq2 qk) - - Ci q k + l = Cqk ,q2 -[- L(Qq2 q g) ~ O. Note that Q' is therefore a shortest
path fuli{lling properties Ca) and (b)'.

Case (ii): If i < q2, there exists an edge (qk, qI,+1) on Qrs such that q~ < i < q~+l.
The new path Q' is obtained by replacing the subpath Qi,qk+~ by the edge !i, qk)
followed by the reversed path Qq q and the edge (q2,qk+l). Again Q is a
shortest path, since L(Q) - L(Q'I = c i ~ + c ~ ~ - c i ~ - c A ~ = c i ~ "[-

C q k + l , q k - C i , q k - - C q k + a , q 2 ~ 0 (due to the symm~etry of~Cland the Mong~ lproper~).
Next we define Q" by replacing Q'rs = (qr, ' ' ' , q2, qlc+ 1 , q,) with a shortest
ascending path from node r to node s. Now we are done. The path Q" fulfills
property (a) and fits into Case (i), since i > qk = q~"

In a similar way property (b) may be verified. This follows directly from the fact
that the reversed matrix of C, i.e. the matrix obtained by reversing the order of
the rows and columns of C, is again a Monge matrix. Applying the proof above
to the reversed matrix we get the desired result.

Summarizing all properties of Q we see that there always exists a shortest path
P fulfilling the requirements of this theorem.

It remains to be shown what happens in the case when node tZQ is visited after
node vQ. i.e. r > s. Using again the same considerations as above we can always
find an equivalent shortest path P now having the property that P2 >P3 > "'" >
P~-I. Again using the Monge property, we obtain that the path P ' - -
(i, Pk- 1,-" , Pl, J) has at most the same length. Thus the theorem is proven. •

To illustrate that a shortest path in a Monge graph need not to be an ascending
path consider the following illustrative example. Let

C =

- 1 5 3

1 - 8 5

5 8 - 1
3 5 1 -

be the distance matrix of a Monge graph. Then e.g. the shortest path from 2 to 3
is just (2,1, 4, 3) having a total length of 5.

After having shown the structural properties of a shortest path in a Monge
graph we will present an algorithm exploiting Theorem 4.2 explicitly in order to
compute all-pairs shortest paths efficiently. Let F be the shortest-distance
matrix with respect to G, i.e. Yij is the value of the shortest path from i to j in
G. It is known that for arbitrary complete graphs with n nodes F can be
computed in O(n 3) time applying the Floyd-Warshall algorithm (Floyd [6]). The
following algorithm computes F in O(n 2) time whenever the weights fulfill the
Monge property. (Note that this is best possible, since F has exactly n 2 entries.)

116 T. Dud~sand R. Rudolf

Algorithm ALL-PAIRS SHORTEST PATHS:

(1) Compute the symmetric n × n matrix F, where fq represents the
value of the shortest ascending path from i to j, where i < j .

(2) Compute F by

~,--min{f , , , mkin d~,},

w h e r e D ~ , i = l , . . . , n - l , i s a matrix def ined by

dikj:=(~k+Ckl , i < j < k
otherwise .

(3) Compute F by

YU := min{J~j, m~n ~k},

w h e r e for all j = 2 , . . . , n the matrix /)J is defined by

d{k..= cil,+Lj, k < i < j
otherwise.

Theorem 4.3. Given a complete Monge graph G = (V, E), Algorithm ALL-P~aRS
SHORTEST PATHS computes all-pairs shortest paths in O(I V I 2) time.

Proof: To show the correctness recall that the value d~j denotes the length of a
shortest ascending path from i to k plus the length of the edge (k, j) and fq is
the shortest path value from i to j among all paths which use the node set
{i,... ,n}. In a similar way, dik represents the value of a path starting with edge
(i, k) plus the length of a shortest path from k to j" using only nodes from
{k , n}. Due to Theorem 4.2 it is clear that finally yq is the value of a shortest
path from i to j.

To show that the total running time complexity is O(n 2) we make use of
Wilber's algorithm [14] and the SMAWK-algorithm (Aggarwal et al. [1]). In Step
(1) the matrix F is computed in O(n2). For each 1 < i < n we use once Wilber's
algorithm to compute the shortest (ascending) path from i to n. (Looking at this
algorithm in detail it turns out that beside the shortest path from i to n also all
shortest ascending paths from i to any arbitrary node j, i < j , are computed at
the same time.) Thus F can be computed in O(n 2) time. Next it is shown that
Step (2) and Step (3) can also be performed in O(n 2) time. First note that all
matrices D i and D ~ are totally monotone. This follows directly from the fact
that adding a constant column vector to each column of a totally monotone
matrix results again in a totally monotone matrix. Thus thanks to the SMAWK-
Algorithm all row minima and therefore the matrices /~ and /" may be
computed in O(n 2) time without explicitly calculating each entry of the matrices
D i and/~J. •

Spanning Trees and Shortest Paths in Monge Graphs 117

5. Minimum Weighted Shortest Path Trees

In the previous section it has been shown how to compute all-pairs shortest
paths in a Monge graph in linear time. As already mentioned a 1-to-all shortest
path tree containing all shortest paths emanating from 1 can be computed in
O(n) time as a byproduct of Wilber's algorithm. In the sequel we investigate the
problem of finding a minimum 1-to-all shortest path tree, i.e. a 1-to-all shortest
path tree which has minimum total weight among all 1-to-all shortest path trees
emanating from node 1.

To that end we attach to each edge (i, j) ~ E the pair (di + cij, c U) and call the
associated n x n matrix A. (Note that d i represents the value of the shortest
path from node 1 to node i.) Additionally let -< (~) denote the usual
lexicographic order, i.e. (a, b) < (c, d), iff either a < c or a = c and b < d holds.
A closer look to the values di + c U reveals that only the edges corresponding to
minimum entries in column j of A can occur in a shortest path tree. That
means that each edge (k, j) for which

d~ + ckj > min {d i + Cij }
l<i<_n

is never part of a shortest path tree and therefore not contained in any
minimum weighted 1-to-all shortest path tree.

Let us start with the following observation.

Lemma 5.1. I f C is a Monge matrix, then A ~, the transposed matrix o f A , is totally
monotone with respect to < .

Proof" It is sufficient to show that for all i < r and j < s: agj >- a,j ~ a~s >- a,s.
Assume the contrary, i.e. that aij >- a,j and ai~ ~< ars. Now aij >- arj implies that
either d i + c~j > d, + c,j or that d~ + c~j = d, + crj and c~j > Crj. On the other
hand ai~ ~< a,s is equivalent to d i + c~s > d r + Crs or dg + Cis = d r + c , and c~s <
Cry. By combining these equations and inequalities in an appropriate way we get
in any case a contradiction to the Monge property of C. •

In the following we briefly show that a small adaption of Algorithm MST - -
further referred to as Algorithm MWSPT - - is sufficient to obtain an algorithm
for constructing a minimum weighted 1-to-all shortest path tree (each compar-
ison must be evaluated according to -< instead of <).

Theorem 5.2. Algorithm MWSPT applied to A r computes a min imum weighted
1-to-all shortest path tree in O(n) time in a Monge graph having nonnegative
weights.

Proof" This theorem can be proven in the same way as the results for computing
the MST shown in Section 3. The main difference here is that the underlying
matrix B :=A 7" is not necessarily symmetric. (To simplify and to shorten the
proof we highlight only those parts which must be changed due to the unsymme-

118 T. Dudfis and R. Rudolf

try of the matrix.) It is clear that the running time is O(n) and that the
algorithm computes an undirected tree at all. Thus it remains to be shown that
this tree is a minimum weighted 1-to-all shortest path tree.

First consider an edge (i, j), j = r(i) ~ i, which is inserted during the execution
of Step (1). Since this entry, say (dj + cji,cj~), corresponds to the leftmost
minimum entry in row i of A r, it follows (dj + c#, cji)~< (d k + Cki, Cki) for all
1 _< k < n. This means that this edge must be part in our desired tree, since it is
contained in a shortest path tree and since it has the smallest weight among all
such edges.

The proof for edges which are inserted Step (2) is in principle the same as for
Theorem 3.3 except that we distinguish here three cases:

Case (i): i < q < n and 1 < p < r(i): Since bie >- bi,~(i) (by definition of r(i)), it
follows that bqp >-bq,r(i) (since B is totally monotone).

Case (ii): r(i + 1) < q < n and r(i) <p < i: Assume that bqp is the minimal edge
crossing the cut ({1 ,i}, {i + 1 n}) and especially t h a t bqp "< br(i+l) p). (If
this is not the case, choose entry br(i+ 1),p instead of entry bqp.) T h e minimality
of bqp and the construction of matrix B imply the existence of a shortest path
from 1 to q with the final edge (p, q). Thus dq = dp + Cqp and dq < dj for all
i + 1 < j < n. From bqp -< br(i+l),p it follows that Cqp < Cr(i+l),p or, equivalently,
that Cpq < Cp,r(~+l) (C is symmetric.) The total monotonicity of C implies the
inequality Ci+ l,r(~+ l) > ci+ l, q. On the other hand bi+ l,r(i+ l) ~ bi+ l, q since (i +
1, r(i + 1)) is the leftmost minimum entry in row i + 1 of matrix B. Combining
these two inequalities we get that dr(i+l)+Ci+t,r(i+l)<dq-~-Ci+l, q and that
dr(i+ 1) < dq. But this contradicts the fact t h a t dq <_ dr(i+ 1).

Case (iii): 1 < p < i and i + 1 < q < n: Assume t h a t bpq corresponds to the
minimal edge crossing the cut and that bbp -< bqp (otherwise we exchange and
are done). This implies that dp =dq + Cpq and since bqp < bpq, Cpq > 0 and
dq < dp. On the other hand, since the node p is already connected to node 1
(and this can only be done by a shortest path), we have that the path from 1 to q
would have a length of dp + Cpq > dp > dq, a contradiction.

Thus, in the final step we obtain an undirected tree which corresponds to a
minimum weighted 1-to-all shortest path tree. After directing it we are done.

Acknowledgement

We would like to thank Katja Wolf for careful reading of a first version of this paper.

Spanning Trees and Shortest Paths in Monge Graphs 119

References

[1] Aggarwal, A., Klawe, M. M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a
matrix-searching algorithm. Algorithmica 2, 195-208 (1987).

[2] Burkard, R. E.: Special cases of the travelling salesman problem and heuristics. Acta Math.
Appl. Sin. 6, 273-288 (1990).

[3] Burkard, R. E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discr.
Appl. Math. 70, 95-161 (1996).

[4] Burkard, R. E., Deineko, V., van Dal, R., van der Veen, J. A. A., Woeginger, G. J.:
Well-solvable cases of the TSP: A survey. SFB-Report No. 52, SFB 'Optimierung und
Kontrolle', Institute of Mathematics, University of Technology, Graz, Austria, December 1995,
submitted for publication.

[5] Dijkstra, E. W.: A note on two problems in connection with graphs. Numer. Math. 1, 269-271
(1959).

[6] Floyd, R. W.: Algorithm 97 (Shortest Path). Comm. ACM 5, 345 (1962).
[7] Fredman, M. L., Tarjan, R. E.: Fibonacci heaps and their uses in improved network optimiza-

tion algorithms. J. Assoc. Comput. Mach. 34, 596-615 (1987).
[8] Gabow, H. N., Galil, Z., Spencer, T., Tarjan, R. E.: Efficient algorithms for finding minimum

spanning trees in undirected and directed graphs. Combinatorica 6, 109-122 (1986).
[9] Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path

trees. Algorithmica 44, 305-321 (1995).
[10] Klein, P., Tarjan, R. E.: A randomized linear-time algorithm for finding minimum spanning

trees. Proc. 26th Annual Symposium on Theory of Computing, pp. 9-15 (1994).
[11] Pferschy, U., Rudolf, R., Woeginger, G. J.: Monge matrices make maximization manageable.

Oper. Res. Lett. 16, 245-254 (1994).
[12] Prim, R. C.: Shortest connection networks and some generalizations. Bell System Tech. J. 36,

1389-1401 (1957).
[13] Supnick, F.: Extreme Hamiltonian lines. Ann. Math. 66, 179-201 (1957).
[14] Wilber, R.: The concave least-weight subsequence problem revisited. J. Algorithms 9, 418-425

(1988).

T. Dudfis
R. Rudolf
Institut fiir Mathematik B
Graz
Steyrergasse 30
A-8010 Graz
Austria
e-mails:{dudas, rudolf}@opt.math.tu-graz.ac.at

