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Abstract 

We investigate three problems on Monge graphs, i.e. complete, undirected weighted graphs whose 
distance matrix is a Monge matrix: (A) the minimum spanning tree problem, (B) the problem of 
computing all-pairs shortest paths and (C) the problem of determining a minimum weighted 1-to-all 
shortest path tree. For all three problems best possible algorithms (in terms of complexity) are 
presented. 

AMS Subject Classifications: 90C27, 05C50, 05C05, 05C12. 
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I. Introduction 

Let G = (V, E) be an undirected graph with node set V= {1,..., n} and edge set 
E ___ VX V, ([E[ = m). Moreover, to each edge (i,j) in E we associate the weight 

/ \ 

(distance) cij. If additionally G is a complete graph, i.e. m =  [~}, and the 

associated symmetric distance matrix C fulfills the property that 

Cij-[-Ckl~Cil-[-Ckj for all 1 <i <k <n, 1 <j < l < n ,  i--/=j, k4~l, i4=l, kv~j (1) 

then we call G a Monge graph. 

In this paper we revisit three classical graph problems under the assumption 
that the underlying graph G is a Monge graph. For all three problems we derive 
algorithms which are best possible in terms of running time complexity. 

The first problem under investigation is the problem of finding a minimum 
spanning tree in G. It is well known that a minimum spanning tree can be found 

*This research has been supported by the Spezialforschungsbereich F 003 'Optimierung und 
Kontrolle'/Projektbereich Diskrete Optimierung. 
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in O(n  2) time in case that G is a complete graph (Prim [12]), and in 
O(mlog fl(m, n)) time, if G has m edges, where /3(m, n) = min{illog(i)n < re~n} 
(Gabow, Galil, Spencer and Tarjan [8]). In this paper we present an algorithm 
which constructs a minimum spanning tree in a Monge graph G in O(n) time. 

As a second problem we revisit the problem of computing shortest paths in an 
undirected weighted graph G, if all weights are nonnegative. Due to Dijkstra's 
classical algorithm (Dijkstra [5]) a shortest path from a source to a sink can be 
computed in O(n logn + m) time using an implementation based on Fibonacci- 
Heaps given in Fredman and Tarjan [7]. Moreover, the same algorithm may be 
used to solve the 1-to-all shortest path problem. All-pairs shortest paths, i.e. the 
shortest paths from each node to each other node, can be found in O(n 3) time 
using the Floyd-Warshall algorithm (Floyd [6]). If we assume G to be a Monge 
graph, then the 1-to-all shortest path tree (and therefore also the shortest path 
from 1 to n) may be computed in O(n) time due to an algorithm by Wilber [14]. 
Pferschy et al. [11] have investigated the problem of computing a longest path in 
a bipartite Monge graph. Our contribution is an algorithm computing all-pairs 
shortest paths in a Monge graph in O(n z) time. 

The third problem treated here is somehow a combination of a minimum 
spanning tree problem and the problem of computing a 1-to-all shortest path 
problem, namely the problem of finding a minimum weighted 1-to-all shortest 
path tree. That means, we are searching for a 1-to-all shortest path tree, which 
has minimum weight among all 1-to-all shortest path trees. In Section 5 we will 
show that Dijkstra's algorithm is applicable and therefore this problem may be 
solved in O(nlogn + m) time for general undirected graphs. Khuller, 
Raghavachari and Young [9] have shown that the minimum weighted 1-to-all 
shortest path tree can be found in O(n + m) time in general directed graphs 
with nonnegative weights, if an arbitrary 1-to-all shortest path tree is already at 
hand. Our main result concerning this problem is an O(n) time algorithm for 
Monge graphs. 

The paper is organized as follows: Section 2 summarizes some preliminary 
considerations and basic properties of Monge matrices used later on. Section 3 
is dedicated to the minimum spanning tree problem, Section 4 contains the 
algorithm for computing all-pairs shortest paths in Monge graphs and Section 5 
deals with the problem of finding a minimum weighted 1-to-all shortest path 
tree. 

2. Basic Properties 

In this section we mention the basic properties of Monge structures which we 
will explicitly use in the paper. For a survey concerning Monge properties and 
their applications in combinatorial optimization we refer to Burkard et al. [3]. 
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First of all note that in (1) diagonal elements are not involved, meaning that 
loops may have an arbitrary weight. However, in the problems treated in this 
paper loops are never part of a feasible solution. Therefore the diagonal 
elements may be replaced by arbitrary values. It has been shown in Burkard [2] 
that in the case that C is a symmetric matrix and fulfills conditions (1), the 
diagonal elements can always be redefined in such a way that the new matrix is a 
symmetric Monge matrix, i.e. fulfills the Monge property, namely 

cij + CkZ < C~t + Ckj for all 1 < i < k < n, 1 < j  < l < n. (2) 

Moreover, this redefinition of the diagonal elements can be done in O(n) time. 
Therefore we may assume w.l.o.g, for the remainder of the paper that the 
associated weight matrix of  a Monge graph is a symmetric Monge matrix, i.e. the 
diagonal entries of C are already defined in an appropriate way. 

It should also be mentioned that symmetric matrices C fulfilling (1) also arise in 
the context of efficiently solvable travelling salesman problems and are known in 
this area as Supnick matrices (e.g. Supnick [13], Burkard et al. [4]). 

A basic property of Monge matrices is the fact that each Monge matrix is also a 
totally monotone matrix. An n × n matrix C is called totally monotone, if 

cij > c,, =~ c 0 > Cr, for all 1 < i < r < n, 1 _<j < s < n. (3) 

If we let r(i) denote the column index of the leftmost minimum entry in row i of 
a totally monotone matrix C, 1 < i < n, then 

r (1)  < r ( 2 )  _ < - - - < r ( n ) .  (4) 

Since Monge matrices form a proper subclass of totally monotone matrices, 
property (4) holds for Monge matrices as well. 

3. MST for Complete Graphs with Totally Monotone Distance Matrices 

In this section an O(n) time algorithm for computing a minimum spanning tree 
in Monge graphs with n nodes is presented. Additionally we will see that this 
algorithm is also suited for graphs with weight matrices which are symmetric and 
totally monotone. 

Before describing the algorithm in detail we start with some basic definitions 
and notations. 

A cut (S, V \ S )  of G = (V, E)  is a partition of V. An edge (u, v) is said to cross 
the cut (S, V \ S )  if one of its endpoints lies in S and the other one lies in V \ S .  
Finally, given an n × n  matrix C we denote by C[q . . . . .  r2][s I . . . .  ,s  2] the 
(r 2 - r  I + 1 )×  (s 2 - s  I + 1) matrix which results from C by deleting all rows 
except those contained in {r l , . . . ,  r 2} and all columns except those contained in 

{SI, . . . ,  $2}. 
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Algorithm MST: 
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(1) Given an n × n  totally montone matrix C determine the values r(i), 
i =  1 , . . . , n .  
Set  T := {(i, r(i))ll < i <__ n, i ~ r(i)}. 

(2) For all l < i < n  do: 
If r ( i )  <_i and r ( i  + 1 ) > i +  1 then 
(a) Let ckt be the minimum entry of the 

D~ := C[i + 1 . . . .  ,r( i  + 1)][r(i) . . . . .  i]. 
(b) Set  T :=  TU{(k , I )} .  

(3) Ou tpu t  T. 

matrix D, where 

Theorem 3.1. The time complexity of  Algorithm M S T / s  O( n ). 

Proof." Note that the minimum entry of an n I x n 2 totally monotone matrix can 
be found in O(n 1 + n 2) time and that the leftmost minimum entries in each row 
of an n x n totally monotone matrix can be computed in O(n) time (Aggarwal et 
al. [1]). Thus Step (1) can be performed in O(n)  time. Next, it is shown that the 
time complexity of Step (2) is also O(n). This is due to the fact that the search 
for the minimum entry of the matrix Di takes at most O(r(i  + 1) - r(i) + 1) 
operations. Summing over all indices i, we have E n-i=la O(r(i  + 1) - r(i) + 1) = 
O(n + r(n)  - r(1)) = O(n), thus the total time is bounded by O(n). • 

After having proven the time complexity of Algorithm MST the correctness 
needs to be shown. Therefore consider the following lemma. 

Lemma 3.2. The set T defined in Step (1) of Algorithm MST is a subset of  a 
minimum spanning tree. 

Proof." Suppose that after Step (1) T = {(il, r(il)) . . . . .  (ik, r(ik))} , where i 1 < ... < 
i~. First of all we show that T contains no cycle, i.e. is a subset of a spanning 
tree. To this end investigate the directed graph T '  corresponding to T where 
each edge (il, r(it)) of T is directed from i t to rut). It is clear that the outdegree 
of any node is exactly one, therefore a cycle in T exists if and only if this cycle is 
a directed cycle in T ' .  So assume that such a cycle C exists in T ' .  Let  i be the 
minimal node in C. Then r ( i )>  i and there exists a node k > i in C such that 
r(k)  = i. But this contradicts property (4), since r(i) < r(k). Therefore no cycle is 
contained in T '  and T is indeed a subset of a spanning tree. 

In order to show that T is a subset of  a minimum spanning tree, it is sufficient 
to investigate the cuts ({it}, V \  {il}) for all 1 < l < k. Due to the definitions of the 
edges (it, rut))  it is clear that these edges are minimal edges crossing the above 
cuts and therefore they are contained in a minimum spanning tree. • 

Now we are prepared to prove the correctness of Algorithm MST. 
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Theorem 3.3. Given a totally monotone, symmetric n x n matrix C. Then Algorithm 
MST constructs a min imum spanning tree. 

Proof." Lemma 3.2 implies that after Step (1) of Algorithm MST T is a subset of 
a minimum spanning tree. In the sequel it is shown that whenever in Step (2) an 
edge is added to T, T remains a subset of a minimum spanning tree. So suppose 
that there exists an index l _ < i < n  such that r ( i ) < i  and r ( i + l ) > i + l :  
Consider the cut ({1,.. . ,  i}, {i + 1 . . . .  , n}). It is clear that no edge of T obtained 
so far crosses this cut. Due to the properties of a minimum spanning tree, the 
smallest edge crossing this cut must be included in the set T, i.e. the edge 
corresponding to the minimum entry in the matrix C'  :-- C[I . . . .  , i] [i + 1 , . . . ,  n]. 
Due to the total monotonicity of C (and also C')  we will see that the minimum 
entry in C'  is always contained in the submatrix Di, defined in Step (2a). To that 
end distinguish two cases: 

Case (i): 1 < p  < i + 1 and r(i + 1) < q < n: Then Cpq > Cp,r(i+l). Assume that 
Cp,r(i+ 1) > Cpq. Since C is totally monotone, ci+ 1,r0+ 1) > C~+ 1,q which is a contra- 
diction to the fact that ci+ 1,r(i+ 1) is the leftmost minimum entry in row i + 1. 

Case (ii): 1 _<p < r(i) and i + 1 <_ q < r(i + 1): Then Cpq >_ G(i),q. Assume that 
Cpq < Cr(O, q, Since C~p > ci,,( 0 (Ci,r~ o is the leftmost minimum entry in row i), it 
follows from the total monotonicity of C that Cqp > cq,r(i). But this contradicts 
our assumption, since C is symmetric. 

Thus it is sufficient to investigate only the matrix C[r( i ) , . . . ,  i] [i + 1 , . . . ,  r(i + 1) ] 
in order to obtain the minimal edge from {1,.. . ,  i} to {i + 1 , . . . ,  n}. Since C is 
symmetric, this task is equivalent with finding the minimum entry in matrix D v 

Finally it remains to be proven that Algorithm MST stops with a set T where 
IT[ = n - 1. Let r : :  [{ilr(i) = i, i = 1 , . . . ,  n}l. After executing Step (1) T consists 
of exactly n - r  edges. In Step (2) exactly r -  1 times an edge is added to T. 
Thus T is indeed the edge set of a minimum spanning tree. • 

4. Shortest Paths in Monge Graphs 

This section deals with the problem of determining all-pairs shortest paths in a 
Monge graph G having n nodes under the assumption that G contains no 
negative cycle. (This is e.g. achieved if the associated distance matrix C is 
nonnegative.) The main result is an algorithm with optimal running time O(n2), 
thereby improving Floyd's O(n 3) time algorithm for complete graphs with 
arbitrary distances. 

First of all we recall a property of shortest paths from 1 to n in Monge graphs: 

Lemma 4.1. (e.g. [3]) 
In a Monge graph G there always exists a shortest path P from 1 to n which is an 
ascendingpath, i.e. P = (Pl ,  P2 . . . .  ,Pl)  with 1 = P l  <P2 < ..- <Pt  = n. 
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As an immediate consequence of Lemma 4.1 the following may be concluded: if 
we restrict the node set to the set {i, . . . ,  j}, 1 < i < j  < n, and ask for a shortest 
(restricted) path from i to j then there always exists an ascending path between 
i and j which is also a shortest path. However, it is obvious that by dropping the 
restriction on the node set the shortest ascending path from i to j may not be a 
shortest path, i.e. there may exist a shorter path from i to j visiting some nodes 
from V \  {i,. . . ,  j}. In the sequel we explore the structure of a shortest path from 
i to j which may visit any node in the graph G. 

To make things easier to illustrate we use some definitions and notations. 
Denote by P~,s the subpath of P starting at node r and ending in node s using 
the same edges as P and by the reverse subpath according to Pr,, we understand 
the subpath of P with opposite orientation, i.e. this is a path from s to r using 
all edges of P~., in opposite direction. Furthermore, given a path P = 
(Pl, P2 . . . .  , Pk) we denote by/ze and Vp the minimum and the maximum inner 
node visited by path P, i.e. tz e := min{pill < i < k} and v e := max{pill < i < k}. 
Finally L ( P )  denotes the total length of path P. 

Theorem 4.2. In a Monge graph G there always exists a shortest path P f rom node i 

to j ,  i <j ,  such that P = (i =PI,  P2 . . . . .  pk = j )  with P2 < "'" < P k -  1. 

Proof." We show that there always exists a shortest path P from i to j fulfilling 
these conditions. Let Q = ( i  = q l , q 2 , . . . , q t  = J ) b e  an arbitrary shortest path 
from i to j visiting at least four distinct nodes (if Q contains less nodes, Q itself 
fulfills all conditions). Now let r and s be those indices such that qr = ~l/~a and 
qs = Va. (Since Q contains at least two distinct inner nodes, r 4: s.) 

First suppose that r < s, i.e. node JI£Q is visited before b'Q. We show that there 
always exists a shortest path Q such that 

(a) q~ < qr + 1 < " ' "  < qs" 
(b) q2 =/t/ ,Q, i.e. the smallest node is the first inner node of path Q. 
(c) qt-1 = vQ, i.e. the last inner node is always the largest one. 

Property (a) follows directly from the remarks following Lemma 4.1. If the 
subpath Qr,~ is not ascending we may always replace it by an equivalent shortest 
ascending path from qr to q~. Thus we may assume w.l.o.g, that Q has already 
property (a). 

To show property (b) suppose the contrary, i.e. that q2 :~ /J,Q. Due to the 
definition of/ZQ, it follows that q2 > qr = I, ZQ. Distinguish two cases: 

Case (i): In the case that i =  ql > q2 we proceed as follows: Since Qrs is an 
ascending path and qr < q2 < qs, there exists an edge (qk, qk+ 1) on Qr~ such that 
qk < q2 < q,+l. Next we construct another path Q' = (ql, qk+l . . . . .  qt)" From the 
Monge property and the assumption that G does not contain negative cycles it 
follows that L ( Q )  - L ( Q ' )  = Ci,q2 + L(Qq2,qk) q- Cqk,qk+ 1 - -  Ci,qk+l ~ Cqk,q 2 -]- Ci,qk+l 
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+ L(Qq2 qk ) - -  Ci q k + l  = Cqk ,q2  -[- L(Qq2 q g )  ~ O. Note that Q' is therefore a shortest 
path fuli{lling properties Ca) and (b)'. 

Case (ii): If i < q2, there exists an edge (qk, qI,+1) on Qrs such that q~ < i < q~+l. 
The new path Q' is obtained by replacing the subpath Qi,qk+~ by the edge !i, qk) 
followed by the reversed path Qq q and the edge (q2,qk+l). Again Q is a 
shortest path, since L(Q) - L(Q'I  = c i ~ + c ~  ~ - c i ~ - c A  ~ = c i ~ "[- 

C q k + l , q k -  C i , q k - - C q k + a , q 2  ~ 0 (due to the symm~etry of~Cland the Mong~ lproper~). 
Next we define Q" by replacing Q'rs = (qr, ' ' ' ,  q2, qlc+ 1 . . . .  , q,) with a shortest 
ascending path from node r to node s. Now we are done. The path Q" fulfills 
property (a) and fits into Case (i), since i > qk = q~" 

In a similar way property (b) may be verified. This follows directly from the fact 
that the reversed matrix of C, i.e. the matrix obtained by reversing the order of 
the rows and columns of C, is again a Monge matrix. Applying the proof above 
to the reversed matrix we get the desired result. 

Summarizing all properties of Q we see that there always exists a shortest path 
P fulfilling the requirements of this theorem. 

It remains to be shown what happens in the case when node tZQ is visited after 
node vQ. i.e. r > s. Using again the same considerations as above we can always 
find an equivalent shortest path P now having the property that P2 >P3 > "'" > 
P~-I. Again using the Monge property, we obtain that the path P ' - -  
(i, Pk- 1,-" ,  Pl, J) has at most the same length. Thus the theorem is proven. • 

To illustrate that a shortest path in a Monge graph need not to be an ascending 
path consider the following illustrative example. Let 

C =  

- 1 5 3 

1 - 8 5 

5 8 - 1 
3 5 1 - 

be the distance matrix of a Monge graph. Then e.g. the shortest path from 2 to 3 
is just (2,1, 4, 3) having a total length of 5. 

After having shown the structural properties of a shortest path in a Monge 
graph we will present an algorithm exploiting Theorem 4.2 explicitly in order to 
compute all-pairs shortest paths efficiently. Let F be the shortest-distance 
matrix with respect to G, i.e. Yij is the value of the shortest path from i to j in 
G. It is known that for arbitrary complete graphs with n nodes F can be 
computed in O(n 3) time applying the Floyd-Warshall algorithm (Floyd [6] ). The 
following algorithm computes F in O(n 2) time whenever the weights fulfill the 
Monge property. (Note that this is best possible, since F has exactly n 2 entries.) 
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Algorithm ALL-PAIRS SHORTEST PATHS: 

(1) Compute the symmetric n × n  matrix F, where fq represents the 
value of the shortest ascending path from i to j, where i < j .  

(2) Compute F by 

~,--min{f , , ,  mkin d~,}, 

w h e r e D  ~ , i = l , . . . , n - l , i s  a matrix def ined by 

dikj:=(~k+Ckl , i < j < k  
otherwise .  

(3) Compute F by 

YU := min{J~j, m~n ~k},  

w h e r e  for all j = 2 , . . . , n  the matrix /)J is defined by 

d{k..= cil,+Lj, k < i < j  
otherwise. 

Theorem 4.3. Given a complete Monge graph G = (V, E), Algorithm ALL-P~aRS 
SHORTEST PATHS computes all-pairs shortest paths in O(I V I 2) time. 

Proof: To show the correctness recall that the value d~j denotes the length of  a 
shortest ascending path from i to k plus the length of the edge (k, j )  and fq is 
the shortest path value from i to j among all paths which use the node set 
{i,... ,n}. In a similar way, dik represents the value of a path starting with edge 
(i, k) plus the length of a shortest path from k to j" using only nodes from 
{k . . . .  , n}. Due to Theorem 4.2 it is clear that finally yq is the value of a shortest 
path from i to j. 

To show that the total running time complexity is O(n 2) we make use of 
Wilber's algorithm [14] and the SMAWK-algorithm (Aggarwal et al. [1] ). In Step 
(1) the matrix F is computed in O(n2). For each 1 < i < n we use once Wilber's 
algorithm to compute the shortest (ascending) path from i to n. (Looking at this 
algorithm in detail it turns out that beside the shortest path from i to n also all 
shortest ascending paths from i to any arbitrary node j, i < j ,  are computed at 
the same time.) Thus F can be computed in O(n 2) time. Next it is shown that 
Step (2) and Step (3) can also be performed in O(n 2) time. First note that all 
matrices D i and D ~ are totally monotone. This follows directly from the fact 
that adding a constant column vector to each column of a totally monotone 
matrix results again in a totally monotone matrix. Thus thanks to the SMAWK- 
Algorithm all row minima and therefore the matrices /~ and /" may be 
computed in O(n 2) time without explicitly calculating each entry of the matrices 
D i and/~J. • 
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5. Minimum Weighted Shortest Path Trees 

In the previous section it has been shown how to compute all-pairs shortest 
paths in a Monge graph in linear time. As already mentioned a 1-to-all shortest 
path tree containing all shortest paths emanating from 1 can be computed in 
O(n)  time as a byproduct of Wilber's algorithm. In the sequel we investigate the 
problem of finding a minimum 1-to-all shortest path tree, i.e. a 1-to-all shortest 
path tree which has minimum total weight among all 1-to-all shortest path trees 
emanating from node 1. 

To that end we attach to each edge (i, j )  ~ E the pair (di + cij, c U) and call the 
associated n x n matrix A. (Note that d i represents the value of the shortest 
path from node 1 to node i.) Additionally let -< ( ~ )  denote the usual 
lexicographic order, i.e. (a, b) < (c, d), iff either a < c or a = c and b < d holds. 
A closer look to the values di + c U reveals that only the edges corresponding to 
minimum entries in column j of A can occur in a shortest path tree. That 
means that each edge (k, j )  for which 

d~ + ckj > min {d i + Cij } 
l<i<_n 

is never part of a shortest path tree and therefore not contained in any 
minimum weighted 1-to-all shortest path tree. 

Let us start with the following observation. 

Lemma 5.1. I f  C is a Monge matrix, then A ~, the transposed matrix o f  A ,  is totally 
monotone with respect to < .  

Proof" It is sufficient to show that for all i < r and j < s: agj >- a,j ~ a~s >- a,s. 
Assume the contrary, i.e. that aij >- a,j and ai~ ~< ars. Now aij >- arj implies that 
either d i +  c~j > d, + c,j or that d~ + c~j = d, + crj and c~j > Crj. On the other 
hand ai~ ~< a,s is equivalent to d i + c~s > d r + Crs or dg + Cis = d r + c ,  and c~s < 
Cry. By combining these equations and inequalities in an appropriate way we get 
in any case a contradiction to the Monge property of C. • 

In the following we briefly show that a small adaption of Algorithm MST - -  
further referred to as Algorithm MWSPT - -  is sufficient to obtain an algorithm 
for constructing a minimum weighted 1-to-all shortest path tree (each compar- 
ison must be evaluated according to -< instead of <). 

Theorem 5.2. Algorithm MWSPT applied to A r computes a min imum weighted 
1-to-all shortest path tree in O(n)  time in a Monge graph having nonnegative 
weights. 

Proof" This theorem can be proven in the same way as the results for computing 
the MST shown in Section 3. The main difference here is that the underlying 
matrix B :=A 7" is not necessarily symmetric. (To simplify and to shorten the 
proof we highlight only those parts which must be changed due to the unsymme- 
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try of the matrix.) It is clear that the running time is O(n) and that the 
algorithm computes an undirected tree at all. Thus it remains to be shown that 
this tree is a minimum weighted 1-to-all shortest path tree. 

First consider an edge (i, j),  j = r(i) ~ i, which is inserted during the execution 
of Step (1). Since this entry, say (dj + cji,cj~), corresponds to the leftmost 
minimum entry in row i of A r, it follows (dj + c#, cji)~< (d k + Cki, Cki) for all 
1 _< k < n. This means that this edge must be part in our desired tree, since it is 
contained in a shortest path tree and since it has the smallest weight among all 
such edges. 

The proof for edges which are inserted Step (2) is in principle the same as for 
Theorem 3.3 except that we distinguish here three cases: 

Case (i): i < q < n and 1 < p  < r(i): Since bie >- bi,~(i) (by definition of r(i)), it 
follows that bqp >-bq,r(i) (since B is totally monotone). 

Case (ii): r(i + 1) < q < n and r(i) <p < i: Assume that bqp is the minimal edge 
crossing the cut ({1 . . . .  ,i}, {i + 1 . . . . .  n}) and especially t h a t  bqp "< br(i+l) p). (If 
this is not the case, choose entry br(i+ 1),p instead of entry bqp.) T h e  minimality 
of bqp and the construction of matrix B imply the existence of a shortest path 
from 1 to q with the final edge (p,  q). Thus dq = dp + Cqp and dq < dj for all 
i + 1 < j  < n. From bqp -< br(i+l),p it follows that Cqp < Cr(i+l),p or, equivalently, 
that Cpq < Cp,r(~+l) (C is symmetric.) The total monotonicity of C implies the 
inequality Ci+ l,r(~+ l) > ci+ l, q. On the other hand bi+ l,r(i+ l) ~ bi+ l, q since (i + 
1, r(i + 1)) is the leftmost minimum entry in row i + 1 of matrix B. Combining 
these two inequalities we get that dr(i+l)+Ci+t,r(i+l)<dq-~-Ci+l, q and that 
dr(i+ 1) < dq. But this contradicts the fact t h a t  dq <_ dr(i+ 1). 

Case (iii): 1 < p  < i and i + 1 < q < n: Assume t h a t  bpq corresponds to the 
minimal edge crossing the cut and that bbp -< bqp (otherwise we exchange and 
are done). This implies that dp =dq + Cpq and since bqp < bpq, Cpq > 0 and 
dq < dp. On the other hand, since the node p is already connected to node 1 
(and this can only be done by a shortest path), we have that the path from 1 to q 
would have a length of dp + Cpq > dp > dq, a contradiction. 

Thus, in the final step we obtain an undirected tree which corresponds to a 
minimum weighted 1-to-all shortest path tree. After directing it we are done. 

Acknowledgement 

We would like to thank Katja Wolf for careful reading of a first version of this paper. 



Spanning Trees and Shortest Paths in Monge Graphs 119 

References 

[1] Aggarwal, A., Klawe, M. M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a 
matrix-searching algorithm. Algorithmica 2, 195-208 (1987). 

[2] Burkard, R. E.: Special cases of the travelling salesman problem and heuristics. Acta Math. 
Appl. Sin. 6, 273-288 (1990). 

[3] Burkard, R. E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discr. 
Appl. Math. 70, 95-161 (1996). 

[4] Burkard, R. E., Deineko, V., van Dal, R., van der Veen, J. A. A., Woeginger, G. J.: 
Well-solvable cases of the TSP: A survey. SFB-Report No. 52, SFB 'Optimierung und 
Kontrolle', Institute of Mathematics, University of Technology, Graz, Austria, December 1995, 
submitted for publication. 

[5] Dijkstra, E. W.: A note on two problems in connection with graphs. Numer. Math. 1, 269-271 
(1959). 

[6] Floyd, R. W.: Algorithm 97 (Shortest Path). Comm. ACM 5, 345 (1962). 
[7] Fredman, M. L., Tarjan, R. E.: Fibonacci heaps and their uses in improved network optimiza- 

tion algorithms. J. Assoc. Comput. Mach. 34, 596-615 (1987). 
[8] Gabow, H. N., Galil, Z., Spencer, T., Tarjan, R. E.: Efficient algorithms for finding minimum 

spanning trees in undirected and directed graphs. Combinatorica 6, 109-122 (1986). 
[9] Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning trees and shortest-path 

trees. Algorithmica 44, 305-321 (1995). 
[10] Klein, P., Tarjan, R. E.: A randomized linear-time algorithm for finding minimum spanning 

trees. Proc. 26th Annual Symposium on Theory of Computing, pp. 9-15 (1994). 
[11] Pferschy, U., Rudolf, R., Woeginger, G. J.: Monge matrices make maximization manageable. 

Oper. Res. Lett. 16, 245-254 (1994). 
[12] Prim, R. C.: Shortest connection networks and some generalizations. Bell System Tech. J. 36, 

1389-1401 (1957). 
[13] Supnick, F.: Extreme Hamiltonian lines. Ann. Math. 66, 179-201 (1957). 
[14] Wilber, R.: The concave least-weight subsequence problem revisited. J. Algorithms 9, 418-425 

(1988). 

T. Dudfis 
R. Rudolf 
Institut fiir Mathematik B 
Graz 
Steyrergasse 30 
A-8010 Graz 
Austria 
e-mails:{dudas, rudolf}@opt.math.tu-graz.ac.at 


