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CONTRACTION 	 MAPPINGS IN THE THEORY UNDERLYING 
DYNAMIC PROGRAMMING* 

ERIC V. DENARDOf 

1. Introduction. This article formulates and analyzes a broad class of optimi- 
zation problems including many, but not all, dynamic programming problems. 
A liey ingredient of the formulation is the abstraction of three widely shared 
properties of optimization problems. These properties are called the "contrac- 
tion," "monotonicity," and "N-stage contraction" properties. The contraction 
property is satisfied by Shapley's [16] stochastic game and was used by him in a 
related manner. Other models which satisfy the contraction property include 
many of Bellman's [l] dynamic programming models, Karlin's [14], Howard's 
[12] and Blacltwell's 121, [3] discounted dynamic programming models, and 
many of the sequential decision processes in [5]. The N-stage contraction prop- 
erty is a weakened form of the contraction property. I t  also encompasses some 
models of Derman [7], Derman and Iclein [8], Eaton and Zadeh [9], and many 
N-stage dynamic programming problems. Each of the models cited above satis- 
fies the monotonicity property. Hence, the formulation encompasses the models 
of several authors and provides further insight into the class of problems which 
satisfies Bellman's [ I ]  l'rinciple of Optimality. After completing the devclop- 
mcnt, the author came across a paper of Zachrisson [17] which exploits order- 
preserving contractions in the analysis of a stochastic game. 

"l'olicies" are introduced, and, for each policy 6, a return function, v p  ,is defined 
in a natural manner. A maximization operator A is introduced, and A is shown 
to inherit the contraction property. The fixed-point theorem for contraction map- 
pings assures that the equation Av - v has a unique solution, v*. An optimal re- 
turn function Sis defined by f = sups v~ . If the monotonicity and contraction as- 
sumptions are both satisfied, we conclude that v* = f .  I'olicies whose return func- 
tions approximate v* are shown to exist, and a sufficient condition is provided 
for the attainment of v* by some policy. Similar results are obtained for the case in 
which the monotonicity and N-stage contraction assumptions arc both satisfied 
siniultaneously. 

Three techniques are provided for determining (or approximating) the fixed 
point v* and for finding policies whose return functions attain or approximate 
v*. The first is the method of successive approximations of mathematical analysis; 
it exploits only the contraction assumption. For the case in which both the 
N-stage contraction and morlotonicity properties are satisfied, we provide equiva- 
lent inathematical programmirlg forniulatiorls and a generalization of one of 
Howard's [12] policy improvement routines. Certain issues concerning history- 
remembering decision procedures and randomized policies are resolved. 

The five examples in $8serve as illustrations and applications of the develop- 
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ment. It might help explicate the notation to refer occasionally to the examples, 
especially Example 1, as one proceeds through the text. Apparent integrability 
issues in Rlacltwell's [3] and Jewell's [13] models are circumverlted in Examples 3 
and 4. Salient facts about metric spaces and contraction mappings comprise the 
Appendix. 

2. A contraction assumption. Some terminology is now introduceti. I3xamples 
are provided in $8.Let i2 be a set. An element of Q is called a poznt and is often 
denoted by x. Associated with each point x is a decision set L), . An element of D, 
1s called a decision and is often denoted by d, . The polic~j space A is defined as the 
Cartesian product of the decis~on sets, i.e., A = x,,~l),. An element of A is 
called a policy and is often denoted by 6. Then, a policy can be interpreted as a 
decision procedure whlch specifies a decision for each point. Furthermore, any 
such combination of decisions constitutes a policy. 

In order to introduce the return function, let V be the collection of allbounded 
functions from Q to the reals, i.e., v t V if and only if v :Q --, reals and 
s ~ p , , ~ ~I v(x) j < rn . A metric p on V is defined by p(u, v) = sup,,n / 4 2 )  - v(x) 1. 
The space V is complete In this metric. 

Let h, the wturn, be a funcilon ascribing a real number to each triplet (x, d, , v) 
with x t Q. d, t D, and v t V. One m~gh t  think of h(x, cl, , v) as the total payoff 
for "starting" at point x and choosing cl, with the prospect of receivingv(z) ifthe 
pair (x, d,) causes a "traniition" to point x. (Whether v(z) could be realized by 
any policy is immaterial; h(x, d, , . )  describes what the pair (x, 11,) yields as a 
function of m.)  Thc important contraction assumption is now introduced. 

C O N ~ ~ R ~ C T J O NASSU~~PTIOU.FOT 0 (= CSOliZe C ~ati~j"7jing < 1, 

/ h(x, d, , ZL) - h(x, cl, , v)/ 5 cpiu, v )  

joy each u ( V, v E V, .c t i2 and d, t D, . 
The contraction assumption 1s satisfied by Shapley's terminating stochastic 

game [ICii,by Howard's [12], 13lacl<well's [3], and Jewell's 1131 discounted dynamic 
prograinmirrg models, as we ver~fy in $8, and by Rellman's "type 2" equations in 
[I, Chap. IV]. A slightly wealter version of the assumption, introduced subse- 
quently, also encompasses models of Derrnan ['i],Eaton and Zadeh [9],and certain 
N stagc sequential decision processes [GI, [8]. 

To verify that a corltractiorl mapping is implicit in the contraction assumption, 
let 6, denote the dec~ision in 6 which applies to point x. For each 6 t A, a function 
IIaI-ravmg tiomsin V :~ntlra~rge :~ssumed to be corltairl~d in V ii defined by 

(1)  [fIa(v>l(x) = h(x, 6 2 ,  v ?  , 
where Ha(v) is the elemer~t of V which Ha assigns v, and where [IIa(v)](x) is the 
real numbcr which the function lIa(v) associates with the point x. The contraction 
assurliption is equivalent to the following: for some r satisfying 0 _I r < 1, 
p[Hau , IJav] 5 rp[u,v] for each u ( 8,v E V and 6 C A. Hence, Ha is a contraction 
mapping [lo], and the fixed point theorem for contraction mappings guarantees 
that ET8 has a uruyue l~xed point v, . That IS, for each policy 6 there exists a unique 
elelllent va of V such that 

( 2 )  vaj.~)-- h(x, 6,, va) for each x C Q. 
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The function vs is called the return junction of the policy 6. Since we have not 
assumed that the process has a "starting point7' from a definitional viewpoint, an 
argument like the above is required to preclude the possibility that no or several 
216 satisfy (2). The optiw~um return function f is defined hy f ( z )  = supsEAvs(z). 
The following simple inequality will prove useful. 

THEOREM1. Suppose the contraction assuttlption i s  satisjiecl. For any 6 C A and 
any v E V, we have p(vs, v) 5 ~ ( H s v ,  v) / ( l  - c). 

Proof. The triangle inequality implies that 

Since p(Hsnv, US) '0, one has ~ ( V S ,  -v) S p(Hsv, v) / ( l  c), the desired result. 

3. A maximization operator. Next, a map A having domain V is defined by 

for each v E V and x E Q. We assume that the range of A is contained in V. 
Theorem 2 verifies that A is a contractiorl mapping. 

THEORKM2. Suppose the contraction assunzption is satisJiec1. For each u F 8and 
v E 8 ,  we have p(Au, Av) 5 cp(u, v). 

Proof. Consider arbitrary u, v and z, and write ( Au) (x) = ( Av) (x) + lc. Con- 
sider the case k > 0. For each positive integer n, let d," be an element of D, such 
that h(x, dZn, u )  2 (Au)(x)  - lc/n. Clearly, (Au)(x)  - lc/n 2 (Av)(x) 
2 h(x, clZn, v), the last by definition. Combining inequalities yields 

0 5 (Au)  (x )  - (Av)(z) - k/n 5 h(x, clZn, u )  - h(z, dZn, v) 5 cp(u, v). 

Since the preceding is true for each n, 1 (Au) (x )  - ( Av) (x)  1 5 cp(u, v) ; this in- 
equality is trivial for k = 0 and similarly established for k < 0, conlpleting the 
proof. 

An early and important paper of Shapley [lli] was apparently the first to use 
contraction mappings in a relsted setting. The fixed-point theorem guarantees 
that A has a unique fixed point, i.e., that there exists exactly one element v* of V 
such that 

(4)  u*(x) d z , v*) for each z E Q.= S U ~ ~ , ~ D ~ ~ ( X ,  

Equation (4) is, in rather gc.txeral notation, a "functional equation" of dynamic 
programming. Two relevant questions are whether v* is approximated (or at- 
tained) by the return functiorl vs of some policy and whether v* is the optimal 
return function, i.e., whether v* = f. Existence of policies satisfying p(vs , v*) 5 e 
is demonstrated next. An assumptior1 sufficient for v* = f IS introduced in $4.' . 
Without that assumption, one may have v* < $, in which case interpretation of 
v* is an open question. The choice of maximization in defining A was arbitrary; 
Theorem 2 holds with (Av)(z) = infdZ h(x, cl, , v). 

COROLLARY1.FOTe > 0, there exists a policy 6 such that P[H~(U*),  -v*] 5 i;(l c) ,  
ancl any such 6 satisJes p(vg ,v*) 5 E. 1f p[~$~(v*), v*] = 0, then ~6 = v*. 
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* * Proof. For E > 0, existence of a policy 6 such that p[Ha(~ ), v ] 5 € ( I  - c) 
follows directly from (4) .  Substituting v* for v in Theoreni 1 yields p(vs , v*) 
5 P[H~(v*),v*]/(I - C) 5 E for E 2 0 

Corollary 2 is established by noting that extrema of continuous functions over 
compact sets are attained and then applying the last part of Corollary 1. We note 
that this approach to Corollary 2 circumvents the usual recourse to 
Tychonoff's theorem. 

COROLLARY2. Suppose for eachJixed x that h(x, .,v*) is a continuous function of 
(1,  in a topologyfor zuhich D, is conlpact. Then there exists a policy 6 such that ve = v*. 

With B as an operator on V, define the modulus of B as the smallest number 
c such that p(Bu, Bv) 5 cp(u, v) for each u, v in V. 

With I as an arbitrary nonempty set, suppose (B,:a: E I) is a collection of 
operators on V each of which has modulus c or less, define the function E having 
domain V by (Ev) (x )  = sup,,, (B,v) (x) ,  and suppose that E has range con- 
tained in V. Then an argument similar to that for Theorem 2 establishes that E 
has modulus c or less. 

4. A monotonicity assumption. The assumption given below suffices for v* 
and f to be identical. For u, v F V, we write u L v if u(x) 2 v(x) for each x, and 
u >  v i f u  z v a n d u  # v .  

MONOTONICITY If u 2 v, then Ha(u) 1 H ~ ( v )ASSUMPTION. for each 6 E A. 
A monotonicity assumption was introduced by Mitten [15], and monotonicity 

assumptions were further developed in [5]. A host of return functions, including 
the examples of $8, satisfy the monotonicity assumption. The assumption is 
equivalent to h(x, d, ,u )  2 h(x, t i , ,  v) if u 2 v. 

THEOREM3. Suppose the monotonicity and contraction assumptions are satisfied. 
Then v* = f. 

Proof. From Corollary 1 we know v* 5 f. Since H ~ V *  5 v* for each 6, recursive 
application of the monotonicity assumption yields Hsnv* 5 v* for each n. Since 
P ( ~ ~ n ~ * ,2)s)30, one has v~ 5 v* for each 6. Since f(x) = sup8 v ~ ( x ) ,  this implies 
f 5 v* and completes the proof. 

Theorem 3 concludes that the solution to (4) is unique and is f,  the optimal 
return function. A policy 6 is called e-optimal if p(v6 ,f )  5 e and optimal if va = f. 
Corollary 1 and Theorem 3 demonstrate existence of an e-optimal policy and 
Corollary 2 gives sufficient conditions for existence of an optimal policy. 

A return function satisfying the contraction assumption and violating the 
monotonicity assumption is h(x, d, ,v) = -v(x)/2. 

If the sequence {v,], n = 0, 1, . . . , satisfies v, 2 v,-1 for each n, we write 
(v, J T .Lemma 1 contains useful consequences of the monotonicity assumption. 

LEMMA1. Suppose the nzonotonicity assunzption is satisfied. If u 2 v, then 
Au 2 Av. If Av 2 v, then (Anv) T .If HJV2 v, then {Hanu) T . 

Proof. By definition, Au 2 Hsu. Suppose u 2 v. Then, H ~ u2 Hsv, implying 
Au 2 H ~ vfor each 6; hence, Au 2 Av. If Av 2 v, then recursive application of the 
preceding statement yields (Anv) T . If Hgv 2 v, then recursive application of the 
monotonicity assumption yields (Hanu]1' . 
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5. An N-stage contraction assumption. For a map B of V into itself to have a 
unique fixed point, it suffices that B~ be a contraction mapping for some posi- 
tive integer N. This suggests a slightly weakened form of the contraction assump- 
tion, which we shall use only in conjunction with the monotonicity assumption. 

N-STAGE CONTRACTION For each 6, the operator HaN has ~nodulus ASSUMPTION. 
c or less, where c and N are independent of 6 and c < 1. Further~~ore, for each 6, Ha 
has modulus 1or less. 

The contraction assumption is satisfied by discounting future returns or by re- 
quiring a positive probability of termination from ever!/ point. For some problems, 
the probability of termination is nonzero from a proper subset S of 9; however, 
every ergodic class of points contains at  least one element of S. Aaost such models 
satisfy the N-stage contraction assumption. N-stage processes which evolve prob- 
abilistically also satisfy the N-stage contraction assumption. 

As before, we assume that the range of A is contained in I.'. Define vs as the 
unique fixed point of the contraction mapping 13sN; it follows that vs is the unique 
fixed point of Ha . Since Ha has modulus 1or less, the triangle inequality implies 
p(HaN v, v) 5 Np(Hsv, v). Hence, as inTheorem 1, p(vs , v) 5 p(Hav, v)N/(l  - c). 

Next, definej" by f (x)  = sups vs(x). Toward showing f C V, define the function 
E having domain V by (Ev) (x) = (x). Since I l a N v  5 Ev 6 ANv,sup8 ( H ~ ~ v )  
the last by the monotonicity assumption, I3 has range contained in V. Then, the 
N-stage contraction assumption and observation at  the end of $3 suffice for E to 
be a contraction mapping. Let v* be the unique fixed point of h'.Since H ~ ~ V *  5 v*, 
one has vs v* for each 6, implying f 5 v*. Hence, f E V. Parts (a)-(c) of the 
following theorem have just been established. Proof of (d)  and ( e ) is postponed 
until after Lemma 2. 

THEOREM4. Suppose the monotonicity and N-stage contraction assunzptions are 
satisfied. Then : 

( a )  va is the unique $xed point of Hs ; 
( b )  P ( V ~, v) S ~(Hav,  v)N/(l - C); 
(c) E is a contraction mapping of nzodulus. c of. less; 
(d)  f is the unique fixed point of h' and of A ;  

( e l  if v i f, then p(ANv, f )  6 CP(V,f ) .  

Lemma 2 will prove useful both for Theorelm 4 and for the optimization schemes 

in the next section. We shall prove only ( a ) ,  since (b)  and ( c )  are obvious. Let i 
be the unit function from 9 to the reals defined by i ( x )  = 1 for each x in 9. 

LEMMA2. Suppose the monotonicity and N-stage contraction assu~izptions are satis- 
jied. Then: 

( a )  if Av 2 v, then v 2 f ;  if Av 2 v, then v 5 f ;  
(b) Avs 2 vs for each 6 in A; 
( c )  if H ~ v  2 v, then vs 2 Hsv. 
Proof of Lemma 2. First, suppose Av 2 v. Then, Hsv 6 v for each 6, implying 

B a n v  6 v for each n. Hence, vs v for each 6, implying v 2 f. 
The other half of (a)  is more difficult. First, since Af 2 IYaf 2 Hsvs = va for each 

6, one has Af 2 f. Suppose Av 2 v. Define u by u(x) = max {v(z), f (x ) ) .  Then, 
Au 2 Av and Au 2 Af, implying Au 2 u. For arbitrary positive E, pick 6 such 
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that Ifau 2 Au - ti.Claim: Han(Au) 2 Au - nei. Since Au 2 u, the claim is 
true for n = 1. Suppose it is true for n. Then H~"+'(Au) 2 Hs(Au - nd) 
-2 I-ls(ilu) - n t i  2 Au - ( n  + 1)t i ,  completing an inductive argument. Since 
us 5 f 5 u 5 Au, the N-stagc contraction assumption assures HsN(Au) 5 vs 
+ cp(Au, vs)T. Combining inequalities, 0 5 Au - us 5 [Nt + cP(Au, va)]i. Sup- 
pose Au > f'. Then take t = p(Au, va)(l - c)/2N. By substitution, p(Au, vs) 
I- p(Au, vs)(l $- c)/2 < p(Au, us), a contradiction. Hence, Au = f and v 5 f 
as desired. 

ProoJ'oj I'heore~la 4. Parts (a)--(c)  are established. As noted previously, AJ' 2 f. 
Then rl (Af) => Af and the first part of Lemma 2 implies Af 5 f. Hence, AJ = f. 
If Ag = g, then T,emma 2 implies g = f ;  hence f is the unique fixed point of A. 

We havc established J' 5 v*. Toward showing v* = f ,  define u by u(x) 
= maxoin<N ( A  "v*)(z). Then, Au _2 Anv* for I 5 n 5 N. Since ANv* 2 EV* 
= v*, one has Au 2 u. Hence, by Lemma 2, u 5 f ,  implying v* 5 f. Hence v* = f. 
For ( e ) ,  note that ANv 2 Ev. If v 5 f, then Ev 5 A"v 5 f = Ef,implying 
p(ANv,f )  5 p(F:v, EJ) 5 cp(v,j ) .  

Part of thc N-stage contraction assumption is that Ha has modulus 1 or less. 
Similar results hold if for fixed finite In each Ha has n~odulus nr or less, the only 
difference being that p(va, f )  5 p(Hsv, v ) ( l  + m + . . .  + mNP1)/(l - c). An 
exarl~ple in which the modulus of H6 is 2, hut the modulus of HJ' is a, is given by 
0 = { l , 2 ] , n i= D2 = { o ] , u  = ( u i , ~ ~ ) , H o ( u i , ~ z )(2uz,u1/4).= 

We 11ow strengthen the hypothesis of Theorem 4 in a manner which suffices 
for rl" to be a contraction mapping. First, let rr denote a sequence of N policies, 
i.e., T = (6i , 6s , . . . ,6N), and define the operator B, on V as the composition of 
the N operators Ha, , i.e., R, = Hs,Hs,-, . . . Ha, . We now strengthen the 
N-stage contraction assumption by replacing the condition that, for each 6, ~8~ 

has modulus c or less by the more restrictive condition that for each rr the operator 
11,has modulus c or less. Note that (Amv)(x) = sup, (B,v)(x); hence, by the 
observation in $3, A" is a contraction mapping of modulus c or less. 

For an example satisfying the N-stage contraction assumption but not its 
strengthened form, let 0 = {a) ,I) ,  = { 1, 2, . . . ]  and h(a, n, v) = max (v/2, 
nlin [n + I ,  v - n]). Tlie monotonicity and N-stage contraction assun~ptions are 
satisfied with N = 2 and c = 3. Also, Av = max {v/2, maxli,<, [min ( n  + 1, 
v - n) ] ) .  Kote that An(2" + 1 )  -An(2") = I for eachn; in fact, An has modulus 
I for every n. R. Strauch of The HAND Corporation first indicated to the author 
some of the difficulties attendant on the N-stage contraction assumption. 

6. Optimization schemes. This section contains three techniques for approxi- 
mating (or determining) v* and for finding policies whose returns approximate or 
attain v*. One technique is an application of the method of "successive approxi- 
tions" 1101 of mathematical analysis, the second technique provides general 
mathematical programming equivalents, and the third generalizes one of 
Howard's [12] policy improvement routines. 

The first technique exploits the contraction assunlption, but not the mono- 
tonicity assumption. Suppose the contraction property is satisfied. Theorem 2 
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implies that p(Anv, v*) +0 for any v; this means that v* can be approximated by 
successive applications of A to ally initial vector vo . Let v, = Anvo for n 2 1. We 
now compute a bound on p(v, , v*). Since ~ ( v , ~  , v*) i0, one has p(v, , v*) 
5 x:=lP(V,+%; vn+t-l) 5 c ' P ( ~ ~ + I  = , vn)/(lE:=o , 11% P ( V ~ + I  - c). Since 
p(~,+k,  v*) 5 c p(v, , v*), one has p(v, , v*) 5 ( C  

n-a+1 
p(v,-~, v*)]. De- 

fineEn recursively by& = p(v1 , vo)/( l  - C) and E, = min {clj,-l , p(v, , v,-l)c 
/ ( I  - c ) ). Combining the above inequalities yields ~ ( v ,  , v*) 5 E, for n 2 1. 
Suppose v, = Hav,-l . Then, p(vs , v*) 5 p(vs , v,-1) + p(v,-1 ,v*) 5 2p(v, ,v,-l)c 
/ (1  - c) .  Charnes and Schroeder [4] suggest bounds along these lines for a 
stochastic game. If the N-stage contraction (for N > 1 )  and monotonicity as- 
sumption are satisfied, Theorem 4 assures p ( ~ ,  ,f )+0,providing vo 5 f. lVIethods 
similar to the above yield bounds for p(v, ,j )  and p(vs ,f )  in this case as well. 

If the rnonotonicity and N-stage contraction assumptions are both satisfied, 
policy improvement schemes and mathematical programming formulations :Ire 
available. In  the ensuing, interpret "min v" ("max v") as the function whose 
value at  x is the smallest (largest) value of v(r)  over those v7s satisfying the con- 
straint. Consider the following two mathematical programs : 

I'rogram I I'roy ram I2 
lnin v max v 

subject to subject to 
Av 5 v. Av 2 v. 

Since AJ = J, J is feasible for both programs. By part ( a )  of Lemma 2, j is optimal 
for both programs. Of course, if fl contains finitely many points, "min v" is equiva- 
lent to minimizing EZcnv(z) or any other positive combination of the v(rc)'s. A 
linear programming formulation for Example 1 ( $ 8 )  was first obtained by 
D'Rpenoux [6].Derman and Klein [S] obtained a programming formulation for an 
N-stage 1VIarBovian process, also a special case of the above. 

Though the two programs 1001~similar, I'rogram 1has an inherent advantage. 
I ts  constraint is satisfied if and only if h(x, (1, , v) S v(x) for each .e and (1, , while 
Program 117s constraint is satisfied if for every L one has h(x, d, , v )  2 v(x) for 
at  least one il, . Hence, Program I can be written equivalently as "min v subject 
to h ( z ,cl, , v) S v(x) for each .?: and (1, ." 

Next, Howard's policy improvement algorithm is generalized. Suppose the 
rllorlotonicity and N-stage contraction assumptions are satisfied and that Av is 
attained for each v; i.e., Av = f I y v  for some policy y which may depend on v. The 
"n" in the policy improvement routine given below may be any positive intcger. 

( 1) 	Pick any initial 6. 
(2)  Calculate vs . 
( 3 )  	Calculate u = An-lvs , then v = Au = II,u. 
( 4 )  	If p(u, v) > t, replace 6 by y and go to Step 2. If p(u, v) 5 t, calculate 

v, and stop. 
Leinmas 1 and 2 imply v~ 5 A"-'V~= u 5 Au = Hyu 5 vy . If N = 1, i.e., if 

the corltraction property is satisfied, then p(v, , j )  5 cnp(vs, j )  by Theorem 2. 



172 ERIC V. DENARDO 

If N > I ,  one starts with 6 and iterates Steps 2 through 4 enough times to assure 
N applicatiorls of A ;  the resulting policy, (, satisfies p(vt ,j )  5 cp(vs ,f ) .  Hence, 
p(v8 ,j )  -> 0. Then, the process terminates in a finite number of iterations. The 
final policy y satisfies v, 2 u, implying p(v? , j )  =( p(u, f )  5 eN/(l - c). 
Howard's policy improvement routine is the above with n = 1,t = 0 and applied 
to Example I. Calculating va is called "policy evaluation", and finding y is called 
"policy improvement." If calculating Av is far quicker than determining va ,then 
setting n > 1 might improve the speed of the algorithm; n might also vary 
(adapt) during the progress of the algorithm. The amount of computation re- 
quired to compute vs may depend on the value of n chosen; for example, in 
Howard's problem, more pivoting may be required for n > 1. I n  Example 2, 
calculatirlg v~ amourlts to solving Example 1 and determining Av requires solvir~g 
M zero-sum, two-person games. 

7. Symmetries. Somewhat loosely, a "history" of a point L is a sequence of 
prior points, decislorls and transitions which ended with a transition to point 2.  

A ''history-rememberire decision procedure is one in which the decisiorl rl, 
selected for L car1 depend on the history of x. Carl history-remembering decision 
procedures increase the optlmal return function? Theorem 5 answers "No" to 
this questiorl in rather a general setting. We comment that while this result is 
intuitively clear for Example 1, one's intuition may be less certain for stochastic 
games (Example 2) in ~vhich the ergodie classes depend on the strategies chosen. 
History-remembering decision procedures were considered in [3], [ 5 ] ,[7], [8], and 
[lG I .  

The history-remembering decisiorl procedure may be thought of as resulting in 
a separate problem whicah contains considerable internal symmetry. Certain 
processes in which history is not remembered still contain corlsiderable internal 
symmetry. For instance, Example 4 "loolis the same" from poirlts ( i ,  t )  and 
( i ,  t') differing only in time. Theorem 5 also demonstrates that Example 4 is 
essentially the same as Example 1. 

Consider two optimization problems-problem U and problem P-of the type 
wc. are discussing. Problem I j  is described using urlprimed notation-e.g., 0, D, , 
14 etc., and problem P is described using primed notation-e.g., a', D,',h', etc. 
Suppose O' = Uqo L ,where (&/,in is a collection of nosempty pairwise dis- 
joint subsets of a . Roughly, Ex is the subset of O' containing those points which 
are "equivalent" to x; it may correspond to the various histories of x. Let e be the 
nlap of V into V' defined by [e(v)](x) = v(x) for each x t E, arid each r. 
Roughly, the furletion e maps v into that functiorl whose value is v(x) at each 
point which is equivalent to x. Problem I' is said to be gene~aterl from problem U 
if, in addition to the above, ( i )  D,' = D,for each x C & and each x, and (ii) 
h'[x, (1, ,e(v)j = h(x, d, ,v) for each x C Ex,each 2, d, , and v. I t  is convenient to 
irltroduee the map w of A into A' defined by [w(6)], = 6, for each z C Ex, each x 
and each 6. The proof of Theorem 5 is routine and is omitted. 

THEOREM5 .  Let problem I' 
satisfies either ( a )  the contraction assumption or ( b )  both the N-stage contraction and 
the i~ionotcmicity assumptions. Then, problem U satisjies the same assulnption(s) 

1' anrl suppose problem Ube generated f m n  problem 
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an(/ has a uniqu~jizerl point v*. Fmthert,rore, eiv*) is tihe uniquejizpd point oJ prob- 
lenl l', and p[v,(,~~,~ ( v * ) ]= p(v8 ,v*) jor each 6 i A. 

In other words, the fixed points for problems I j  arid I' are essentially the samc, 
and a pollcy 6 whose return approximates or attains a* has an equivalent policy 
4 6 )  whose return approximates or attains e(u*). Thus, for the purpose of deter- 
mining frxed points and c-optimal policies, one can study problem [J rather than 
the inore cornplex problem 3'. 

A pair of related problems also results from considering raridomized (un- 
primed) and nonrandomized (primed) decisions. In  this case, one has Q = Q', 
V = V' and D,' c D, , since the nonrandomized decisions are a subset of 
randomized ones. Suppose, as is the case in [3], 151, 171, and 181, that for each c!, in 
D, and each v in V there exist (1,- t D,' and cl,+ E D,' such that h(x, d,-, v )  
5 h(x, d, , v) 5 h(x, a,+, v). We note specifically that this coriditiorl does not 
hold for zero-sum, two-person games, e.g., Example 2. If the condition does hold, 
the11A = A', implying that the fixed points of the primed and uriprimed prob- 
lems are identical. 

Suppose the N-stage contraction and morlotorlicity properties are satisfied. Lct 
A* be the collection (perhaps empty) of all optimal policies, i.e., 6 C A* if and 
only if v~ = j. Let D,* = {d, t D,:j(z) = h ( ~ ,d, ,j ' ) ]  and let A+ = xzCrJlz*. 
We now show that A* = A'. If 6 C A+, then HJJ = j', implying v~ = f ;  hence, 
A ' c A*. If 6 f A+, then Hsf < f, implying us < j; hence, A+ = A*. Should A* 
contain several policies, one can use this result to  optimize on a secoildary criterion 
with D, replaced by D,*. 

8. Examples. As illustrations of various aspects of the development, models of 
Howard [12], Shapley [16], Blacl~well [3], Jelvell [13], and ITOX [I l l  are now re- 
vlc~ved. Tllese examples by no means exhaust the possibilities; the theory covers 
many finite-stage processes, no11station:zry processes, variations :~nd combiria- 
tions of the above models, and a diverse array of other return functions. 

Exarllple 1 (Howard's [12] Infinite-Horizon Discounted i\ilotlel). The state 
space, Q, corlsists of the first n integcrs. The decisions available at state (point) 7 

constitute a finite set and are numbered consecutively, 1, 2, . . . , flf, . A policy 
is thcn an n tuple (kl , kz , . . . , k,), where lc, is the decision relating to statc z 
and I 5 16, 5 d/l,.The process has an in~inecliate reward r ( i , Ic) depending on thc 
state and the decision, a discount factor c (0  5 c < I )  affecting future returtls, 
and a set of transition probabilities governing the evolution of the process. T,et 
l1[.j: L ,  I,.] be the probability of a transition to state j given state i srld decision li.. 
Hcncc,!] = \1 ,2 ,  . . .  , n J , D ,  = (1 ,2 ,  . . .  ,Af,) ,and 

n 


h(i, Ic, v) = r(i ,  I;) + c P[j:i ,  lc]v(j). 
1=1 

Thc contractiorl assumption is satisfied, sincsch 
L 


I h(i, k ,  u )  - h(i, Ic, v)l = c 1 P[.j:i, k].[u(j) - v(j)]l
j=1 
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"1VCIl,'Let p[nt:i, j, n] bc the probability that the next game played is game m, 

If u 2 v, then c xy=l c x,"=lP[j:i, ?i]u(j) 2 P[j:t, lc]v(j), implying h(i, k ,  u )  
2 h(i,  k ,  v), or that the monotonicity assumption is satislied. -

Ezanzple 2 (Shapley's [lli] Stochastic Game). Let Q = 11, 2, . . . , M),  where 
poirlt n is thought of as the nth of :I, collection of M zero-sum two-person 
rectangular gamcs. I'lay rnovcs from game to game, everltually terminating, with 
a payoft' from I'lsyer I1 to I'laycr I at  each play. Giver1 that game 11 is bcirlg 
played, the strategies choscrl by Players I arld I1 determine ( i )  the expected 
value of the immediate payoff from Player I1 to Player I,  and (ii) the prob:zbility 
l:nv dctermirlirlg whether another game will bc played and, if so, which gsmc will 
be played next. Player I is presumed to maximizc his minimum gain; I'layer I1 
minimizes his maximum loss. 

Let r,", be the immediate payoff from I'layer I1 to Player I if they play game n 
and choose pure strstcgics j and i,rcspcctively, with 1 5 i 5 M ,  and 1 5 j 5 ?n, . 

thst game n is now played, arld that pure strategies i 2nd j are chosen by Players 
I and 11, rcspcctively. Assume xiLL1p[,n:i, j, n] 5 c < I lor cach i, j ,  arld 1%. Let 
pn ((1%) be a random~zed strategy for I'laycr I (11) for game n, where p," is, for 
instance, the probsbility that Player I chooses pure strategy i for gamc n arld 
whcrc x21p," = 1. With strstcgics p" and q" for gamc n, and with v :IS the 
terminating reward function, the one-stage cxpcctcd rcturrl function h is given 

by 

h(n, pn, qn, v) = 4- 3,  n] .v(m)) .  I),7LqJ7L(r:J ~ [ I I L : ~ ,  
1 3  m 

Note that with fixed n and v, the above is the payoff function of :I, rectangular 
gamc whose i , j th  entry is the tcrm 111the brscltcts, "( ) ". Hence, by the minimax 
theorem lor rectangular gamcs, an operator R on V is delined by 

(Bv)(n)  = nl:rx ir l i r l  k(n, p ,  q, v) = mirl max h(n, p, q, v ) .  
11 'I 4 1J 

Let D, and 0, bc the scxts of :dl rarldomizstions over (1, 2, - .  . , il/l,,j : ~ n d  
{ I ,2, . . . , m,] , respectivc4y. Tlcl A = X :&D, and fl = X z=lO, ,with S ( A and 
T i 11. (Then, 6 1s an Ill-tuple of probability distributions.) Deline the oper:ltor 
1 1 a , ,  on I/'by [118,,(v)l(n) = h(n, 6,, T,, v). For cnch fixed 6 arld T, IIa,, 
obeys the corltrsction assumption and, hence, is a contraction mapping; let vs ,he 
its fixed point. 1)efinc Ng by (1160) ( n )  = min, [Hs,,(v)](n). Theorem 2, though 
minimizing instead of maximizing, guarantees thst Hg satisfies the contraction ss- 
sumption for each 6. Thcn, noting thst (Bv)(n)  = msxa (TTgv)(n) and reapply- 
ing Thcorcm :!assures that B has a urliqu~ fixed point. Clearly, IIa,, satisfies the 
monotoilicity assumption. Thcn, is the unique solution of the followirlg: 

( a )  v(n) = max, min, h(n, p, q, v) for cach n, 
( b )  v(n) = min, mnx, h(n, p, ,r, v )  lor cach n, 
( v ) .f = maxg min, ZJ,, ,, :111(1 
( t l )  .f = min, msxs us ,. 
Two applications of Tllc.orem .? sct tlc issues concerning history-remembering 

pohcies. In  the policy improvcmcilt routinc in $6, calcul:~,ting vs amoilrlts to 
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solvirlg Example 1,arld calculating Au amounts to firldirlg the valucr of cach of df 
rectangular games. 

Eznnzple 3 (Blsckwell's [3] Disco~lrltcd Dynamic Programming A\Iodcl). This 
cxamplc differs from Shaplcy's model in that IJlaycr I1 is a dummy (plays :L Gxcd 
stratcgy) and in that Q rlccd not be Gnitc or even countable. Blscli~vcll [3] deals 
directly with certain troublesome integrability Issues; wc circumverlt these by 
introducing an opcrator + which is the same as the integral if thc irltcgrsl exists 
and which obeys the contraction and monotonicity assumj~tions whether or rlot 
thc integral exists. Let r(x, d,) bc thc cxpectstiorl of the immediate rcturrl as- 
sociated with maliing decisiorl d ,  a t  point x arld Ict p[ .  / x, d,] be thc probability 
mcasurc over 62 detcrmirlcd by the pair (x, tl,), 1~1th p[62 / z, d,] = I. With 
0 5 c < I and with K(u) = {u C V:u 2 v, u intcgr:~ble], let 

The property of + ~vhlch~ v eshall vcrify and thcrl cxplolt is that for each lixcd 1 
and tl, ,9 is subsddltivc, i.c., +(u+ v:z, (1,) 5 +(u:x, d,) + +(v:.~,(1,). Fixing 
n: arld (1, for the remaindcr of tllc discussion, wc abbrcviatc +(u:x, d,) by the 
symbol + ( u )  As dcfincd, R ( u  + v) 3 fu '  4-v' :u' >= u, v' >= v, u' integrable, v' 
~ntegrsble]. Hcncc, by sct inclusion, 

+(u  + V )  5 inf [ ~ ' ( z )+ vt(z)1 dp[z 1 X, cl,] = +(u)+ 4421). 

Then, + [ ( z L  - u) + u] 5 +(u - u) + #(v), or +(u)  - +(v) 5 +(u - 1)). AS + is 
dclincd, it may be that +(u)  # -+( -u) .  However, / +(u) / 5 sup,, fi 1 U(X)I. 
'rhcn, 

verifying that the contraction ass~lmptiorl is sat~sficd. The monotoniclty nssump- 
tion is routinely verified. Note that f might not bc mcasurablc and thst  the same 
definition of + works for both maximizing arld mirlimizirlg problcms. 

Exanzple 4 (Jcwcll's [13] Continuous-Time Infinite-Horizon Discourltcd 
i\lodel). This cxsmplc diff'crs from the preceding three in that the process evolves 
in continuous timc; other than thst,  it is similar to Example 1. The function "+" 
is again used to circumvent some integrability problems, and the model is shown 
to bc generated from Example 1, which has no integrability problcms. 

Let 62' = { 1, 2, . . . ,n] X rcals and 2' = ( i ,  t ) , with 1 5 i 5 n and t 6 reals. 
Let D,' = D:, ,~)= (1, 2, . . . ,m,],  indcpcndcrlt of t. Selection of dccisioil k from 
D,' st point ( i ,  t) causes a transition to somc state a t  somc timc grcatcr than t. 
I t  1s convenient to represent this pherlomerlon by two random variables. 1,et 
PIX, 1, = j]bc the probability that transition occurs to state j given that dccision 
lc is made a t  state i. Let P[X, ,1, < u] be thc probability that the interval of tinw 



to transition is less than u, given that the decision k is made at  state i and givcrl 
the condition thst trarlsition will occur to state j. Both X,,l, and X,,,,l, are inde- 
pendent of t; the present value at  time t (not timc 0 )  of the return from time t 
on is 

~ ' [ ( i ,t ) ,  lr, v'l = ~ ( i ,lc) + P[XiVl = j1 / vl(j,  t + u )e-mu dP[Xi,,,A< u]. 
3=1 1~10 

The above expression is technically correct only if v' is integrable. In general, w e  
' 7  

rcpl:~ce by "$" and assume dP[X, ,,I < u] .Leu5 c < 1for each i.j,  and 

k. The contraction sssumptiorl is then satisfied, and the morlotorlicity assumption 
is :gain routinely verified. 

One can readily check thst Example 4 is generated from Example 1 with 

.e a u  ,E, = { ( i ,  t) :t C reals) , and r(i ,  I c )  unchanged. Thus, Theorem 5 allows us 
to investigate the optimization problem in :L far simpler environment having :I, 

finite number of points and decisions and no integrability difficulties. Then, Corol- 
lary 2 guarantees existence of :I, stationary optimal policy for Example 4. 

Exar~zple5 (Fox's [ l l ]  Age Rcplsccrncnt with Discounting). For a particu-
larly simple example in which D,is nonfinitc, wc consider a model of "age replace- 
ment" due to Fox [Ill .  An item (c.g., a light bulb) is replaced s t  the earlier of 
( a )  a planned replacement interval, d, after installation ( a t  cost cl) and ( b )  the 
timc at  which it fails (a t  cost s) .The costs are incurred at  the replacement times. 
Restricting ourselves to planned replacemerlt intervals of at  least E, the problem 
is generated from one with D = { I ) ,  Dl = [ E ,  m ] ,  F as the failure-time distribu- 
tion, h as the present value of the irlcome stream, a as the discount rate, v as :L 

real number, and 

B ( I ,r i, U )  = ( r ,  + v ) r e d ( i- ~ ( ( 1 )j + (c2+ v) ld?-au ~I{'(u) 

for E 5 (1 5 +m . The monotorlicity sssunlption is obviously satisfied, and thc 
corltractiorl assnmption is readily verified if ~'(0') < I and E > 0. Substituting 
v(t1) both for h(1, rl, v )  and for v in thc above yields a function of one variable, d, 
which car1 be minimized by thc mcthod of successive approximations; for dctails, 
scc Fox [ l l ] .  Subsequcntly, wc shall removc thc restriction E > 0. 

Acknowledgment. l'art of thc nlatcrial contained in this articlc was developed 
at  Northwcstcrn University undcr thc vcry stimulating dircctiorl of Dr. L. G. 
Mitten, thc author's 1'h.D. thcsis sdviscr. 

Appendix. Salient facts about contractiorl mappings arc now listcd. I'roofs 
can he found in f31sgol'c [lo] and many standard texts on analysis. 

First, some terms are defined. Consider a set V. A function p mapping V X V 
to the reals is called a met~ic if ( i )  p(u, v) 2 0 for all u, v E V ;(ii) p(u, v) = 0 
if and only if u = v; and (iii) p(u, v) 5 p(u, t o )  + p(w, v) for u, v and w in V .If 



p is a metric for V ,then V is called a 71zetric space. Let A :  V -+ V .The function A 
is called a contraction / / zapping if for some c satisfying 0 5 c < 1 one has p ( A u ,  A u )  
Ic p ( u , v) for every u, v C V . The element v* of V is called afiaetl point of A if-

AV*= u*. A sccluence ( v , ) ,  n = 1 ,  2, . . . , of elements of V is c:r.lled a Cauchy  
scquencc if for every t > 0 there exists an M such that p(v,, v,,) < t for every 
771, n > M. A metric space is said to he complete if for every Cauchy sequence 
(v , ] ,  n = 1 ,  2, . . . , there exists an element v of V such that limn+, p(v,, , v) = 0. 
I;or :r. map A of V into itself the function A n  is defined recursively by A' = A4 
and A"" = A ( A n ) .  

FIXED-POINTTIXEONERI. complete metric space. S u p p o s e  for Let V DP a some 
integel. N that AN i s  a contraction m a p p i n g .  T h e n  A has  a un ique  Jxed point,  v*. 
P u ~ , t h e ~ m o r ~ ,limn,, p( Anv,v*) = 0 for a n y  v. 
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