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CONTRACTION MAPPINGS IN THE THEORY UNDERLYING
DYNAMIC PROGRAMMING*

ERIC V. DENARDO%

1. Introduction. This article formulates and analyzes a broad class of optimi-
zation problems including many, but not all, dynamic programming problems.
A key ingredient of the formulation is the abstraction of three widely shared
properties of optimization problems. These properties are called the ‘“contrac-
tion,” “monotonicity,” and “N-stage contraction’ properties. The contraction
property is satisfied by Shapley’s [16] stochastic game and was used by him in a
related manner. Other models which satisfy the contraction property include
many of Bellman’s [1] dynamic programming models, Karlin’s [14], Howard’s
[12] and Blackwell’s [2], [3] discounted dynamic programming models, and
many of the sequential decision processes in [5]. The N-stage contraction prop-
erty is a weakened form of the contraction property. It also encompasses some
models of Derman [7], Derman and Klein [8], Eaton and Zadeh [9], and many
N-stage dynamic programming problems. Each of the models cited above satis-
fies the monotonicity property. Hence, the formulation encompasses the models
of several authors and provides further insight into the class of problems which
satisfies Bellman’s [1] Principle of Optimality. After completing the develop-
ment, the author came across a paper of Zachrisson [17] which exploits order-
preserving contractions in the analysis of a stochastic game.

“Policies” are introduced, and, for each policy 8, a return function, vs , is defined
in a natural manner. A maximization operator A is introduced, and A is shown
to inherit the contraction property. The fixed-point theorem for contraction map-
pings assures that the equation Av» = v has a unique solution, v*. An optimal re-
turn function fisdefined by f = sups vs . If the monotonicity and contraction as-
sumptions are both satisfied, we conclude that v* = f. Policies whose return func-
tions approximate »* are shown to exist, and a sufficient condition is provided
for the attainment of »* by some policy. Similar results are obtained for the case in
which the monotonicity and N-stage contraction assumptions are both satisfied
simultaneously.

Three techniques are provided for determining (or approximating) the fixed
point v* and for finding policies whose return functions attain or approximate
v*. The first is the method of successive approximations of mathematical analysis;
it exploits only the contraction assumption. For the case in which both the
N-stage contraction and monotonicity properties are satisfied, we provide equiva-
lent mathematical programming formulations and a generalization of one of
Howard’s [12] policy improvement routines. Certain issues concerning history-
remembering decision procedures and randomized policies are resolved.

The five examples in §8 serve as illustrations and applications of the develop-

* Received by the editors August 19, 1966.
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ment. It might help explicate the notation to refer occasionally to the examples,
especially Example 1, as one proceeds through the text. Apparent integrability
issues in Blackwell’s [3] and Jewell’s [13] models are circumvented in Examples 3
and 4. Salient facts about metric spaces and contraction mappings comprise the
Appendix.

2. A contraction assumption. Some terminology is now introduced. Examples
are provided in §8. Let @ be a set. An element of Q is called a point and is often
denoted by z. Associated with each point x is a decision set D, . An element of D,
is called a deciston and is often denoted by d, . The policy space A is defined as the
Cartesian product of the decision sets, i.e., A = X, ceD.. An element of A is
called a policy and is often denoted by 4. Then, a policy can be interpreted as a
decision procedure which specifies a decision for each point. Furthermore, any
such combination of decisions constitutes a policy.

In order to introduce the return function, let V be the collection of allbounded
functions from Q@ to the reals, i.e., » € V if and only if v:Q — reals and
Supzea | v(2)] < . A metric pon V is defined by p(u, v) = supsce | u(z) — v(z)|.
The space V is complete in this metric.

Let h, the return, be a function ascribing a real number to each triplet (z, d, , v)
withz € Q,d, € D,andv € V. One might think of i(z, d, , v) as the total payoff
for “starting” at point x and choosing d, with the prospect of receivingv(z) if the
pair (z, d.) causes a ‘“‘transition” to point z. (Whether v(z) could be realized by
any policy is immaterial; h(z, d., -) describes what the pair (z, d,) yields as a
function of ».) The important contraction assumption is now introduced.

CONTRACTION ASSUMPTION. For some ¢ satisfying 0 < ¢ < 1,

l h(x7 de ) u) - h(x; dq ) U)l = Cp(u; U)

foreachuw € V,ve V,x € Qandd, € D, .

The contraction assumption is satisfied by Shapley’s terminating stochastic
game [16], by Howard’s [12], Blackwell’s [3], and Jewell’s [13] discounted dynamic
programming models, as we verify in §8, and by Bellman’s “type 2’’ equations in
[1, Chap. IV]. A slightly weaker version of the assumption, introduced subse-
quently, also encompasses models of Derman [7], Eaton and Zadeh [9], and certain
N -stage sequential decision processes [5], [8].

To verify that a contraction mapping is implicit in the contraction assumption,
let 8, denote the decision in § which applies to point z. For each § € A, a function
H; having domain V and range assumed to be contained in V is defined by
(1) [Hs(v)](z) = h(z, é:,0),
where H;(v) is the element of ¥V which H; assigns v, and where [H;(v)](x) is the
real number which the function Hs(v) associates with the point . The contraction
assumption is equivalent to the following: for some ¢ satisfying 0 = ¢ < 1,
plHsu , Hw] £ cplu,v]foreachu € V,v € V and é € A. Hence, H;is a contraction
mapping [10], and the fixed-point theorem for contraction mappings guarantees
that H; has a unique fixed point vs . That is, for each policy & there exists a unique
element v; of V such that

(2) vs(x) = h(zx, 8,,v;) foreach =z € Q.
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The function v; is called the return function of the policy 8. Since we have not
assumed that the process has a “starting point’’ from a definitional viewpoint, an
argument like the above is required to preclude the possibility thatno v; or several
vs satisfy (2). The optimum return function fis defined by f(z) = supsca vs().
The following simple inequality will prove useful.

THEOREM 1. Suppose the contraction assumption is satisfied. For any & € A and
any v €V, we have p(vs, v) = p(Hw, v)/(1 — c¢).

Proof. The triangle inequality implies that

p(Hﬁnv) 1)) é ; p(HaiU, Hﬁi—lv)

n

< D¢ Tp(Hw, v) < p(Hw, v)/(1 — c).
=1
Since p(Hs"v, v5) — 0, one has p(vs, v) < p(Hsv, v)/(1 — ¢), the desired result.
3. A maximization operator. Next, a map A having domain V is defined by
(3) (Av)(z) = supa,en,h(z, d:, v)

for each » € V and z € Q. We assume that the range of A is contained in V.
Theorem 2 verifies that 4 is a contraction mapping.

TraEOREM 2. Suppose the contraction assumption is satisfied. For eachw € V and
v €V, we have p(Au, Av) = cp(u,v).

Proof. Consider arbitrary u, v and z, and write (Au)(z) = (4v)(z) + k. Con-
sider the case k > 0. For each positive integer n, let d,” be an element of D, such
that h(z, d.", u) = (Au)(z) — k/n. Clearly, (Au)(z) — k/n = (Av)(x)
> h(z, d,", v), the last by definition. Combining inequalities yields

0 < (du)(z) — (Av)(z) — k/n < h(z, d.)", u) — h(z, d.", v) = cp(u, v).

Since the preceding is true for each n, |(Au)(z) — (4v)(z)| = cp(u, v); this in-
equality is trivial for k¥ = 0 and similarly established for ¥ < 0, completing the
proof.

An early and important paper of Shapley [16] was apparently the first to use
contraction mappings in a related setting. The fixed-point theorem guarantees
that A has a unique fixed point, i.e., that there exists exactly one element »™ of V
such that

(4) v*(x) = supa,en, Mz, ds,v*) foreach z € Q.

Equation (4) is, in rather general notation, a “functional equation” of dynamic
programming. Two relevant questions are whether »* is approximated (or at-
tained) by the return function v; of some policy and whether »* is the optimal
return function, i.e., whether »* = f. Existence of policies satisfying p(vs , v*) < ¢
is demonstrated next. An assumption sufficient for »* = f is introduced in §4.
Without that assumption, one may have »* < f, in which case interpretation of
»* is an open question. The choice of maximization in defining A was arbitrary;
Theorem 2 holds with (Av)(z) = infq, h(z, d., v).

COROLLARY 1. For e > 0, there exists a policy & such that p[Hs(v™),v™] < e(1 — ¢),
and any such § satisfies p(vs , ™) < e If p[Hs(v™), v*] = 0, then v; = v*.
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Proof. For ¢ > 0, existence of a policy § such that p[Hs(v™), v™] < (1 — ¢)
follows directly from (4). Substituting »* for » in Theorem 1 yields p(vs , 0™)
< p[Hs(v™),v*]/(1 —¢) < efore = 0.

Corollary 2 is established by noting that extrema of continuous functions over
compact sets are attained and then applying the last part of Corollary 1. We note
that this approach to Corollary 2 circumvents the usual recourse to
Tychonoff’s theorem.

COROLLARY 2. Suppose for each fized x that h(z, -,v™) is a continuous function of
d. in a topology for which D, is compact. Then there exists a policy & such thatvs = v™.

With B as an operator on V, define the modulus of B as the smallest number
¢ such that p(Bu, Bv) =< cp(u, v) for each u, v in V.

With I as an arbitrary nonempty set, suppose {Ba.:a € I} is a collection of
operators on V each of which has modulus ¢ or less, define the function E having
domain V by (Ev)(z) = supecr (Bav)(z), and suppose that E has range con-
tained in V. Then an argument similar to that for Theorem 2 establishes that
has modulus ¢ or less.

4. A monotonicity assumption. The assumption given below suffices for »*
and f to be identical. For u, » € V, we write u = v if u(z) = v(x) for each z, and
u>vifu =vandu 5 v.

MonoToNICITY ASSUMPTION. If u = v, then Hs(u) = H;(v) for each & € A.

A monotonicity assumption was introduced by Mitten [15], and monotonicity
assumptions were further developed in [5]. A host of return functions, including
the examples of §8, satisfy the monotonicity assumption. The assumption is
equivalent to Az, d. ,u) = h(z,d,,v) ifu = .

THEOREM 3. Suppose the monotonicity and contraction assumptions are satisfied.
Then v* = f.

Proof. From Corollary 1 we know v* < f. Since Hw™ < v™ for each 3, recursive
application of the monotonicity assumption yields H;"»* < v* for each n. Since
p(H;™*, v;) — 0, one has v; < v™ for each 4. Since f(z) = sups v;(z), this implies
f < v* and completes the proof.

Theorem 3 concludes that the solution to (4) is unique and is f, the optimal
return function. A policy é is called e-optimal if p(vs ,f) = € and optimal if v; = f.
Corollary 1 and Theorem 3 demonstrate existence of an e-optimal policy and
Corollary 2 gives sufficient conditions for existence of an optimal policy.

A return function satisfying the contraction assumption and violating the
monotonicity assumption is h(z, d, , v) = —v(x)/2.

If the sequence {v,},n = 0, 1, -- -, satisfies v, = v,—1 for each n, we write
{va} T. Lemma 1 contains useful consequences of the monotonicity assumption.

LemMma 1. Suppose the monotonicity assumption is satisfied. If uw = v, then
Au = Av. If Av = v, then {A™)} 1. If Hv = v, then {H;™v} T.

Proof. By definition, Au = Hsu. Suppose u = v. Then, Hu = H, implying
Au = Hw for each §; hence, Au = Av. If Av = v, then recursive application of the
preceding statement yields {A"v} T . If Hw = v, then recursive application of the
monotonicity assumption yields {H;"v} T .
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5. An N-stage contraction assumption. For a map B of V into itself to have a
unique fixed point, it suffices that BY be a contraction mapping for some posi-
tive integer N. This suggests a slightly weakened form of the contraction assump-
tion, which we shall use only in conjunction with the monotonicity assumption.

N-StaceE CONTRACTION ASSUMPTION. For each 8, the operator Hs" has modulus
¢ or less, where ¢c and N are independent of 6 and ¢ < 1. Furthermore, for each 8, H
has modulus 1 or less.

The contraction assumption is satisfied by discounting future returns or by re-
quiring a positive probability of termination from every point. For some problems,
the probability of termination is nonzero from a proper subset S of Q; however,
every ergodic class of points contains at least one element of S. Most such models
satisfy the N-stage contraction assumption. N-stage processes which evolve prob-
abilistically also satisfy the N-stage contraction assumption.

As before, we assume that the range of 4 is contained in V. Define v; as the
unique fixed point of the contraction mapping H," ; it follows that v; is the unique
fixed point of H; . Since H; has modulus 1 or less, the triangle inequality implies
o(H;s"v,v) < Np(H;v,v). Hence, as in Theorem 1, p(v5 ,v) < p(Hs,v)N/(1 — ¢).

Next, define f by f(x) = sups vs(x). Toward showing f € V, define the function
E having domain V by (Ev)(z) = sups (Hs"v)(z). Since H;"v < Ev < A™y,
the last by the monotonicity assumption, £ has range contained in V. Then, the
N -stage contraction assumption and observation at the end of §3 suffice for £ to
be a contraction mapping. Let »™ be the unique fixed point of E. Since H;"v* < v*,
one has v; < v™ for each 8, implying f < »*. Hence, f € V. Parts (a)—(¢) of the
following theorem have just been established. Proof of (d) and (e) is postponed
until after Lemma 2.

THuEOREM 4. Suppose the monotonicity and N-stage contraction assumptions are
satisfied. Then:

(a) vs s the unique fixed point of Hs ;

(b) p(vs,v) = p(Hw, v)N/(1 — ¢);

(¢) E is a contraction mapping of modulus c or less;

(d) f is the unique fixzed point of E and of A;

(e) if v = f, then p(A™, f) = co(v, f).

Lemma 2 will prove useful both for Theorem 4 and for the optimization schemes
in the next section. We shall prove only (a), since (b) and (¢) are obvious. Let T
be the unit function from © to the reals defined by 1(z) = 1 for each z in .

LeMmMA 2. Suppose the monotonicity and N -stage contraction assumptions are satis-
fied. Then:

(a) if Av < v, then v = f; of Av = v, then v £ f;

(b) Avs = v; for each & in A;
(¢) if Hw = v, then v; = Hsw.
Proof of Lemma 2. First, suppose Av =< v. Then, Hsv =< v for each §, implying

H;"v < v for each n. Hence, v; < v for each §, implying v = f.
The other half of (a) is more difficult. First, since Af = H;sf = Hws = vs for each
8, one has Af = f. Suppose Av = v. Define u by u(z) = max {v(z), f(x)}. Then,

Au = Av and Au = Af, implying Au = wu. For arbitrary positive ¢, pick § such
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that Hyu = Au — €l. Claim: H;"(Au) = Au — nel. Since Au = u, the claim is
true for n = 1. Suppose it is true for n. Then H""'(Au) = Hs(Au — nel)
> Hy(Au) — nel = Au — (n + 1)el, completing an inductive argument. Since
v £ f £ u £ Au, the N-stage contraction assumption assures H;"(4du) < vs
+ cp(Awu, v;)1. Combining inequalities, 0 < Au — v; < [Ne + co(Au, v5)]1. Sup-
pose Au > f. Then take e = p(Au, v;)(1 — ¢)/2N. By substitution, p(Au, v;)
= p(Au, v5)(1 4+ ¢)/2 < p(Awu, v5), a contradiction. Hence, Au = fandv < f
as desired.

Proof of Theorem 4. Parts (a)—(c) are established. As noted previously, Af = f.
Then A(Af) = Af and the first part of Lemma 2 implies Af < f. Hence, Af = f.
If Ag = g, then Lemma 2 implies ¢ = f; hence f is the unique fixed point of 4.

We have established f < »* Toward showing »* = f, define u by u(z)
= maXo<n<y (A"™%)(x). Then, Au = A™* for 1 £ n < N. Since A™* = Ev*
= v* one has Au = u. Hence, by Lemma 2, u < f, implying o™ < f. Hencev™ = .
For (e), note that A™ = Ev. If v < f, then Ev < A™ < f = Ef, implying
p(A", f) < p(Bv, Ef) < cp(v, f).

Part of the N-stage contraction assumption is that Hs has modulus 1 or less.
Similar results hold if for fixed finite m each H; has modulus m or less, the only
difference being that p(vs, f) < p(Hw, v)(1 +m + --- +m" ") /(1 — ¢). An
example in which the modulus of Hj is 2, but the modulus of H,” is 1, is given by
Q= {1, 2}, D1 = Dy = {0},’& = (w1, us), Ho(us , us) = (2us, us/4).

We now strengthen the hypothesis of Theorem 4 in a manner which suffices
for A" to be a contraction mapping. First, let = denote a sequence of N policies,
ie, 7 = (8,08, - ,0y),and define the operator B, on V as the composition of
the N operators H,, , i.e., B, = HsyH;,_, -+ H;, . We now strengthen the
N-stage contraction assumption by replacing the condition that, for each &, H;"
has modulus ¢ or less by the more restrictive condition that for each 7 the operator
B, has modulus ¢ or less. Note that (A")(x) = sup. (B,)(x); hence, by the
observation in §3, A" is a contraction mapping of modulus ¢ or less.

For an example satisfying the N-stage contraction assumption but not its
strengthened form, let @ = {a}, D. = {1, 2, ---} and h(a, n, v) = max {v/2,
min [n + 1, v — n]}. The monotonicity and N-stage contraction assumptions are
satisfied with N = 2 and ¢ = 3. Also, 4v = max {v/2, max; <n<w [min (n + 1,
v —n)]}. Note that A"(2" + 1) — A"(2") = 1 for eachn;in fact, A™ has modulus
1 for every n. R. Strauch of The RAND Corporation first indicated to the author
some of the difficulties attendant on the N-stage contraction assumption.

6. Optimization schemes. This section contains three techniques for approxi-
mating (or determining) »* and for finding policies whose returns approximate or
attain v*. One technique is an application of the method of “‘successive approxi-
tions” [10] of mathematical analysis, the second technique provides general
mathematical programming equivalents, and the third generalizes one of
Howard’s [12] policy improvement routines.

The first technique exploits the contraction assumption, but not the mono-
tonicity assumption. Suppose the contraction property is satisfied. Theorem 2
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implies that p(4™, v™) — 0 for any v; this means that »* can be approximated by
successive applications of 4 to any initial vector v, . Let v, = A™ forn = 1. We
now compute a bound on p(v, , »™). Since p(v, , v*) — 0, one has p(v,, v™)
S 2 p(Vnri, Vngia) S 2 im0 p(Vass, ¥a) = p(vas1, v)/(1 — c). Since
P(Un-Hc ’ Z)*) § Ckp<vn ) U*), one has p(”n ) U*) é minlgign {Cn—H—IP(v’i—l ) Z)*)} De-
fine E, recursively by E; = p(v1,)/(1 — ¢) and E, = min {cE,_1, p(v, , ta_1)c
/(1 —¢)}. Combining the above inequalities yields p(v, , 0*) < E, forn = 1.
Suppose v, = Hsvn_y . Then, p(vs ,v™) < p(05, Vu1) + p(0a1,v™) £ 20(vn , 00_1)c
/(1 — ¢). Charnes and Schroeder [4] suggest bounds along these lines for a
stochastic game. If the N-stage contraction (for N > 1) and monotonicity as-
sumption are satisfied, Theorem 4 assures p(v, , f) — 0, providing v, < f. Methods
similar to the above yield bounds for p(v, , f) and p(vs , f) in this case as well.

If the monotonicity and N-stage contraction assumptions are both satisfied,
policy improvement schemes and mathematical programming formulations are
available. In the ensuing, interpret “min »” (“maxv’’) as the function whose
value at x is the smallest (largest) value of v(x) over those v’s satisfying the con-
straint. Consider the following two mathematical programs:

Program 1 Program IT
min v max v
subject to subject to
Av = . Av = o.

Since Af = f, f is feasible for both programs. By part (a) of Lemma 2, f is optimal
for both programs. Of course, if @ contains finitely many points, “min »” is equiva-
lent to minimizing Zzeg v(z) or any other positive combination of the v(x)’s. A
linear programming formulation for Example 1 (§8) was first obtained by
D’Epenoux [6]. Derman and Klein [8] obtained a programming formulation for an
N -stage Markovian process, also a special case of the above.

Though the two programs look similar, Program I has an inherent advantage.
Its constraint is satisfied if and only if A(z, d, , v) = v(z) for each z and d. , while
Program II’s constraint is satisfied if for every « one has h(z, d., v) = v(z) for
at least one d. . Hence, Program I can be written equivalently as ‘“min v subject
to h(z, d, ,v) = v(x) foreachz and d, .”

Next, Howard’s policy improvement algorithm is generalized. Suppose the
monotonicity and N-stage contraction assumptions are satisfied and that Av is
attained for each v;i.e., Av = H.w for some policy v which may depend on v. The
“n’’ in the policy improvement routine given below may be any positive integer.

(1) Pick any initial é.

(2) Calculate v; .

(3) Calculate u = A" 'v; , then v = Au = Hyu.

(4) If p(u, v) > ¢ replace § by v and go to Step 2. If p(u, v) = ¢, calculate

vy and stop.

Lemmas 1 and 2 imply »; < A" ' = u < Au = Hw < vy . If N = 1, ie., if
the contraction property is satisfied, then p(vy, f) = c"p(vs, f) by Theorem 2.
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If N > 1, one starts with § and iterates Steps 2 through 4 enough times to assure
N applications of 4 ; the resulting policy, £, satisfies p(v;, f) < cp(vs , f). Hence,
p(vs , f) — 0. Then, the process terminates in a finite number of iterations. The
final policy v satisfies v» = w, implying p(vv, f) < o(u, f) < N/(1 — o).
Howard’s policy improvement routine is the above withn = 1, ¢ = 0 and applied
to Example 1. Calculating v; is called ““policy evaluation”, and finding v is called
“policy improvement.” If calculating Av is far quicker than determining v5 , then
setting n > 1 might improve the speed of the algorithm; n might also vary
(adapt) during the progress of the algorithm. The amount of computation re-
quired to compute v, may depend on the value of n chosen; for example, in
Howard’s problem, more pivoting may be required for n > 1. In Example 2,
calculating v; amounts to solving Example 1 and determining Av requires solving
M zero-sum, two-person games.

7. Symmetries. Somewhat loosely, a “history” of a point x is a sequence of
prior points, decisions and transitions which ended with a transition to point z.
A “history-remembering” decision procedure is one in which the decision d,
selected for « can depend on the history of 2. Can history-remembering decision
procedures increase the optimal return function? Theorem 5 answers “No’’ to
this question in rather a general setting. We comment that while this result is
intuitively clear for Example 1, one’s intuition may be less certain for stochastic
games (Example 2) in which the ergodic classes depend on the strategies chosen.
History-remembering decision procedures were considered in [3], [5], [7], [8], and
[16].

The history-remembering decision procedure may be thought of as resulting in
a separate problem which contains considerable internal symmetry. Certain
processes in which history is not remembered still contain considerable internal
symmetry. For instance, Example 4 “looks the same” from points (7, {) and
(4, t') differing only in time. Theorem 5 also demonstrates that Example 4 is
essentially the same as Example 1.

Consider two optimization problems—problem U and problem P—of the type
we are discussing. Problem U is described using unprimed notation—e.g., Q, D, ,
h, ete., and problem P is described using primed notation—e.g., @, D.’, &', ete.
Suppose @' = U,eq E, , where {E.}.cq is a collection of nonempty pairwise dis-
joint subsets of Q'. Roughly, E, is the subset of Q” containing those points which
are “‘equivalent’ to x; it may correspond to the various histories of z. Let e be the
map of V into V' defined by [e(v)](z) = w»(z) for each z € E, and each z.
Roughly, the function e maps v into that function whose value is v(z) at each
point which is equivalent to . Problem P is said to be generated from problem U
if, in addition to the above, (i) D,” = D, for each z € E, and each z, and (ii)
Wz, d, ,e(v)] = h(zx,d, ,v) for eachz € E, , eachz, d, , and v. It is convenient to
introduce the map w of A into A’ defined by [w(8)]. = &, for each z € E,, each z
and each 8. The proof of Theorem 5 is routine and is omitted.

THaEOREM 5. Let problem P be generated from problem U and suppose problem P
satisfies either (a) the contraction assumption or (b) both the N -stage contraction and
the monotonicity assumptions. Then, problem U satisfies the same assumption(s)
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and has a unique fized point v*. Furthermore, e(v*) is the unique fized point of prob-
lem P, and plve) , e(v™)] = p(vs , v™) for each 8 € A.

In other words, the fixed points for problems U and P are essentially the same,
and a policy & whose return approximates or attains o™ has an equivalent policy
w(8) whose return approximates or attains e(¢v*). Thus, for the purpose of deter-
mining fixed points and e-optimal policies, one can study problem U rather than
the more complex problem P.

A pair of related problems also results from considering randomized (un-
primed) and nonrandomized (primed) decisions. In this case, one has @ = @',
V = V' and D, © D,, since the nonrandomized decisions are a subset of
randomized ones. Suppose, as is the case in [3], [5], [7], and [8], that for each d, in
D, and each v in V there exist d,” € D, and d.” € D,’ such that A(z, d.”, v)
< Wz, d.,v) S Mz, ds, v). We note specifically that this condition does not
hold for zero-sum, two-person games, e.g., Example 2. If the condition does hold,
then A = A’, implying that the fixed points of the primed and unprimed prob-
lems are identical.

Suppose the N-stage contraction and monotonicity properties are satisfied. Let
A* be the collection (perhaps empty) of all optimal policies, i.e., 8 € A™ if and
only if v; = f. Let D,* = {d, € D.:f(z) = h(z, d,, f)} and let AT = X,eaD.".
We now show that A* = AT, If 6 € A*, then Hsf = f, implying v; = f; hence,
AT © A*. If 5 ¢ A", then Hsf < f, implying v; < f; hence, AT = A*. Should A*
contain several policies, one can use this result to optimize on a secondary criterion
with D, replaced by D.*.

8. Examples. As illustrations of various aspects of the development, models of
Howard [12], Shapley [16], Blackwell [3], Jewell [13], and Fox [11] are now re-
viewed. These examples by no means exhaust the possibilities; the theory covers
many finite-stage processes, nonstationary processes, variations and combina-
tions of the above models, and a diverse array of other return functions.

Example 1 (Howard’s [12] Infinite-Horizon Discounted Model). The state
space, 2, consists of the first n integers. The decisions available at state (point) ¢
constitute a finite set and are numbered consecutively, 1, 2, --- , M, . A policy
is then an n-tuple (k1 , k2, -+ -, k.), where k; is the decision relating to state ¢
and 1 £ k; £ M, . The process has an immediate reward r(7, k) depending on the
state and the decision, a discount factor ¢ (0 = ¢ < 1) affecting future returns,
and a set of transition probabilities governing the evolution of the process. Let
P[j:7, k] be the probability of a transition to state j given state ¢ and decision k.
Hence, @ = {1,2, -+ ,n},D; = {1,2, --- , M}, and

h(i, by, v) = (3, k) + ¢ 2 Pljs, k().
j=1
The contraction assumption is satisfied, since

l h(ly k, u) - h(l: k; U)I

| Z P, B fu(j) — v(3)]]

S ; P[j:d, k]| u(j) — v(j)] = cp(u, v).
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If w = v, then ¢ 21— P[j:4, klu(j) = ¢ 27— P[j:1, klo(j), implying h(<, k, )
= h(1, k, v), or that the monotonicity assumption is satisfied.

Example 2 (Shapley’s [16] Stochastic Game). Let @ = {1, 2, --- , M}, where
point n is thought of as the mth of a collection of M zero-sum two-person
rectangular games. Play moves from game to game, eventually terminating, with
a payoff from Player II to Player I at each play. Given that game 7 is being
played, the strategies chosen by Players I and II determine (i) the expected
value of the immediate payoff from Player II to Player I, and (ii) the probability
law determining whether another game will be played and, if so, which game will
be played next. Player I is presumed to maximize his minimum gain; Player II
minimizes his maximum loss.

Let r{; be the immediate payoff from Player II to Player I if they play game n
and choose pure strategies j and 7, respectively, with1 £ ¢ < M,and1 £ 7 = m, .
Let p[m:1, 7, n] be the probability that the next game played is game m, given
that game n is now played, and that pure strategies 7 and j are chosen by Players
I and II, respectively. Assume ) m—y p[m:7,§,n] < ¢ < 1 for each %, 7, and n. Let
p" (¢") be a randomized strategy for Player I (II) for game n, where p,” is, for
instance, the probability that Player I chooses pure strategy ¢ for game n and
where D i p® = 1. With strategies p” and ¢" for game n, and with v as the
terminating reward function, the one-stage expected return function % is given
by

h(n, p", ¢, v) = 20 pig"{rls + 22 plm:d, j, n]-o(m)}.
) m

Note that with fixed n and v, the above is the payoff function of a rectangular
game whose 7, jth entry is the term in the brackets, “{ }”. Hence, by the minimax
theorem for rectangular games, an operator B on V is defined by

(Bv)(n) = max min h(n, p, ¢, v) = min max A(n, p, g, v).
D q q P

Let D, and O, be the sets of all randomizations over {1, 2, ---, M,} and
11,2, - -+, ma}, respectively. Let A = X 21D, and II = X -0, , with § € A and
m € II. (Then, § is an M -tuple of probability distributions.) Define the operator
H; . on Vby [H;.(v)](n) = hn, 6,, 7, v). For each fixed § and =, H; .
obeys the contraction assumption and, hence, is a contraction mapping; let vs,~ be
its fixed point. Define H;s by (H;v)(n) = min, [H; -(v)](n). Theorem 2, though
minimizing instead of maximizing, guarantees that H; satisfies the contraction as-
sumption for each 6. Then, noting that (Bv)(n) = max; (H)(n) and reapply-
ing Theorem 2 assures that B has a unique fixed point. Clearly, H; . satisfies the
monotonicity assumption. Then, f is the unique solution of the following:

(a) »(n) = max, min, h(n, p, ¢, v) for each n,

(b) v(n) = min, max, h(n, p, q, v) for each n,

(¢) f = max; min, vs,» , and

(d) f = min, max;s vs,» -

Two applications of Theorem 5 settle issues concerning history-remembering
policies. In the policy improvement routine in §6, calculating »; amounts to
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solving Example 1, and calculating Au amounts to finding the values of each of I/
rectangular games.

Example 3 (Blackwell’s [3] Discounted Dynamic Programming Model). This
example differs from Shapley’s model in that Player IT is a dummy (plays a fixed
strategy) and in that @ need not be finite or even countable. Blackwell [3] deals
directly with certain troublesome integrability issues; we circumvent these by
introducing an operator ¢ which is the same as the integral if the integral exists
and which obeys the contraction and monotonicity assumptions whether or not
the integral exists. Let r(z, d.) be the expectation of the immediate return as-
sociated with making decision d. at point « and let u[-| z, d.] be the probability
measure over @ determined by the pair (z, d.), with u[Q |z, d,] = 1. With
0 = ¢ < 1andwith K(v) = {u € V:u = v, u integrable}, let

Wz, d,,v) = r(z,d,) + c¥(viz, d,),

v(viz,d,) = inf w(z) dulz |z, d.].
uecK@) JzeQ
The property of ¥ which we shall verify and then exploit is that for each fixed x
and d. , ¢ is subadditive, i.e., y(u 4+ vz, d.) = Y(uiz, d,) + ¢(viz, d,). Fixing
x and d. for the remainder of the discussion, we abbreviate y(u:z, d,) by the
symbol ¢(u). As defined, K(u + v) D {u' 4 v":u" = u, v" = v, u integrable, v’
integrable}. Hence, by set inclusion,

Y(u +v) < inf f [ (2) 4+ v'(2)] dulz | z, d.] = $(u) + ¢().
u'€K(u)v' €¢K(v) YzeQ

Then, Y[(v —v) + o] = ¥(u —v) + ¥(v), orY(u) — Y(v) = Y(u —v). As ¢ is

defined, it may be that y(u) # —y¢(—u). However, | ¢(u)| = supwce | u(x)].

Then,

[¥(w) — ¥()] = max {[Y(u — )], [¥(v — W[} = p(u,v),
| Az, doyw) — Wz, da, 0)| = | (u) — $(v)| < cp(u, v),

verifying that the contraction assumption is satisfied. The monotonicity assump-
tion is routinely verified. Note that f might not be measurable and that the same
definition of ¥ works for both maximizing and minimizing problems.

Example 4 (Jewell’s [13] Continuous-Time Infinite-Horizon Discounted
Model). This example differs from the preceding three in that the process evolves
in continuous time; other than that, it is similar to Example 1. The function ‘“y”’
is again used to circumvent some integrability problems, and the model is shown
to be generated from Example 1, which has no integrability problems.

LetQ = {1,2, --- ,n} Xrealsand 2’ = (4,¢), with1 £ ¢ < nand ¢ € reals.
Let D/ = Dy = {1,2, - -+, ms}, independent of ¢. Selection of decision & from
D, at point (¢, t) causes a transition to some state at some time greater than ¢.
It is convenient to represent this phenomenon by two random variables. Let
P[X, = j] be the probability that transition occurs to state 7 given that decision
k is made at state 7. Let P[X; ;1 < u] be the probability that the interval of time
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to transition is less than u, given that the decision & is made at state 7 and given
the condition that transition will occur to state j. Both X, and X, ;x are inde-
pendent of ¢; the present value at time ¢ (not time 0) of the return from time ¢
on is

WG 0,k 0] = r(i k) + X PXow = ] f L UGt ) dPIXG i < ul.

The above expression is technically correct only if »” is integrable. In general, we
»

replace by “y’’ and assume f dP[X;;x < ul-¢ ™ = ¢ < 1foreachi,7, and

k. The contraction assumption is then satisfied, and the monotonicity assumption
is again routinely verified.
One can readily check that Example 4 is generated from Example 1 with

Q= {1727 e 7n}7D’i = {]-7 27 e 7777“’5}7P[j:1:7 k] = P[lek = J]‘de[Xl-J,k < u]

e ™, E; = {(4,t):t € reals}, and r(%, k) unchanged. Thus, Theorem 5 allows us
to investigate the optimization problem in a far simpler environment having a
finite number of points and decisions and no integrability difficulties. Then, Corol-
lary 2 guarantees existence of a stationary optimal policy for Example 4.

Ezxample 5 (Fox’s [11] Age Replacement with Discounting). For a particu-
larly simple example in which D, is nonfinite, we consider a model of “age replace-
ment”’ due to Fox [11]. An item (e.g., a light bulb) is replaced at the earlier of
(a) a planned replacement interval, d, after installation (at cost ¢;) and (b) the
time at which it fails (at cost ¢z). The costs are incurred at the replacement times.
Restricting ourselves to planned replacement intervals of at least ¢, the problem
is generated from one with @ = {1}, D; = [¢, ], F as the failure-time distribu-
tion, h as the present value of the income stream, « as the discount rate, v as a
real number, and

h(1,d,v) = (a1 + 2)e (1 — F(d)) 4+ (¢co + v) fod e ™ dF(u)

for e £ d = + ». The monotonicity assumption is obviously satisfied, and the
contraction assumption is readily verified if F(0") < 1 and e > 0. Substituting
v(d) both for h(1, d, v) and for v in the above yields a function of one variable, d,
which can be minimized by the method of successive approximations; for details,
see Fox [11]. Subsequently, we shall remove the restriction ¢ > 0.

Acknowledgment. Part of the material contained in this article was developed
at Northwestern University under the very stimulating direction of Dr. L. G.
Mitten, the author’s Ph.D. thesis adviser.

Appendix. Salient facts about contraction mappings are now listed. Proofs
can be found in Elsgol’c [10] and many standard texts on analysis.

First, some terms are defined. Consider a set V. A function p mapping VX V
to the reals is called a metric if (1) p(u, v) = 0 for allu,v € V; (i1) p(u,v) = 0
if and only if u = »; and (iii) p(u, v) = p(u, w) + p(w, ) for w,v and win V. If
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p is a metric for V, then V is called a metric space. Let A:V — V. The function A
is called a contraction mapping if for some ¢ satisfying 0 = ¢ < 1 one has p(Au, Au)
< cp(u, v) for every u, v € V. The element v* of V is called a fized point of A if
Av* = v*. A sequence {on}, n = 1,2, -+, of elements of V is called a Cauchy
sequence if for every € > 0 there exists an M such that p(vm , v,) < € for every
m, n > M. A metric space is said to be complete if for every Cauchy sequence
{v,},n = 1,2, --- | there exists an element v of V such that lim,»» p(v, , v) = 0.
For a map A of V into itself the function A" is defined recursively by 4' = A4
and A" = A(4").

Frxep-PoinTt THEOREM. Let V be a complete metric space. Suppose for some
integer N that A" is a contraction mapping. Then A has a unique fized point, v*.
Furthermore, liMmyq p(A™, v™) = 0 for any v.
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