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Abstract

In a recent paper [Discrete Appl. Math. 130 (2003) 449-467], Yang, Ye, and Zhang investigate the problem of scheduling
independent jobs on two identical machines, with a limit on the number of jobs that can be assigned to each single machine, s
as to minimize the total weighted completion time of the jobs. They provide a semidefinite programming based, polynomial time
approximation algorithm with a worst case ratio 0f826.

In this short technical note, we establish the existence of an FPTAS for this problem, and for the corresponding makespar
minimization problem.
© 2005 Published by Elsevier B.V.
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1. Introduction

Yang et al.[4] consider a scheduling problem withindependent jobdy, ..., J,. Every jobJ; (j =1,...,n)is
specified by its positive integer processing timeand by its positive integer weight ;. Every job is available for
processing at time 0, and it must be run without interruptiorpfotime units on some machine. There are two identical
parallel machined/; andM>, and a given machine capacity boundo each single machine, at mag:/2< g <n)
of the jobs may be assigned. L€} denote the completion time of jaly; in a given schedule. The goal is to find a
schedule that obeys the capacity constraint and minimizes the total weighted job completi@;@"p&)j Cj, this
problem is denoted b2 |q | Y~ w;C;.

Yang et al.[4] observe that problen®2|q | > w;C; is NP-hard, and they develop a non-trivial, semidefinite
programming based, polynomial time approximation algorithm with a worst case ratid &6l for this problem.
(An approximation algorithm for a minimization problem has worst case patibit always returns a solution with
objective value at most a factprabove the optimal objective value. A fully polynomial time approximation scheme
(FPTAS) is a family of approximation algorithras over alle > 0, with worst case guarantees-k and with running
times polynomially bounded in the input size and ja )

In this short technical note, we observe that probleg ¢ | >~ w;C; possesses a simple dynamic programming
formulation that satisfies certain nice properties. Therefore, this problem belongs to the class of doFcakerbvolent
optimization problems, and by a general result of Woegifigfeit possesses an FPTAS.
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Theorem 1. ProblemP2|g| )~ w;C; has an FPTAS

Yang et al.[4] also mention a manuscrif] by Bramel et al. that deals with probleR?2| ¢ | Cimax that is, with
makespan minimization on two identical machines with a limit on the number of jobs that can be assigned to each singl
machine. The makesparnay is the maximum job completion time in some schedule. The manuggtipresents a
polynomial time approximation algorithm with worst case r%tito)r P2|q | Cmax- A minor modification of the proof
for Theorem 1 yields an FPTAS fat2| g | Cmax:

Theorem 2. ProblemP2| q | Cmax has an FPTAS

The proof method also yields an FPTAS for the two varid@his| g1, ..., g | > w;CjandPm|q1, ..., gm | Cmax:
here the numbem of machines is a fixed constant that is not part of the input. A schedule is feasible if mahine
receives at mosj; jobs fori = 1, ..., m. Finally, we remark that Ageev and SviridenKd provide a polynomial
time approximation algorithm with worst case ragdor the (considerably more complex) variant of the problem
Plq1,....qm| Y w;C;where the number of machines is part of the input.

2. The proofs

We start with the proof of Theorem 1. In a preprocessing step, we renumber the jobs spghihat po /w2 < - -+ <
pn/wy holds. A straightforward job interchange argument shows that under this numbering, there always exists al
optimal schedule in which both machines process the jobs in increasing order of index. We deﬁoﬁemzl Pj
the total job processing time and by = Z?:l w; the total job weight.
In our dynamic program, we will store certain informations for certain schedules for thejéitst (0< k <n): Every
such schedule is encoded by a five-dimensional véetom,, P1, P2, z]:

e n; (i =1, 2) specifies the number of jobs assigned to machipe
e P; (i =1, 2) specifies the overall processing time of all jobs assigned to magfine
e zspecifies the weighted sum of completion times of the scheduled jobs.

The state spac#’; consists of all five-dimensional vectors for schedules for theKijabs. Fork = 0, the state space
Fo containg0, 0, 0, 0, 0] as its only element. Fdr> 1, every schedulgi1, na, P1, P2, 7] in State space&’y—1 can be
extended by either placing jah at the end of machingf; (with a completion timeC; = Py + pi) or by placing it at
the end of machin@/, (with a completion timeC, = P> + py). This yields the two schedules

[n1+ 1, n2, Pr+ pi, Po, 2+ wi P14 wi pi]

and
[n1,n2 + 1, P1, P2 + pi, 2 + wi P2 + wy pi].

We put both schedules into the state sp#geregardless whether they are feasible (that is: satisfyl < g respectively
n2 + 1<q), orinfeasible. In the end, the optimal objective value is extracted fronas

min{z : [n1, n2, P1, P2,z] € &, with n1 <q andny<g}.

The running time of this dynamic programming formulation is pseudo-polynomial, and boundeth B¢ ). In
the framework of WoeginggB8], problemP2|g | > w;C belongs to the class of DP-benevolent problems, and thus
automatically has an FPTAS. We briefly sketch how the dynamic program can be translated into an FPTAS (this sketc
is considerably simpler than working through the expositiof3]i

The main idea is to iteratively thin out the state space of the dynamic program, to collapse solutions that are ‘close
to each other, and to bring the size of the state space down to polynomial. We define a stricaihéth parameter
4 as

&
A=1+ —. 1
+5 @)
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The trimming of the state spaces is based on the notidrddminationA states’ =[n1, n2, P{, P;, z']is A-dominated
by another state = [n1, n2, P1, P2, 7], if and only if

Pi/A<P{<PiA and Pp/A<P,<PA and z/4<7 <zA. (2)

As long as the state spagg; contains a staté€ that is4-dominated by another staggwe remove this dominated state
s". This removal procedure eventually terminates, and thus yields the trimmed state/Spaleenever we compute
a new state spac#’; in the trimmed dynamic program, then we start from the trimmed state spaceinstead of
the original state spac#}_1 in the original dynamic program.

Lemma 3. The cardinality of every trimmed state spa€§ is polynomially bounded in the input size andlifz.

Proof. The P;-coordinate and>-coordinate of every state are integers between (Patite z-coordinate is an integer
between O andVP. For any quintupleny, n2, f, g, h) of integers, the trimmed state spag¢ contains at most
one state[ny, np, P1, P, z] with 47 < Py <A+, A8 <P, <487, and A" <z < A"+, Since f, g <[log,(P)] and
h<Tlog, (W P)], up to a constant factor the cardinality.&f; is bounded from above by

log3 (W P) = log3(W P) / log3(4) <log3(W P) / (4 — 1)° = log3(W P) - 8n°/&°.

Here we first used the inequality lo@ + x) > x for 0<x <1, and then definition (1). Since lgg¥ P) is the number
of bits needed to write down the input, the cardinalitys6f is indeed polynomially bounded in the input size and
inl/e. O

Lemma 4. Every states’ = [n1, no, P{, P, Z'] in the (un-trimmeq state space’ is A*-dominated by some state
s =[n1, n, P1, P2, z] in the trimmed state spac¥;.

Proof. By a straightforward induction ok [

Lemma 5. The best feasible solution in the final trimmed state spéféas an objective value that is at most a factor
1 + ¢ above the objective value of the best feasible solution in the final un-trimmed state%$pace

Proof. Lets’=[n1, n2, P{, P;, z'] be the state it¥’, that yields the optimal objective value. By Lemma 4, the trimmed
state space’;; contains a state= [n1, n2, P1, P2, z] that4"-dominates’. The costzis at most a factor

I3
2n

above the optimal cost. Here we used the inequalit} + x/m)" <1+ 2x for real numbers with 0<x <1 and for
integersn>1. 0O

A"=<1+ )”<1+g

By Lemma 3, the cardinality of every trimmed state spaGeis polynomially bounded in the input size and ifel
Therefore, the computation of the trimmed state spaces in the dynamic program can be done within a time complexit)
polynomially bounded in the input size and ipglLemma 5 proves the desired worst case guarantee. This completes
the proof of Theorem 1.

The proof of Theorem 2 proceeds along the same lines as the proof above, but is slightly simpler. Schedules ar
encoded by four-dimensional vectdis, no, P1, P2] (instead of five-dimensional vectofss, na, P1, P2, z]). The
computation of the un-trimmed and trimmed state spaces remains the same (except for the missing fifth coordinate
In the end, the optimal objective value is extracted frgtnas

min{max{ P1, P2} : [n1, n2, P1, P2] € &, with n1<qg andny<q}.

This completes the proof of Theorem 2.
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