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Abstract

In a recent paper [Discrete Appl. Math. 130 (2003) 449–467], Yang, Ye, and Zhang investigate the problem of scheduling
independent jobs on two identical machines, with a limit on the number of jobs that can be assigned to each single machine, so
as to minimize the total weighted completion time of the jobs. They provide a semidefinite programming based, polynomial time
approximation algorithm with a worst case ratio of 1.1626.
In this short technical note, we establish the existence of an FPTAS for this problem, and for the corresponding makespan

minimization problem.
© 2005 Published by Elsevier B.V.
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1. Introduction

Yang et al.[4] consider a scheduling problem withn independent jobsJ1, . . . , Jn. Every jobJj (j = 1, . . . , n) is
specified by its positive integer processing timepj and by its positive integer weightwj . Every job is available for
processing at time 0, and it must be run without interruption forpj time units on somemachine. There are two identical
parallel machinesM1 andM2, and a given machine capacity boundq. To each single machine, at mostq (n/2�q �n)
of the jobs may be assigned. LetCj denote the completion time of jobJj in a given schedule. The goal is to find a
schedule that obeys the capacity constraint and minimizes the total weighted job completion time

∑n
j=1wjCj ; this

problem is denoted byP2 | q | ∑
wjCj .

Yang et al.[4] observe that problemP2 | q | ∑
wjCj is NP-hard, and they develop a non-trivial, semidefinite

programming based, polynomial time approximation algorithm with a worst case ratio of 1.1626 for this problem.
(An approximation algorithm for a minimization problem has worst case ratio�, if it always returns a solution with
objective value at most a factor� above the optimal objective value. A fully polynomial time approximation scheme
(FPTAS) is a family of approximation algorithmsAε over allε >0, with worst case guarantees 1+ ε and with running
times polynomially bounded in the input size and in 1/ε.)
In this short technical note, we observe that problemP2 | q | ∑

wjCj possesses a simple dynamic programming
formulation that satisfies certain nice properties.Therefore, this problembelongs to the class of so-calledDP-benevolent
optimization problems, and by a general result of Woeginger[3] it possesses an FPTAS.
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Theorem 1. ProblemP2 | q | ∑
wjCj has an FPTAS.

Yang et al.[4] also mention a manuscript[2] by Bramel et al. that deals with problemP2 | q |Cmax, that is, with
makespanminimization on two identical machines with a limit on the number of jobs that can be assigned to each single
machine. The makespanCmax is the maximum job completion time in some schedule. The manuscript[2] presents a
polynomial time approximation algorithm with worst case ratio7

6 for P2 | q |Cmax. A minor modification of the proof
for Theorem 1 yields an FPTAS forP2 | q |Cmax:

Theorem 2. ProblemP2 | q |Cmax has an FPTAS.

The proofmethod also yields an FPTAS for the two variantsPm | q1, . . . , qm | ∑
wjCj andPm | q1, . . . , qm |Cmax:

here the numberm of machines is a fixed constant that is not part of the input. A schedule is feasible if machineMi

receives at mostqi jobs for i = 1, . . . , m. Finally, we remark that Ageev and Sviridenko[1] provide a polynomial
time approximation algorithm with worst case ratio32 for the (considerably more complex) variant of the problem
P | q1, . . . , qm | ∑

wjCj where the number of machines is part of the input.

2. The proofs

Westartwith theproof ofTheorem1. In apreprocessing step,we renumber the jobs such thatp1/w1�p2/w2� · · · �
pn/wn holds. A straightforward job interchange argument shows that under this numbering, there always exists an
optimal schedule in which both machines process the jobs in increasing order of index. We denote byP = ∑n

j=1pj

the total job processing time and byW = ∑n
j=1wj the total job weight.

In our dynamic program, we will store certain informations for certain schedules for the firstk jobs (0�k�n): Every
such schedule is encoded by a five-dimensional vector[n1, n2, P1, P2, z]:

• ni (i = 1,2) specifies the number of jobs assigned to machineMi .
• Pi (i = 1,2) specifies the overall processing time of all jobs assigned to machineMi .
• zspecifies the weighted sum of completion times of the scheduled jobs.

The state spaceSk consists of all five-dimensional vectors for schedules for the firstk jobs. Fork = 0, the state space
S0 contains[0,0,0,0,0] as its only element. Fork�1, every schedule[n1, n2, P1, P2, z] in state spaceSk−1 can be
extended by either placing jobJk at the end of machineM1 (with a completion timeCk = P1 + pk) or by placing it at
the end of machineM2 (with a completion timeCk = P2 + pk). This yields the two schedules

[n1 + 1, n2, P1 + pk, P2, z + wkP1 + wkpk]
and

[n1, n2 + 1, P1, P2 + pk, z + wkP2 + wkpk].
Weput both schedules into the state spaceSk, regardlesswhether they are feasible (that is: satisfyn1+1�q respectively
n2 + 1�q), or infeasible. In the end, the optimal objective value is extracted fromSn as

min{z : [n1, n2, P1, P2, z] ∈ Sn with n1�q andn2�q}.
The running time of this dynamic programming formulation is pseudo-polynomial, and bounded by O(nP 2W). In
the framework of Woeginger[3], problemP2 | q | ∑

wjCjbelongs to the class of DP-benevolent problems, and thus
automatically has an FPTAS.We briefly sketch how the dynamic program can be translated into an FPTAS (this sketch
is considerably simpler than working through the exposition in[3]).
The main idea is to iteratively thin out the state space of the dynamic program, to collapse solutions that are ‘close’

to each other, and to bring the size of the state space down to polynomial. We define a so-calledtrimmingparameter
� as

� = 1+ ε

2n
. (1)
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The trimming of the state spaces is based on the notion of�-domination:A states′ =[n1, n2, P ′
1, P

′
2, z

′] is�-dominated
by another states = [n1, n2, P1, P2, z], if and only if

P1/��P ′
1�P1� and P2/��P ′

2�P2� and z/��z′ �z�. (2)

As long as the state spaceSk contains a states′ that is�-dominated by another states, we remove this dominated state
s′. This removal procedure eventually terminates, and thus yields the trimmed state spaceS∗

k . Whenever we compute
a new state spaceS∗

k in the trimmed dynamic program, then we start from the trimmed state spaceS∗
k−1 instead of

the original state spaceSk−1 in the original dynamic program.

Lemma 3. The cardinality of every trimmed state spaceS∗
k is polynomially bounded in the input size and in1/ε.

Proof. TheP1-coordinate andP2-coordinate of every state are integers between 0 andP; thez-coordinate is an integer
between 0 andWP. For any quintuple(n1, n2, f, g, h) of integers, the trimmed state spaceS∗

k contains at most
one state[n1, n2, P1, P2, z] with �f �P1��f +1, �g �P2��g+1, and�h �z��h+1. Sincef, g��log�(P )� and
h��log�(WP )�, up to a constant factor the cardinality ofS∗

k is bounded from above by

log3�(WP ) = log32(WP ) / log32(�)� log32(WP ) / (� − 1)3 = log32(WP ) · 8n3/ε3.
Here we first used the inequality log2(1+ x)�x for 0�x�1, and then definition (1). Since log2(WP ) is the number
of bits needed to write down the input, the cardinality ofS∗

k is indeed polynomially bounded in the input size and
in 1/ε. �

Lemma 4. Every states′ = [n1, n2, P ′
1, P

′
2, z

′] in the (un-trimmed) state spaceSk is �k-dominated by some state
s = [n1, n2, P1, P2, z] in the trimmed state spaceS∗

k .

Proof. By a straightforward induction onk. �

Lemma 5. The best feasible solution in the final trimmed state spaceS∗
n has an objective value that is at most a factor

1+ ε above the objective value of the best feasible solution in the final un-trimmed state spaceSn.

Proof. Let s′ =[n1, n2, P ′
1, P

′
2, z

′] be the state inSn that yields the optimal objective value. By Lemma 4, the trimmed
state spaceS∗

n contains a states = [n1, n2, P1, P2, z] that�n-dominatess′. The costz is at most a factor

�n =
(
1+ ε

2n

)n

�1+ ε

above the optimal costz′. Here we used the inequality(1+ x/m)m �1+ 2x for real numbersxwith 0�x�1 and for
integersm�1. �

By Lemma 3, the cardinality of every trimmed state spaceS∗
k is polynomially bounded in the input size and in 1/ε.

Therefore, the computation of the trimmed state spaces in the dynamic program can be done within a time complexity
polynomially bounded in the input size and in 1/ε. Lemma 5 proves the desired worst case guarantee. This completes
the proof of Theorem 1.
The proof of Theorem 2 proceeds along the same lines as the proof above, but is slightly simpler. Schedules are

encoded by four-dimensional vectors[n1, n2, P1, P2] (instead of five-dimensional vectors[n1, n2, P1, P2, z]). The
computation of the un-trimmed and trimmed state spaces remains the same (except for the missing fifth coordinate).
In the end, the optimal objective value is extracted fromSn as

min{max{P1, P2} : [n1, n2, P1, P2] ∈ Sn with n1�q andn2�q}.
This completes the proof of Theorem 2.
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