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Abstract. In this paper, we study a class of optimal path problems with
the following phenomenon: The space complexity of the algorithms for
reporting the lengths of single-source optimal paths for these problems is
asymptotically smaller than the space complexity of the “standard” tree-
growing algorithms for finding actual optimal paths. We present a general
and efficient algorithmic paradigm for finding an actual optimal path for
such problems without having to grow a single-source optimal path tree.
Our paradigm is based on the “marriage-before-conquer” strategy, the
prune-and-search technique, and a data structure called clipped trees. The
paradigm enables us to compute an actual path for a number of optimal
path problems and dynamic programming problems in computational
geometry, graph theory, and combinatorial optimization. Our algorithmic
solutions improve the space bounds (in certain cases, the time bounds
as well) of the previously best known algorithms, and settle some open
problems. Our techniques are likely to be applicable to other problems.

1 Introduction

For combinatorial problems on computing an optimal path as well as its length,
the “standard” approach for finding an actual optimal path is by building (or
“growing”) a single-source optimal path tree. This tree-growing approach is
effective for finding actual single-source optimal paths, especially as the time
complexity is concerned. In fact, it is well-known that no general algorithms are
known that compute an optimal path between one pair of locations with a faster
time complexity than that for computing single-source optimal paths. In this pa-
per, we study a class of optimal path problems with the following interesting yet
less-exploited phenomenon: The space complexity of the algorithms for reporting
the lengths of single-source optimal paths for these problems is asymptotically
smaller than the space complexity of the “standard” tree-growing algorithms for
finding actual optimal paths. Our goal is to show that for such problems, it is
possible to find an actual optimal path without having to grow a single-source
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optimal path tree, thus achieving asymptotically better space bounds for finding
one actual optimal path than those for single-source optimal paths.

It should be mentioned that the phenomenon that the space bound for find-
ing an actual optimal path can be smaller than that for single-source optimal
paths has been observed and exploited in some scattered situations. For example,
Edelsbrunner and Guibas [9] showed that for computing a longest monotone path
or a longest monotone concave path on the arrangement of size O(n2) formed by
n lines on the plane, it is possible to report the length of such a path in O(n2)
time and O(n) space. To output an actual longest monotone path, they used
O(n2logn) time and O(nlogn) space, and to output an actual longest monotone
concave path, they used O(n2logn) time and O(nlogn) space (or alternatively,
O(n3) time and O(n) space). It was posed as open problems in [9] whether these
extra time and space bounds for reporting an actual longest monotone path or
longest monotone concave path could be partially or completely avoided. An-
other example is the problem of computing a longest common subsequence of
two strings of size n [6,14,19] (this problem can be reduced to an optimal path
problem). Hirschberg [14] used dynamic programming to find an actual longest
common subsequence and its length in O(n2) time and O(n) space without grow-
ing a single-source tree. The actual optimal path algorithms in [9] use a recursive
back-up method, and the one in [14] is based on a special divide-and-conquer
strategy called “marriage-before-conquer”.

We study in a systematic manner the phenomenon that the space bound for
finding an actual optimal path can be smaller than that for single-source opti-
mal paths. We develop a general algorithmic paradigm for reporting an actual
optimal path without using the tree-growing approach, and characterize a class
of optimal path and dynamic programming problems to which our paradigm is
applicable. This paradigm not only considerably generalizes the marriage-before-
conquer strategy used in [14], but also brings forward additional interesting tech-
niques such as prune-and-search and a new data structure called clipped trees.
Furthermore, the paradigm makes it possible to exploit useful structures of some
of the problems we consider. Our techniques enable us to compute efficiently an
actual optimal solution for a number of optimal path and dynamic programming
problems in computational geometry, graph theory, and combinatorial optimiza-
tion, improving the space bounds (in certain cases, the time bounds as well) of
the previously best known algorithms. Below is a summary of our main results
on computing an actual optimal solution.

Computing a shortest path in the arrangement of n lines on the plane. As
mentioned in [4,12], it is easy to reduce this problem to a shortest path problem
on a planar graph of size O(n2) that represents the arrangement, and then solve
it in O(n2) time and space by using the optimal shortest path algorithm for
planar graphs [15]. We present an O(n2) time, O(n) space algorithm.

Computing a longest monotone concave path in the arrangement of n lines
on the plane. An O(n2logn) time, O(nlogn) space algorithm and an O(n3) time,
O(n) space algorithm were given by Edelsbrunner and Guibas [9]. We present
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an O(n2) time, O(n) space algorithm. Our solution is an improvement on those
of [9], and settles the corresponding open problem in [9].

Computing a longest monotone path in the arrangement of n lines on the
plane. AnO(n2logn) time,O(nlogn) space algorithm and anO(n

2

ε
) time,O(n

1+ε

ε
)

space algorithm were given by Edelsbrunner and Guibas [9]. We present an
O( n

2 log n
log(h+1) ) time, O(nh) space algorithm, where h is any integer such that

1 ≤ h ≤ nε for any constant ε with 0 < ε < 1. Note that for h = O(1), our
algorithm uses O(n2 logn) time and O(n) space, and for h = nε, our algorithm
uses O(n

2

ε
) time and O(n1+ε) space (unlike [9], our space bound does not depend

on the 1
ε

factor). Our solution is an improvement on those of [9], and provides
an answer to the corresponding open problem in [9].

Computing a longest monotone path in the arrangement of n planes in the
3-D space. An O(n3) time, O(n2) space algorithm was given by Anagnostou,
Guibas, and Polimenis [1] for computing the length of such a path. If the tech-
niques in [9] are used, then an actual path would be computed in O(n3logn) time
and O(n2logn) space. We present an O( n3 log n

log(h+1) ) time, O(n2h) space algorithm,
where h is any integer such that 1 ≤ h ≤ nε for any positive constant ε < 1.

Computing a minimum-weight, k-link path in a graph. A standard tree-
growing approach uses O(k(n + m)) time and O(kn) working space to com-
pute a minimum-weight, k-link path in an edge-weighted graph of n vertices
and m edges. We present an O(k(n+m) log k

log(h+1) ) time, O(nh) working space algo-
rithm, where h is any integer such that 1 ≤ h ≤ kε for any constant ε with
0 < ε < 1. Note that for h = O(1), our algorithm uses O(k(n +m) log k) time
and O(n) working space, and for h = kε, our algorithm uses O(1

ε k(n+m)) time
and O(nkε) working space (the constant of the working space bound does not
depend on 1

ε
). Furthermore, if G is a directed acyclic graph, then our algorithm

uses O(k(n+m)) time and O(n) working space.
0–1 knapsack with integer item sizes. The 0–1 knapsack problem is NP-

complete and has often been solved by dynamic programming [17] or by reducing
the problem to computing an optimal path in a directed acyclic graph of O(nB)
vertices and edges. If a standard tree-growing approach is used for computing an
actual solution, then it would use O(nB) time and space [17] (it was also shown
in [17] how to use a bit representation to reduce the space bound to O( nB

log(n+B) )).
We present an O(nB) time, O(n+B) space algorithm.

Single-vehicle scheduling. The general problem is to schedule a route for a
vehicle to visit n given sites each of which has a time window during which the
vehicle is allowed to visit that site. The goal is to minimize a certain objective
function of the route (e.g., time or distance), if such a route is possible. This
problem is clearly a generalization of the Traveling Salesperson Problem and is
NP-hard even for some very special cases. For example, it is NP-hard for the case
in which a vehicle is to visit n sites on a straight line (equivalently, a ship is to
visit n harbors on a convex shoreline) with time windows whose start times and
end times (i.e., deadlines) are arbitrary [5]. Psaraftis et al. [18] gave an O(n2)
time and space dynamic programming algorithm for the case with n sites on a
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straight line whose time windows have only (possibly different) start times. Chan
and Young [5] gave an O(n2) time and space dynamic programming algorithm
for the case with n sites on a straight line whose time windows have the same
start time but various deadlines. We present O(n2) time, O(n) space algorithms
for both these cases.

Due to the space limit, quite a few of our algorithms must be left to the full
paper. Also, the proofs of our lemmas are left to the full paper.

2 Clipped Trees

A key ingredient of our general paradigm is the data structure called clipped trees
that we introduce in this section. Clipped trees are important to our paradigm
because they contain information needed for carrying out techniques such as
marriage-before-conquer and prune-and-search.

In a nutshell, a clipped tree T is a “compressed” version of a corresponding
single-source optimal path tree SST , such that T consists of a (usually sparse)
sample set of the nodes of SST and maintains certain topological structures of
SST . The sample nodes are selected from SST based on a certain criterion (e.g.,
geometric or graphical) that depends on the specific problem.

Let T ′ be a rooted tree with root node r. Let S be a set of sample nodes
from T ′ with r ∈ S. A clipped tree T of T ′ based on the sample set S is defined
as follows:

– The nodes of the clipped tree T are precisely those in S.
– For every node v ∈ S − {r}, the parent of v in T is the nearest proper

ancestor w of v in T ′ such that w ∈ S.

Clearly, the size of T is O(|S|). If S consists of all the nodes of T ′, then T
is simply T ′ itself. The clipped tree T of T ′ can be obtained by the following
simple procedure:

– Make the root r of T ′ the root of T , and pass down to all children of r in T ′

a pointer to r.
– For every node v of T ′ that receives from its parent in T ′ a pointer to a

proper ancestor node w of v in T ′ (inductively, w is already a node of T ), do
the following: If v ∈ S, then add v to T , make w the parent of v in T , and
pass down to all children of v in T ′ (if any) a pointer to v; otherwise, pass
down to all children of v in T ′ (if any) the pointer to w.

It is easy to see that it takes O(|T ′|) time to construct the clipped tree T
from T ′ and the sample set S, and O(|S|) space to store T . Also, observe that the
above procedure need not have the tree T ′ explicitly stored. In fact, as long as the
nodes of T ′ are produced in any parent-to-children order, T can be constructed.
Note that this is precisely the order in which a single-source optimal path tree
grows, and this growing process takes place in the same time as the lengths of
optimal paths are being computed. Further, observe that one need not have the
sample set S explicitly available in order to construct T . As long as a criterion
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is available for deciding (preferably in O(1) time) whether any given node v of
T ′ belongs to the sample set S, the above procedure is applicable.

Consequently, one can use an algorithm for computing the lengths of single-
source optimal paths and a criterion for determining the membership for a sample
set S of the nodes of the single-source optimal path tree SST to construct a
clipped tree T based on SST and S, without having to store SST . Actually,
when T is being constructed, it is beneficial to associate with the nodes of T
some information about the corresponding optimal paths to which these nodes
belong. Once the process of computing the lengths of single-source optimal paths
terminates, the clipped tree T , together with useful optimal path information
stored in its nodes, is obtained.

Perhaps we should point out a seemingly minor but probably subtle aspect:
The above procedure for building a clipped tree depends only on the ability to
generate a single-source optimal path tree in a parent-to-children (or source-to-
destination) order. This is crucial for the applicability of our general paradigm.
In contrast, the marriage-before-conquer algorithm in [14] computes an actual
optimal path using both the source-to-destination and destination-to-source or-
ders. Although the problem in [14] is symmetric with respect to these two orders,
it need not be the case with many other optimal path problems. For example, for
some dynamic programming problems that are solvable by following a source-
to-destination order (e.g., [5,18]), it may be quite difficult or even impossible to
use the destination-to-source order. This aspect of clipped trees also enables us
to avoid using the recursive back-up method of [9], since it may be difficult to
use this back-up method to significantly reduce the sizes of the subproblems in
a marriage-before-conquer algorithm.

3 Shortest Paths in an Arrangement

In this section, we illustrate our algorithmic paradigm with algorithms for finding
a shortest path and its length between two points in the arrangement of lines on
the plane. The problem can be stated as follows: Given a set H of n planar lines
and two points s and t on some lines of H, find an s-to-t path of the shortest
Euclidean distance that is restricted to lie on the lines of H. As mentioned in
[4,12], to solve this geometric shortest path problem, one can construct a planar
graph of size O(n2) that represents the arrangement of H and then apply the
optimal algorithm for computing a shortest path in a planar graph [15]. Such
an algorithm (even for the path length) uses O(n2) time and space, and it has
been an open problem to improve these bounds. Although we are not yet able to
improve the asymptotic time bound, we show how to reduce the space bound by
a factor of n. Our first algorithm reports the length of the shortest s-to-t path
in O(n) space and O(nlogn + K) time. Our second algorithm finds an actual
shortest path in O(n) space and O(n log2 n log(K/n) + min{n2, Klogn}) time.
Here, K is the size of the part of the arrangement of H that is inside a special
convex polygonal region R (R will be defined below), and K = O(n2) in the
worst case. Hence both our algorithms in the worst case take O(n) space and
O(n2) time.
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Our path length algorithm is based on the topological sweep [9] and topo-
logical walk [2,3] techniques on planar arrangements. Our actual path algorithm
makes use of additional techniques such as marriage-before-conquer, prune-and-
search, and the clipped tree data structure. Our solutions also exploit a number
of interesting observations on this particular problem.

3.1 Topological Sweep and Topological Walk

Arrangements are a fundamental structure in combinatorial and computational
geometry [8], and a great deal of work has been devoted to studying various
arrangements and their properties. Topological sweep [1,9] and topological walk
[2,3] are two powerful space-efficient techniques for computing and traversing
arrangements in a 2-D or 3-D space.

Let H = {l1, l2, . . . , ln} be a set of n straight lines on a plane. The lines in H
partition the plane into a subdivision called the arrangement A(H) of H. A(H)
consists of a set of convex regions (cells), each bounded by some edges (i.e.,
segments of the lines in H) and vertices (i.e., intersection points between the
lines). In general, A(H) consists of O(n2) cells, edges, and vertices. Without loss
of generality (WLOG), we assume that the lines in H are in general position,
i.e., no three lines meet at the same point (the general case can be handled by
using the techniques in [10]).

If one is interested only in constructing and reporting (but not storing)A(H),
then this can be done by a relatively easy algorithm that sweeps the plane with
a vertical line, in O(n2logn) time and O(n) space [11]. Edelsbrunner and Guibas
[9] discovered the novel topological sweep approach for constructing and report-
ing A(H) in O(n2) time and O(n) space. The topological sweep approach sweeps
the plane with an unbounded simple curve that is monotone to the y-axis and
that intersects each line of H exactly once. Asano, Guibas, and Tokuyama [2] de-
veloped another approach, called topological walk, for constructing and reporting
A(H) in O(n2) time and O(n) space. Essentially, a topological walk traverses
A(H) in a depth-first search fashion [2,3]. This approach can be extended to
traversing a portion of A(H) that is inside a convex polygonal region R on the
plane in O(K + (n + |R|) log(n + |R|)) time and O(n + |R|) space, where K is
the size of the portion of A(H) in R and |R| is the number of vertices of R.

3.2 Computing Shortest Path Lengths

We begin with some preliminaries. Let s and t be the source and destination
points on the arrangement A(H) for the sought shortest path. Let st be the line
segment connecting s and t. WLOG, assume st is horizontal with s as the left
end vertex. Let Hc(st) be the set of lines in H that intersect the interior of st,
called the crossing lines of st. Let HP (H−Hc(st)) be the set of half-planes each
of which is bounded by a line in H −Hc(st) and contains st. As observed in [4],
since no shortest path in A(H) can cross a line in H twice, one can restrict the
search of a shortest s-to-t path to the (possibly unbounded) convex polygonal
region R that is the common intersection of the half-planes in HP (H −Hc(st)).
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Hence, the problem of finding a shortest s-to-t path in A(H) can be reduced in
O(nlogn) time to that of finding a shortest s-to-t path in the portion of A(H)
contained in R (by computing the common intersection of the half-planes in
HP (H − Hc(st)) and identifying the crossing lines of st). Henceforth, we let n
denote the number of lines of H intersecting the convex region R and let AR
denote the portion A(H) ∩R of A(H).

We use topological walk, starting at s, to report the length of the shortest
s-to-t path in AR. In fact, our algorithm correctly reports the length of the
shortest path from s to every vertex in AR. The following is a simple yet useful
lemma to our algorithm.

Lemma 1. For any line l ∈ H and any vertex v of A(H) on l, no shortest s-to-
v path in A(H) can cross l (i.e., intersecting the interior of both the half-planes
bounded by l).

We use Lemma 1 in conjunction with the fact that, for a line l ∈ Hc(st) and
a vertex v of AR on l, the topological walk visits v by following paths in AR that
stay on the left half-plane of l before visiting v on any path that crosses l (this
follows from the definition of the topological walk [2,3]). By incorporating the
computation of shortest path lengths with the construction and traversing of AR
by the topological walk, we obtain an algorithm for computing the lengths of the
single-source shortest paths in AR from the source s. Furthermore, the shortest
path lengths are computed in the parent-to-children order in the single-source
shortest path tree rooted at s (the details of the algorithm are a little tedious
and left to the full paper). Hence we have the following lemma.

Lemma 2. The length of the shortest path in AR from s to every vertex of AR
can be computed in O(nlogn+K) time and O(n) space, where K is the number
of vertices of AR.

3.3 Computing an Actual Shortest Path

In this subsection, we present our O(n log2 n log(K/n) + min{n2, Klogn}) time,
O(n) space algorithm for reporting an actual shortest s-to-t path in AR, where
K is the size of AR. In contrast, this algorithm is more interesting yet more
sophisticated than the shortest path length algorithm.

Let v be a vertex on a shortest s-to-t path inAR such that v is the intersection
of two lines li and lj of H and such that at least one of li and lj is a crossing
line of st. Let SP (s, t) denote the shortest s-to-t path in AR. Then SP (s, t) =
SP (s, v) ∪ SP (v, t). The following lemmas are a key to our algorithm.

Lemma 3. The two lines li and lj of H define two interior-disjoint convex
subregions R1 and R2 in R such that SP (s, v) stays within R1 and SP (v, t) stays
within R2. Further, at most four lines of H (two of them are li and lj) can
appear on the boundaries of both R1 and R2.

Lemma 4. The lines in H that SP (s, t) crosses are exactly the crossing lines of
st (i.e., Hc(st)).
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Lemma 5. Let li and lj be defined as in Lemma 3. The crossing lines of st in
Hc(st)−{li, lj} can be partitioned into two subsets H1 and H2, such that no line
in H1 (resp., H2) intersects SP (v, t) (resp., SP (s, v)). Moreover, H1 (resp., H2)
consists of all the lines in Hc(st) − {li, lj} that intersect the interior of the line
segment sv (resp., vt), i.e., H1 = Hc(sv) (resp., H2 = Hc(vt)).

Lemma 5 implies that if we are to compute SP (s, v) (resp., SP (v, t)), the lines
in Hc(vt) (resp., Hc(sv)) need not be considered. Let vc denote the number of
lines in H crossed by SP (s, v) (i.e., vc = |Hc(sv)|), called the crossing number of
v. If we could somehow find a vertex v on SP (s, t) such that its crossing number
vc is (roughly) half the crossing number tc of t, then we would have an efficient
marriage-before-conquer algorithm for reporting SP (s, t). This is because we
would be able to recursively report the subpaths SP (s, v) and SP (v, t) in R1

and R2, respectively (by Lemma 3). Moreover, when computing SP (s, v) and
SP (v, t), we would not have to consider the intersections between lines from the
two line sets Hc(sv) and Hc(vt), thus eliminating from further consideration a
constant fraction of the total O(n2) intersections of A(H) among the n lines.

The next lemma makes it possible for an incremental method to compute the
crossing numbers.

Lemma 6. Let u and w be two neighboring vertices of A(H) on a line l ∈ H
(i.e., uw is an edge of A(H) on l). Let the line l(u) (resp., l(w)) of H intersect
l at u (resp., w). Then Hc(su) differs from Hc(sw) on at most two elements.
Furthermore, these different elements are in {l(u), l(w)}.

Based on Lemma 6, if the crossing number uc of a vertex u of A(H) is already
known, then it is easy to compute wc for a neighboring vertex w of u in A(H).
This immediately implies that the crossing numbers of the vertices of AR can be
computed by a topological walk starting from the source vertex s (with sc = 0).
In particular, our shortest path length algorithm can be easily modified to report
(but not store) the crossing numbers of the vertices of AR.

At this point, it might be tempting to try to compute an actual path SP (s, t)
with the algorithm below. Let k be half the crossing number tc of t (k = tc

2 can
be obtained by running the shortest path length algorithm on AR once, as a
preprocessing step). Then do the following.

1. If k = O(
√
n), then report SP (s, t) by a tree-growing approach in AR. Oth-

erwise, continue.
2. Run the path length algorithm on AR, and build a clipped tree T with sample

nodes s, t, and all vertices u of AR such that u is on a crossing line of st (by
Lemma 3) and uc = k.

3. From the clipped tree T , find a vertex v on SP (s, t) such that vc = k (the
parent node of t in T is such a vertex).

4. Using the vertex v, recursively report the subpaths SP (s, v) and SP (v, t) in
R1 and R2.

The above algorithm, however, does not work well due to one difficulty: The
size of the sample node set S for T is super-linear! The astute reader may have
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observed that the size of the sample set S is closely related to the well-known
problem on the combinatorial complexity of the k-th level of the arrangement
of n planar lines. The best known lower bound for the k-th level size of such
an arrangement is O(n log(k + 1)) [13,16], and the best known upper bound is
O(nk1/3) [7]. Hence the clipped tree T based on such a sample set S would use
super-linear space, not the desired O(n) space. To resolve this difficulty, we avoid
using these vertices u as sample nodes for T such that u is on a crossing line of st
and uc = k. Instead, we use a prune-and-search approach to locate a vertex v on
SP (s, t) such that v is on a crossing line of st and vc = k. Our prune-and-search
procedure is based on some additional observations and (again) on the clipped
tree data structure.

Lemma 7. For any two vertices u and w of A(H) such that u is on SP (s, w),
wc ≥ uc.

Lemma 8. It is possible to find, in O(K + nlogn) time and O(n) space, a
vertical line L such that L partitions the K vertices of AR into two subsets of
sizes c1K and c2K, where c1 and c2 are both positive constants and c1 + c2 = 1.

Lemma 7 provides a structure on SP (s, t) for searching, and Lemma 8 pro-
vides a means for pruning. The procedure below finds such a desired vertex v on
SP (s∗, t∗) in a convex subregion R∗ of R that (possibly) is between two vertical
lines (initially, R∗ = R, s∗ = s, and t∗ = t).

1. Let K∗ be the number of vertices of AR∗ = AR ∩ R∗. If K∗ = O(n), then
find the desired vertex v on SP (s∗, t∗) in AR∗ by a tree-growing approach.
Otherwise, continue.

2. Compute a vertical line L as specified in Lemma 8. Let L partition the region
R∗ into two convex subregions R′ and R′′. Let S be the set of sample nodes
that includes s∗, t∗, and all vertices u and w of AR∗ such that uw is an edge
of AR∗ that intersects L. Note that |S| = O(n) since L intersects each line
of H once.

3. Run the path length algorithm on AR∗ , and build a clipped tree T based on
the sample node set S. Associate with each node of S its crossing number.

4. Find all proper ancestors s∗, u1, u2, . . . , ur of t∗ in T . If T contains no such
nodes ui, then SP (s∗, t∗) does not touch the vertical line L and hence the
search for v is reduced to the subregion (say) R′ containing s∗ and t∗; go to
Step 6. Otherwise, go to Step 5.

5. T contains such nodes ui, and hence SP (s∗, t∗) touches L (possibly multiple
times). Let u1, u2, . . . , ur appear along SP (s∗, t∗) in the s∗-to-t∗ order. Then,
either the desired vertex v ∈ {u1, u2, . . . , ur}, or v is an interior vertex on
exactly one path SP (ui, ui+1), i = 0, 1, . . . , r (with u0 = s∗ and ur+1 =
t∗). Note that based on the definition of the sample set S, such a path
SP (ui, ui+1) stays completely inside one of the subregions R′ and R′′.

6. Let R′ be the subregion containing v. Search for v on SP (ui, ui+1) recursively
in R′.
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It is not hard to show that the above procedure takes O(K+nlogn log(K/n))
time and O(n) space, where K = O(|AR|). Making use of this procedure, we are
able to report an actual path SP (s, t) in O(n log2 n log(K/n)+min{n2, Klogn})
time and O(n) space (the complete details of the SP (s, t) algorithm and its
analysis are left to the full paper).

Remark: By using a prune-and-search procedure and a marriage-before-
conquer algorithm of a similar nature as those above, we are able to find an actual
longest monotone concave path in A(H) on the plane in O(nlogn log(K/n) +
min{n2, Klogn}) time andO(n) space, improving theO(n2logn) time,O(nlogn)
space and O(n3) time, O(n) space solutions in [9].

4 Longest Monotone Paths in an Arrangement

In this section, we illustrate our algorithmic paradigm with an algorithm for com-
puting a longest monotone path in the planar arrangement A(H). This algorithm
makes use of topological sweep [9] and topological walk [2,3] on arrangements,
and of the clipped tree data structure. It takes O( n2 log n

log(h+1) ) time and O(nh)
space, where h is any integer such that 1 ≤ h ≤ nε for any positive constant ε
with ε < 1. This is an improvement over the O(n2logn) time, O(nlogn) space
solution in [9].

A monotone path π in A(H) is a continuous curve consisting of edges and
vertices of A(H), such that every vertical line intersects π in exactly one point.
A vertex of π is a turn if the two incident edges are not collinear. The length of
π is defined as the number of its turns plus one. The longest monotone path in
A(H) is denoted by LMP (A(H)).

Edelsbrunner and Guibas [9] used topological sweep to compute the length of
LMP (A(H)), inO(n2) time andO(n) space. To find the actual path LMP (A(H)),
they used a recursive back-up method that maintains some “snapshots” which
are states of their sweeping process. Storing each snapshot uses O(n) space,
which enables them to resume the sweeping process of their algorithm at the
corresponding state, without having to start from the scratch. As it turns out,
the algorithm for reporting LMP (A(H)) in [9] needs to maintain simultaneously
O(logn) snapshots. Altogether, it takes O(n2logn) time and O(nlogn) space.

Our techniques are different from [9]. We use a marriage-before-conquer
approach and a clipped tree whose sample node set is determined by h y-
monotone curves C1, C2, . . . , Ch, where each Ci, i = 1, . . . , h, is a snapshot of
the y-monotone curve used in the topological sweep [9]. Those curves parti-
tion the O(n2) vertices of A(H) into h + 1 subsets of (roughly) equal sizes of
O(n2/(h+ 1)). With the clipped tree, we can identify for each Ci a vertex vi on
the path LMP (A(H)), such that vi is adjacent to an edge e(vi) of LMP (A(H))
that intersects Ci. After the h vertices v1, v2, . . . , vh are identified, the problem is
reduced to h+1 subproblems. The i-th subproblem is to find a longest monotone
subpath between vi and vi+1 in the region delimited by Ci and Ci+1 (initially,
with v0 and vh+1 being on the vertical lines x = −∞ and x = +∞, respectively).
We then solve the subproblem on each such region recursively, until the region
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for each subproblem contains only O(nh) vertices of A(H) (at that point, we
simply use a tree-growing approach to report the portion of LMP (A(H)) in that
region). In the above algorithm, once v1, v2, . . . , vh are identified, we associate vi
with the number of vertices of A(H), denoted by numi, between Ci and Ci+1.
Therefore we can release the space occupied by the snapshots for C2, C3, . . . , Ch.
When the first subproblem is solved, we do a sweeping, starting from the last
snapshot made in the first subproblem, in order to restore the snapshot of C2.
This is done by counting the number of A(H) vertices until the num1-th vertex
is met by the sweeping. This computation continues with the other subproblems.

Note that, unlike our algorithm for the actual shortest path problem on
A(H), it is not clear to us how the sizes of the arrangement portions for the
subproblems can be significantly reduced. One reason for this is that a longest
monotone path in A(H) can cross a line in H multiple times.

Our algorithm takes O( n
2 logn

log(h+1) ) time and O(nh) space. We leave the details
of this algorithm, the correctness proof, and analysis to the full paper.

5 Dynamic Programming Problems

We briefly characterize the class of dynamic programming problems to which
our general paradigm is applicable. Generally speaking, our paradigm applies to
problems of the following nature:

– The problem seeks an optimal solution that consists of a value (e.g., an
optimal path length) and a structure formed by a set of actual elements
(e.g., an actual optimal path).

– The optimal value can be obtained by a dynamic programming approach
by building a table M , such that each row of M is computed from O(1)
immediately preceding rows.

Let the table M have n columns and k rows (where n is the size of the input).
Using our clipped tree based paradigm, we can report an actual solution by first
finding an element of the actual solution at row k/2 (if row k/2 contains such
an element), and then recursively solving the subproblems on the two subtables
of M (one above and the other below row k/2).

Depending on the particular structures of the problems, one of two possi-
bilities may occur. One possible situation is that the original problem of size n
can be reduced to solving two independent subproblems of size r and size n− r,
resulting in that a constant fraction of the entries of M is eliminated from con-
sideration when solving these subproblems. Our algorithms for finding an actual
solution for problems of this type have the same time and space bounds as those
for computing the optimal value. Another possible situation is that it is not clear
how to reduce the original problem of size n to two independent subproblems
of sizes r and n − r (i.e., each subproblem is still of size n), forcing one to use
virtually the whole table M when solving the subproblems. Our algorithms for
finding an actual solution for problems of this type have the same space bound
as that for computing the optimal value, and a time bound with an extra log k
factor.
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