
Journal of Algorithms 42, 231–254 (2002)
doi:10.1006/jagm.2002.1214, available online at http://www.idealibrary.com on

Sparse Dynamic Programming for Longest Common
Subsequence from Fragments1

Brenda S. Baker

Bell Laboratories, Lucent Technologies, 600-700 Mountain Avenue,
Murray Hill, New Jersey

E-mail: bsb@research.bell-labs.com

and

Raffaele Giancarlo2

Dipartimento di Matematica ed Applicazioni, Universitá di Palermo,
Via Archirafi 34, 90123 Palermo, Italy
E-mail: raffaele@altair.math.unipa.it

Received September 16, 1999

Sparse Dynamic Programming has emerged as an essential tool for the design of
efficient algorithms for optimization problems coming from such diverse areas as
computer science, computational biology, and speech recognition. We provide a new
sparse dynamic programming technique that extends the Hunt–Szymanski paradigm
for the computation of the longest common subsequence (LCS) and apply it to solve
the LCS from Fragments problem: given a pair of strings X and Y (of length n and
m, respectively) and a set M of matching substrings of X and Y , find the longest
common subsequence based only on the symbol correspondences induced by the
substrings. This problem arises in an application to analysis of software systems.
Our algorithm solves the problem in O��M� log �M�� time using balanced trees, or
O��M� log logmin��M�� nm/�M��� time using Johnson’s version of Flat Trees. These
bounds apply for two cost measures. The algorithm can also be adapted to finding
the usual LCS in O��m + n� log �	� + �M� log �M�� time using balanced trees or
O��m+ n� log �	� + �M� log logmin��M�� nm/�M��� time using Johnson’s version of
Flat Trees, where M is the set of maximal matches between substrings of X and

1 An extended abstract of this paper appeared in “Proceedings of the 6th European Sym-
posium on Algorithms,” Venice, Italy, 1998.

2 Work supported in part by grants from the Italian Ministry of Scientific Research, Project
“Bioinformatica e Ricerca Genomica,” and the Italian National Research Council. Part of this
work was done while the author was visiting Bell Laboratories, Lucent Technologies.

231

0196-6774/02 $35.00
 2002 Elsevier Science (USA)

All rights reserved.

232 baker and giancarlo

Y and 	 is the alphabet. These bounds improve on those of the original Hunt–
Szymanski algorithm while retaining the overall approach. 2002 Elsevier Science (USA)

1. INTRODUCTION

Sparse dynamic programming �5� 6� is a technique for the design of effi-
cient algorithms mainly with applications to problems arising in sequence
analysis. As in �5� 6�, here we use the term sequence analysis in a very
broad sense, to include problems that share many common aspects and
come from such diverse areas as computer science, computational biology,
and speech recognition �8� 12� 16�. A typical problem in sequence analy-
sis is as follows: we are given two strings and we would like to find the
“distance” between those strings under some cost assumptions. The tech-
nique can be concisely described as follows. We are given a set of dynamic
programming (DP for short) recurrences to be computed using an associ-
ated DP matrix. The recurrences maximize (or minimize) some objective
function. However, only a sparse set of the entries of the DP matrix really
matters for the optimization of the objective function. The technique takes
advantage of this sparsity to produce algorithms that have a running time
dependent on the size of the sparse set rather than on the size of the DP
matrix. To the best of our knowledge, the idea of using sparsity to speed up
the computation of sequence analysis algorithms can be traced back to the
algorithm of Hunt and Szymanski [10] for the computation of the longest
common subsequence (LCS for short) of two strings. However, the first sys-
tematic study of sparsity in DP algorithms for sequence analysis is due to
Eppstein et al. �5� 6�. Over the years, additional contributions have been
provided by several authors (see for instance �7� 13�).

The main contribution of this paper is to provide new tools for Sparse
DP. Namely, we generalize quite naturally the well-known Hunt–Szymanski
�2� 9� 10� paradigm for the computation of the LCS of two strings. Our
generalization, called LCS from Fragments, yields a new set of Sparse DP
recurrences and we provide efficient algorithms computing them.

As a result, we obtain a new algorithm for the computation of the LCS
of two strings that compares favorably with the known algorithms in the
Hunt–Szymanski paradigm and, in its most basic version, is as simple to
implement as Hunt–Szymanski.

In addition, our techniques solve an algorithmic problem needed for
an application to finding duplication in software systems. In this case, a
database of “matching” sections of code is obtained via a program such
as dup �3� 4�. The notion of “matching” code sections may be either exact
textual matches or parameterized matches in the sense of �3� 4�, in which
parameterized matches between code sections indicate textual similarity

sparse dynamic programming 233

FIG. 1. A plot of parameterized duplication within a file of a production system.

except for a systematic renaming of parameters such as variable or func-
tion names. Typically, to avoid finding matches too short to be meaningful,
dup is used to find maximal matches over a threshold length. An example
of output from dup is shown in Fig. 1. This figure illustrates parameter-
ized duplication within a file of a production system. Both axes represent
lines of code within this file, and each diagonal line segment represents
an instance in which two distinct sections of code within this file are a
parameterized match of at least 10 lines. It would be convenient to have a
graphical user interface that would enable a user to scroll simultaneously
through two regions of code, in such a way that matching segments are
aligned, to view the line-by-line differences in the source. While there is a
natural line-by-line alignment within a single pair of matching sections of
code, the problem is how to handle alignment upon scrolling forward or
backward from one pair of matching segments to other matching segments.
A solution to LCS from Fragments optimizes the alignment across multiple
matching segments. A graphical user interface could allow a user to select
a rectangle of Fig. 1 and scroll through the corresponding regions of code
based on the alignment found by the LCS from Fragments algorithm.

We first present, at an informal level, the problem we have considered
and then compare our results with the state of the art in Sparse DP and
LCS algorithms.

Let X and Y be two strings of length n and m, respectively, over some
alphabet 	. Without loss of generality, assume that �	� ≤ n. The LCS
problem is to find the longest string s1s2 · · · sk such that s1� s2� � � � � sk occur

234 baker and giancarlo

in that order (possibly with other symbols intervening) in both X and Y .
The dual of the LCS problem is to find the minimum edit distance between
X and Y , where an insertion or deletion of a character has cost 1 (Lev-
enshtein distance, see [12]). It is straightforward to transform a solution to
the LCS problem into a solution to the minimum edit distance problem,
and vice versa �2� 9� 14�.

For the LCS from Fragments problem, we are given strings X and Y
and a set M of pairs of equal-length substrings of X and Y that “match.”
The notion of “match” is somewhat general in the sense that the two sub-
strings of X and Y are equal according to some definition of “equality,”
e.g., standard character equality or parameterized match �3� 4�. Each pair
of substrings, called a “fragment,” is specified in terms of the starting posi-
tions in X and Y and a length. The LCS from Fragments problem is to
find a minimal-cost pair of subsequences of X and Y in which successive
symbols correspond based on corresponding positions in a pair in M . For
example, if X = abcddaBC and Y = ABCdabC, and the fragments are
�1� 1� 4� (representing the first four characters of both strings) and �5� 4� 4�
(representing the last four characters of both strings), then (depending on
the cost measure) subsequences abcdaBC of X and ABCdabC of Y might
be a solution to the LCS from Fragments problem, since abc corresponds
to ABC in the first fragment and daBC corresponds to dabC in the second
fragment. We consider two cost measures based on edit distance.

The first cost measure is Levenshtein edit distance, for the case in which
each pair in M consists of identical strings. The second cost measure is for
the case where M represents parameterized matches, i.e., for each pair in
M , the two strings exhibit a one-to-one correspondence as defined in �3� 4�.
In this case, we treat the inclusion of each parameterized match in the
LCS as a new “edit” operation and charge a cost of one for each insertion,
deletion, or segment (of any length) of a fragment. Extension of this cost
measure to deal with the full-fledged application is discussed in Section 5.

For both cost measures, LCS from Fragments can be computed in
O��M� log �M�� time. With sophisticated data structures, such as Johnson’s
version of Flat Trees [11], that bound reduces to O��M� log logmin��M��
nm/�M���. The algorithm for the second cost measure is more complex
than that for the Levenshtein cost measure.

If the set M consists of all pairs of maximal equal substrings of X and Y ,
and the Levenshtein cost measure is used, the solution of the LCS from
Fragments problem is the usual LCS. This generalizes the Hunt–Szymanski
paradigm, where the basis for the algorithm is the set of pairs of positions
with the same symbols inX and Y . The LCS can be computed via LCS from
Fragments in O��m + n� log �	� + �M� log �M�� time, including the time for
the computation ofM . Moreover, using Johnson’s version of Flat Trees [11],
that bound reduces to O��m + n� log �	� + �M� log logmin��M�� nm/�M���.

sparse dynamic programming 235

Since �M� ≤ nm, our algorithm is never worse than the standard O�nm�
dynamic program for LCS. The time bounds that we obtain compare favor-
ably with the best available algorithms for the computation of the LCS [2].

The next section formalizes our definitions and presents two prelimi-
nary lemmas. Section 3 describes the results for the Levenshtein cost mea-
sure, and discusses how our model differs from previous work on sparse
dynamic programming. In particular, the dynamic programming recurrences
we present in that section are related to those discussed in [6]. However,
the differences between those families of recurrences is subtle and the algo-
rithms in [6] do not seem to readily accommodate for those differences. A
more detailed and technical discussion is given in Section 3.2, once we have
presented the new recurrences. Section 4 presents the results for the sec-
ond cost measure. Basically, we exhibit dynamic programming recurrences
that allow to compute the LCS for the second cost measure via a reduction
to a linear number of subproblems, each of which can then be handled with
the algorithms presented in [5]. The last section contains a discussion and
concluding remarks.

2. DEFINITIONS AND PRELIMINARY LEMMAS

Finding the LCS of X and Y is equivalent to finding the Levenshtein
edit distance between the two strings [12], where the “edit operations” are
insertion and deletion. Following Myers [14], we phrase the LCS problem as
the computation of a shortest path in the edit graph for X and Y , defined
as follows. It is a directed grid graph (see Fig. 2) with vertices �i� j�, where
0 ≤ i ≤ n and 0 ≤ j ≤ m. We refer to the vertices also as points. There
is a vertical edge from each nonbottom point to its neighbor below. There
is a horizontal edge from each non-right-most point to its right neighbor.
Finally, if X�i� = Y �j�, there is a diagonal edge from �i− 1� j − 1� to �i� j�.
Assume that each nondiagonal edge has weight 1 and the remaining edges
weight 0. Then, the Levenshtein edit distance is given by the minimum cost
of any path from �0� 0� to �n�m�. We assume the reader to be familiar with
the notion of edit script corresponding to the min-cost path and how to
recover an LCS from an edit script �2� 9� 14�.

Our LCS from Fragments problem also corresponds naturally to an edit
graph. The vertices and the horizontal and vertical edges are as before, but
the diagonal edges correspond to a given set of fragments. Each fragment,
formally described as a triple �i� j� k�, represents a sequence of diagonal
edges from �i− 1� j − 1� (the start point) to �i+ k− 1� j + k− 1� (the end
point). For a fragment f , the start and end points of f are denoted by
start�f � and end�f �, respectively. In the example of Fig. 3, the fragments
are the sequences of at least 2 diagonal edges of Fig. 2. The LCS from

236 baker and giancarlo

FIG. 2. An edit graph for the strings X = CDABAC and Y = ABCABBA. It naturally
corresponds to a DP matrix. The bold path from �0� 0� to �6� 7� gives an edit script from
which we can recover the LCS between X and Y .

FIG. 3. An LCS from Fragments edit graph for the same strings as in Figure 2, where the
fragments are the sequences of at least two diagonal edges of Figure 2. The bold path from
�0� 0� to �6� 7� corresponds to a minimum-cost path under the Levenshtein edit distance.

sparse dynamic programming 237

Fragments problem is equivalent to finding a minimum-cost path in the edit
graph from �0� 0� to �n�m�. We consider two cost measures. As before, in
the Levenshtein cost measure, each diagonal edge has weight 0 and each
nondiagonal edge has weight 1. (However, all of our results generalize to
the case of weighted Levenshtein edit distance. To simplify the presentation
of our ideas, we restrict attention to the unweighted case.) To suit the
software application described in the Introduction, we also consider a cost
measure in which a cost of 1 is incurred for traversing a horizontal edge, a
vertical edge, or a segment (of any nonzero length) of a fragment.

For ease of presentation, we assume that the sequences of edges cor-
responding to different fragments are disjoint and do not even touch.
However, the algorithms can be easily modified to handle cases in which
fragments may not be disjoint, with the same time and space bounds;
nondisjoint fragments actually arise commonly in the application.

For a point p, define x�p� and y�p� to be the x- and y-coordinates of
p, respectively. We also refer to x�p� as the row of p and y�p� as the
column of p. Define the diagonal number of f to be d�f � = y�start�f �� −
x�start�f ��.

It will be helpful to show that we need only consider paths of restricted
form. To this end, we say that a segment of a fragment f is a prefix of f if
it includes start�f �.

Lemma 2.1. Consider a cost measure in which horizontal and vertical
edges have cost 1 and traversing a fragment segment of any length has a cost
of 0 or 1. For any point p in the edit graph, there is a min-cost path from
�0� 0� to p such that every fragment segment traversed is a prefix.

Proof. Suppose P is a min-cost path from �0� 0� to p that does not
satisfy the lemma. We construct another min-cost path P ′ from �0� 0� to
p in which fewer nonprefix segments are used. This argument is applied
inductively to prove the lemma.

Suppose S is the last nonprefix segment used in P . Let f be the frag-
ment containing S. Consider the rectangle R with opposite corners �0� 0�
and start�f �. P starts out at �0� 0�, initially is confined to R or its bound-
aries, and then leaves R, either through the bottom side of R or through the
right side of R.

Suppose P leaves R through the bottom of R, i.e., through a point q to
the left of start�f �, where y�q� < y�start�f �� and x�q� = x�start�f ��. P has
to use at least cost d�start�f �� − d�q� to get from q to the start of S, since
it must cross that many diagonals via horizontal edges. The new path P ′

follows P to q, goes right to start�f �, along f to the end of S, and from
there follows P to p. Obviously, the cost of P ′ is no higher than that of P ,
and P ′ has fewer nonprefix segments than P .

238 baker and giancarlo

The construction when P leaves R through the right edge of R is analo-
gous.

Between successive fragment segments in a min-cost path that satisfies
Lemma 2.1, either there are only horizontal edges, only vertical edges, or
both. In the last case, we can make a stronger statement about the preced-
ing fragment segment.

Lemma 2.2. Consider a cost measure in which horizontal and vertical
edges have cost 1 and traversing a fragment segment of any length has a cost
of 0 or 1, and consider a min-cost path that satisfies Lemma 2.1, i.e., every
fragment segment traversed is a prefix. If there are at least one horizontal edge
and at least one vertical edge between two successive fragment segments in the
path, the earlier fragment segment is the entire fragment.

Proof. If the lemma fails, the path cannot be a min-cost path because a
lower-cost path is obtained by following the earlier fragment for an addi-
tional diagonal edge and reducing the number of horizontal and vertical
edges.

3. LEVENSHTEIN COST MEASURE

In this section, we consider a cost measure corresponding to Levenshtein
edit distance: diagonal edges are free, while insertions and deletions of
characters have a cost of 1 each. For any point p, define mincost0�p� to be
the minimum cost of any path from �0� 0� to p under this cost measure.
Since diagonal edges are free, proof of Lemma 2.1 yields the following
corollary.

Corollary 3.1. For any fragment f and any point p on f�mincost0�p� =
mincost0�start�f ��.

By Corollary 3.1, it is reasonable also to define mincost0�f � =
mincost0�start�f ��.

3.1. Sparse Dynamic Programming Recurrences

We say a fragment f ′ is left of start�f � if some point of f ′ besides start�f ′�
is to the left of start�f � on a horizontal line through start�f �, or start�f � lies
on f ′ and x�start�f ′�� < x�start�f ��. (In the latter case, f and f ′ are in the
same diagonal and overlap.) A fragment f ′ is above start�f � if some point
of f ′ besides start�f ′� is strictly above start�f � on a vertical line through
start�f �.

sparse dynamic programming 239

Define visl�f � to be the first fragment to the left of start�f � if such exists,
and undefined otherwise. Define visa�f � to be the first fragment above
start�f � if such exists, and undefined otherwise.

We say that fragment f precedes fragment f ′ if x�end�f �� < x�start�f ′��
and y�end�f �� < y�start�f ′��, i.e., if the end point of f is strictly inside the
rectangle with opposite corners �0� 0� and start�f ′�.

Suppose that fragment f precedes fragment f ′. The shortest path
from end�f � to start�f ′� with no diagonal edges has cost x�start�f ′�� −
x�end�f �� + y�start�f ′�� − y�end�f ��, and the minimum cost of any path
from �0� 0� to start�f ′� through f is that value plus mincost0�f �. It will be
helpful to separate out the part of this cost that depends on f by the def-
inition Z�f � = mincost0�f � − x�end�f �� − y�end�f ��. Note that Z�f � ≤ 0
since mincost0�f � ≤ x�start�f �� + y�start�f ��. The following Lemma states
that we can compute LCS from fragments by considering only end-points
of some fragments rather than all points in the dynamic programming
matrix. Moreover, it also gives the appropriate recurrence relations that
we need to compute.

Lemma 3.1. For a fragment f , mincost0�f � is the minimum of
x�start�f �� + y�start�f �� and any of cp� cl, and ca that are defined according
to the following:

1. If at least one fragment precedes f� cp = x�start�f �� + y�start�f �� +
min�Z�f ′� f ′ precedes f�.

2. If visl�f � is defined, cl = mincost0�visl�f �� + d�f � − d�visl�f ��.
3. If visa�f � is defined, ca = mincost0�visa�f �� + d�visa�f �� − d�f �.

Proof. Consider a min-cost path P to f . By Lemmas 2.1 and 2.2, we may
assume that any fragment segments it traverses are prefixes, and that if such
a fragment prefix is immediately followed by a sequence of horizontal and
vertical edges with at least one of each, then it is a complete fragment.

Either P traverses no fragment prefixes before start�f � and the cost is
x�start�f �� + y�start�f ��, or it traverses at least one prefix. In the latter case,
the path from the last such prefix S to start�f � has one of three forms: (a)
zero or more horizontal edges, (b) one or more vertical edges, or (c) both
horizontal and vertical edges, with at least one of each.

If there were both horizontal and vertical edges in the path from S to
start�f �, then as noted above, S is an entire fragment f ′. Moreover, the
path to start�f ′� must be a min-cost path. The cost to reach start�f � is
x�start�f �� + y�start�f �� +Z�f ′�. In addition, if there were another f ′′ that
precedes f with Z�f ′′� < Z�f ′�, then P would not be optimal. Therefore,
the cost of P is given by (1).

If there were only horizontal (vertical, respectively) edges in the path
from S to start�f �, the path had to cross visl�f � �visa�f �, respectively), and

240 baker and giancarlo

the path must be a min-cost path to that crossing. By Corollary 3.1, the min-
cost to start�visl�f �� is the same as the min-cost to the crossing point. The
minimum additional cost to reach start�f � is the difference in the diagonal
numbers, as specified by (2) and (3).

We have shown that mincost0�f � must be one of the given formulas.
In addition, we note that wherever mincost0 is used in the formulas, there
must be a corresponding path to the appropriate point, and therefore where
(1)–(3) are defined, there must be paths to start�f � with the corresponding
costs, so mincost0�f � is the minimum of the given formulas.

3.2. Relation with Wilbur–Lipman Local Fragment Alignment
Problem and with RNA Secondary Structure Prediction

LCS from Fragments is reminiscent of the Wilbur–Lipman Local Frag-
ment Alignment problem [17]. Indeed, also in that case, we are given a set
of fragments from which we need to compute a “local alignment.” Unfortu-
nately, there are a few subtle but major differences between the two prob-
lems. Here we may need to choose segments of two overlapping fragments
as part of the LCS (see Fig. 3) while in Wilbur–Lipman it is meaningful only
to use whole fragments and use of partial fragments is not allowed. For the
Levenshtein cost measure and its standard “edit operations” involved, the
LCS privileges insertions and deletions (they are cheap compared to sub-
stitutions) while Wilbur–Lipman privileges substitutions over insertions and
deletions. Technically, those differences yield to different sets of DP recur-
rences that one needs to compute (Lemma 3.1 gives the recurrences for
LCS from Fragments while the recurrences associated with Wilbur–Lipman
are given in �5� 6�).

As for the RNA Secondary Structure prediction, we mention that Recur-
rence (1) in Lemma 3.1 is essentially the computational bottleneck for
the computation of the dynamic programming recurrences associated with
RNA Secondary Structure prediction (see Recurrence (4) in [5]). However,
here we have to consider “overlapping fragments” via Recurrences (2) and
(3) in Lemma 3.1. Therefore, the system of dynamic programming recur-
rences we need to consider here is different than the system associated with
the RNA Secondary Structure Prediction (see [5]).

As we will see, some of the techniques presented in [5] can be used also
for our problem, but they do not seem to be extendable to deal with the
case of “overlapping fragments.”

3.3. The Algorithm

Based on Lemma 3.1, we now develop an algorithm. It uses a sweepline
approach where successive rows are processed, and within rows, points
are processed from left to right. Lexicographic sorting of �x� y�-values is

sparse dynamic programming 241

needed. The algorithm consists of two main phases, one in which we com-
pute visibility information, i.e., visl�f � and visa�f � for each fragment f , and
the other in which we compute Recurrences (1)–(3) in Lemma 3.1. Not all
the rows and columns need to contain a start point or end point, and we
generally wish to skip empty rows and columns for efficiency. For any x (y,
respectively), let C�x� (R�y�, respectively) be the i for which x is in the ith
nonempty column (row, respectively). These values can be calculated in the
same time bounds as the lexicographic sorting. From now on, we assume
that our algorithm processes only nonempty rows and columns.

For the lexicographic sorting and both phases, we assume the existence
of a data structure of type D that stores integers j in some range �0� u� and
supports the following operations: (1) insert, (2) delete, (3) member, (4)
min, (5) successor: given j, the next larger value than j in D, (6) max: given
j, find the max value less than j in D. If d elements are stored, D could be
implemented via balanced trees [1] with O�log d� time per operation or via
the van Emde Boas Flat Trees [15] with O�log log u� time per operation.
If we use Johnson’s version of Flat Trees [11], the time for all of those
operations becomes O�log logG�, where G is the length of the gap between
the nearest integers in the structure below and above the priority of the item
being inserted, deleted, or searched for. Moreover, the following Lemma,
implicit in Johnson’s paper and explicitly given in [5], will be of use:

Lemma 3.2. A homogeneous sequence of k ≤ u operations (i.e., all
insertions, all deletions or all member) on Johnson’s data structure requires
O�k log log u/k� time.

With the mentioned data structures, lexicographic sorting of �x� y�-values
can be done in O�d log d� time or O�d + u� time for d elements in the
range �0� u�. In our case u ≤ n + m and d ≤ �M�. By using D, imple-
mented via Johnson’s version of Flat Trees as just discussed, sorting can
be accomplished via a sequence of insertions, a min, and a sequence
of successor operations. Due to the implementation of Johnson’s data
structure (see [15]), this sequence of operations reduces to an homoge-
neous sequence of M insertions and therefore (by Lemma 3.2) the time is
O��M� log logmin��M�� nm/�M���.

Visibility computation. We now briefly outline how to compute visl�f �
and visa�f � for each fragment f via a sweepline algorithm. We describe the
computation of visl�f �; that for visa�f � is similar. For visl�f �, the sweepline
algorithm sweeps along successive rows. Assume that we have reached
row i. We keep all fragments crossing row i sorted by diagonal number in
a data structure V . For each fragment f such that x�start�f �� = i, we record
the fragment f ′ to the left of start�f � in the sorted list of fragments; in

242 baker and giancarlo

this case, visl�f � = f ′. Then, for each fragment f with x�start�f �� = i, we
insert f into V . Finally, we remove fragments f̂ such that y�end�f̂ �� = i.

If the data structure V is implemented as a balanced search tree, the total
time for this computation is O�M logM�. If van emde Boas Flat Trees are
used, the total time is O�M log logM� (we can “renumber” the diagonals so
that the items stored in the data structure are in the range �0� 2�n+m��).
Even better, notice that we perform on the data structure three homoge-
neous sequences of operations per row: first a sequence of max operations
(to identify visibility information from the start point of a fragment about
to be inserted in the data structure), then a sequence of insertions, and
finally a sequence of deletions. In that case, we can use Johnson’s ver-
sion of Flat Trees [11] to show that the sweep can be implemented to take
O��M� log logmin��M�� nm/�M��� time. The analysis uses Lemma 3.2 and
the convexity of the log log function. The details are as in [5] (Lemma 1).

The main algorithm. Again, we use a sweepline approach of processing
successive rows. It follows the same paradigm as the Hunt–Szymanski LCS
algorithm [10] and the computation of the RNA secondary structure (with
linear cost functions) [5].

We use another data structure B of type D, but this time B stores column
numbers (and a fragment associated with each one). The values stored in B
will represent the columns at which the minimum value of Z�f � decreases
compared to any columns to the left, i.e., the columns containing an end
point of a fragment f for which Z�f � is smaller than Z�f ′� for any f ′ whose
end point has already been processed and which is in a column to the left.
Notice that, once we fix a row, D gives a partition of that row in terms of
columns.

Within a row, first process any start points in the row from left to right.
For each start point of a fragment, compute mincost0 using Lemma 3.1.
Note that when the start point of a fragment f is computed, mincost0 has
already been computed for each fragment that precedes f and each frag-
ment that is visa�f � or visl�f �. To find the minimum value of Z�f ′� over all
predecessors f ′ of f , the data structure B is used. The minimum relevant
value for Z�f ′� is obtained from B by using the max operation to find the
max j < y�start�f �� in B; the fragment f ′ associated with that j is one for
which Z�f ′� is the minimum (based on endpoints processed so far) over all
columns to the left of the column containing start�f �, and in fact this value
of Z�f ′� is the minimum value over all predecessors of f .

After any start points for a row have been processed, process the end
points. When an end point of a fragment f is processed, B is updated
as necessary if Z�f � represents a new minimum value at the column
y�end�f ��; successor and deletion operations may be needed to find and
remove any values that have been superseded by the new minimum value.

sparse dynamic programming 243

Correctness and time analysis. Given M precomputed fragments, the
above algorithm can be implemented in O��M� log �M�� time via balanced
trees, or O�n + �M� log log �M�� time if van Emde Boas data structures
are used. Moreover, using the same ideas as in Eppstein et al. [5], we
can “reschedule” the operations on B so that, for each processed row, we
perform three sequences of homogeneous operations of the type insert,
delete, member. Using this fact, again Lemma 3.2 and the convexity of
the log log function, we can show that this phase of the algorithm takes
O��M� log logmin��M�� nm/�M��� time. Again the details are as in Eppstein
et al. [5] (Lemma 1).

We note that for each fragment f , a pointer may be kept to the fragment
from which a min-cost path arrived at start�f �, and hence both the LCS
and a minimal edit script are easily recovered in O��M�� space.

Theorem 3.1. Suppose X�1 n� and Y �1 m� are strings, and a set M of
fragments relating substrings of X and Y is given. One can compute the LCS
from Fragments in O��M� log �M�� time and O��M�� space using standard
balanced search tree schemes. When one uses Johnson’s data structure, the
time reduces to O��M� log logmin��M�� nm/�M���.

Proof. Correctness follows from Lemma 3.1 and the time analysis from
the discussion preceding the statement of the theorem.

Specialization to standard longest common subsequence. Two substrings
X�i i + k − 1� and Y �j j + k − 1� are a maximal match if and only if
they are equal and the equality cannot be extended to the right and to the
left. A maximal match between two substrings is conveniently represented
by a triple �i� j� k�, corresponding to a sequence of diagonal edges in the
edit graph starting at �i− 1� j − 1� and ending at �i+ k− 1� j + k− 1�.

When M is the set of maximal matches between X and Y , a solution to
the LCS from Fragments problem also gives a solution to the usual LCS
problem. Using techniques in �3� 4�, we can compute the set of maximal
matches in O��m+ n� log �	� + �M�� time and O�m+ n+ �M�� space. Thus,
we obtain the following corollary.

Corollary 3.2. Given two strings X�1 n� and Y �1 m� one can com-
pute the LCS of those two strings in O��m+ n� log �	� + �M� log �M�� time and
O�m + n + �M�� space using standard balanced search tree schemes. When
one uses Johnson’s data structure, the time reduces to O��m + n� log �	� +
�M� log logmin��M�� nm/�M���.

244 baker and giancarlo

4. COST MEASURE WITH UNIT COST FOR
FRAGMENT SEGMENTS

In this section, we consider a cost measure in which any segment of a
fragment can be traversed at a cost of 1, regardless of length. Each insertion
and deletion still incurs a cost of 1. For any point p, define mincost1�p� to
be the minimum cost of a path from �0� 0� to p under this cost measure.

The solution of the previous section breaks down under the new cost
measure. The problem is that a minimum-cost path to a point on a fragment
f may not be able to traverse f because of the cost of traversing f itself.
The failure has ramifications because the proof of Lemma 3.1 assumed
that the cost of a path through a point on visl�f � could be computed from
mincost0�visl�f �� without concern about whether visl�f � itself was used in
the path, and similarly for visa�f �. Fortunately, a path from �0� 0� to a
point on a fragment f can save at most 1 by not passing through start�f �.
Based on this observation, we can derive a dynamic programming recur-
rence which can then be computed via a linear number of subproblems
that are essentially the same as those considered in [5].

4.1. A Reduction

Proposition 4.1. For a point p on a fragment f , if there is a path of cost
c from �0� 0� to p, there is a path of cost at most c from �0� 0� to start�f � and
a path of cost at most c + 1 from �0� 0� to p via start�f � and a prefix of f .

Proof. Suppose that P is a min-cost path to p and its cost is c. By
Lemma 2.1, we may assume that every fragment segment P traverses is a
prefix. If p passes through start�f �, we are done since the cost of traversing
a prefix of f is 1. So assume P does not pass through start�f �. In this case,
it cannot traverse any segment of f , and path P arrives at p either from the
left or from above.

Suppose it arrives from the left. Since it is a min-cost path to p, it cannot
pass through a point of f closer to start�f � than p, or it would incur a cost
of at least 2 in horizontal and vertical edges to reach p from that point,
while the cost for traversing part of f is only 1. Consequently, it must
pass through some point to the left of start�f �. Let q be the right-most
such point. Consider a new path that follows P as far as q and then goes
directly right to start�f � and along f to p. Since P had to traverse just as
many diagonals to get from q to p, at a cost of 1 per diagonal, the cost of
reaching start�f � via the new path is no higher than c. The additional cost
of traversing part of f to reach p is 1.

The case in which P arrives at p from above is analogous.

sparse dynamic programming 245

For any fragment f , we define mincost1�f � = 1 +mincost1�start�f ��. By
Lemma 2.1, this is the minimum cost of reaching any point on f (other
than start�f �� via a path that uses a nonempty prefix of f .

We wish to consider the minimum cost of reaching start�f � from a
previous fragment as we did before, but will take into account the complica-
tions of the new cost measure. Define visl�f � and visa�f � as before. Corre-
sponding to Z from before, we define Zp�f � = mincost1�f � − x�end�f �� −
y�end�f ��. Since the cost of a sequence of horizontal edges or a sequence
of vertical edges is the change in diagonal number, it will be convenient
to define Zl�f � = mincost1�f � − d�f � and Za�f � = mincost1�f � + d�f � to
separate out costs dependent only on f . The lemma that corresponds to
Lemma 3.1 is the following.

Lemma 4.1. For a fragment f� mincost1�start�f �� is the minimum of
x�start�f �� + y�start�f �� and any of cp� cl, and ca that are defined via the
following:

1. If at least one fragment precedes f , then cp = x�start�f �� +
y�start�f �� +min�Zp�f ′� f ′ precedes f�.

2. If visl�f � is defined, then cl is defined as follows: if there exists at
least one fragment f ′ to the left of start�f � with Zl�f ′� = Zl�visl�f �� − 1 then
cl = Zl�visl�f �� − 1+ d�f � else cl = Zl�visl�f �� + d�f �.

3. If visa�f � is defined then ca is defined as follows: if there exists at
least one fragment f ′ above start�f � with Za�f ′� = Za�visa�f �� − 1 then ca =
Za�visa�f �� − 1− d�f � else ca = Za�visa�f �� − d�f �.
Proof. By Lemma 2.1, we may assume that a min-cost path to start�f �

traverses only prefixes of fragments, although it may cross a single point
of a fragment. By Lemma 2.2, we may assume that if its traversal of a
fragment prefix is followed by a sequence of horizontal and vertical edges,
with at least one of each, that prefix must be a complete fragment.

If the path traverses no fragment prefixes, the cost is x(start�f �� +
y(start�f ��. If it traverses at least one prefix, we consider how the path
arrives at start�f � from the last prefix traversed. Case 1 computes the
minimum cost of paths from �0� 0� to start�f � that arrive at start�f � via
a sequence of horizontal and vertical edges after the last fragment prefix
traversed, with at least one of each. Case 2 computes the minimum cost
of paths that arrive at start�f � via zero or more horizontal edges from the
last fragment prefix traversed. Case 3 computes the minimum cost of paths
that arrive at start�f � via one or more vertical edges from the last frag-
ment prefix traversed. The proof of case 1 is similar to that of case (1) of
Lemma 3.1. However, the proofs of cases (2) and (3) are more compli-
cated than the corresponding cases of Lemma 3.1. We give the proof for
case (2); case (3) is analogous.

246 baker and giancarlo

Case 2 covers two types of paths that reach start�f � via zero or more
horizontal edges after traversing a prefix (of more than one point) of
the previous fragment. In type (a), the path traverses a prefix of visl�f �
to the point p on f that is directly to the left of start�f �. In type (b), it
passes through p but does not traverse a prefix of visl�f �; the last seg-
ment it traverses is a prefix of a fragment to the left of p. (In both types,
“left” includes the situation in which p coincides with start�f � and there
are zero horizontal edges.) Consider a min-cost path of type (a) and a
min-cost path of type (b) for which f ′ is the last fragment for which a
prefix is traversed. The cost of reaching start�f � through the min-cost
path of type (a) is Zl�visl�f �� + d�f �, while the cost of reaching start�f �
through the min-cost path of type (b) is Zl�f ′� + d�f �. We will show that
Zl�f ′� ≥ Zl�visl�f �� − 1. Consequently, in Case 2, along with paths of type
(a), we need consider only paths of type (b) for which Zl�f ′� = Zl�f � − 1,
and we derive the formula in Case 2.

For the min-cost path of type (b), let c be its cost for reaching p. For this
path, the cost of reaching start�f � is Zl�f ′� + d�f � = c + d�f � − d�visl�f ��.
Consequently, Zl�f ′� = c− d�visl�f ��. By Proposition 4.1, the cost of reach-
ing p by a min-cost path of type (a) is at most c+ 1, and the cost of reaching
start�f � via this path is Zl�visl�f �� + d�f � ≤ c+ 1+ d�f � − d�visl�f ��. Thus,
Zl�visl�f �� ≤ c + 1− d�visl�f �� = Zl�f ′� + 1, and Zl�f ′� ≥ Zl�visl�f �� − 1,
as we undertook to prove.

We have shown that mincost1�start�f �� has to be one of the given for-
mulas. In addition, we note that whenever any one of cp� cl, and ca is
defined, there must be a path to start�f � with the corresponding cost, so
mincost1�start�f �� is the minimum of any of these that are defined.

Notice that (1) in Lemma 4.1 is the same as (1) in Lemma 3.1 and can be
handled in essentially the same way. Recurrence (2) conveniently requires
grouping fragments according to their Zl values, since for a given fragment
f , we are free to choose any fragment with the value of Zl specified by the
Lemma. There can be O�n+m� such groups, since the range of values of
Zl is �−�n+m�� 0�. Each of those groups of fragments must be organized
so that we can properly identify a fragment to the left of start�f �, when
needed. The same type of observation holds for (3).

However, in applying Lemma 4.1, there is a technical difficulty. If the
dynamic programming matrix is swept by rows, then dynamically maintain-
ing fragments in order to answer (1) and (2) is “easy” since the “visibility”
information is nicely partitioned in columns (for (1)) and diagonal num-
bers (for (2)) that are invariant with respect to row changes. However,
dynamically maintaining fragments needed for (3) is not as simple since
we now have “visibility” limited by columns and simultaneously by diagonal
numbers. In a sense, groups of fragments in (2) and (3) are “orthogonal.”

sparse dynamic programming 247

Such an “orthogonality” is completely analogous to one encountered in the
computation of the Wilbur–Lipman dynamic programming recurrence [5],
except that for Wilbur–Lipman one can divide the fragments in only two
orthogonal groups. The algorithm proposed here can be outlined as fol-
lows (we give only a brief overview for the computation of (1) and (2) in
Lemma 4.1 and provide a more detailed presentation for (3) in Section 4.2):

Algorithm PLCS
(a) Computation of Zp. First, compute visl�f � and visa�f � as in Sec-

tion 3.3. Again, the main algorithm sweeps across successive rows and has
a data structure B that keeps track of the columns in which the minimum
value of Zp�f � decreases compared to columns for the left. This data struc-
ture B is used to compute (1) in Lemma 4.1 in essentially the same way in
which it is used in Section 3.3 to compute (1) in Lemma 3.1.

(b) Computation of Zl . During the life of the entire algorithm, a sepa-
rate data structure of type D is kept for each distinct value of Zl created
by the algorithm. One possibility is to keep a pointer to each of these data
structures in an array Al that would use O�n +m� space since the range
of values of Zl is �−�n +m�� 0�. Alternatively, another instance of D can
be used to store the distinct values of Zl that occur, together with the
associated pointers. In this case, the total space used is O��M��. For a par-
ticular value v of Zl�f ′�, consider the set S of fragments f ′ with Zl�f ′� = v.
We need to store information about S in a way that enables answering
queries about whether one of the fragments in S is left of start�f � for
a particular fragment f , i.e., to ask whether there exists an f ′ in S with
x�start�f ′�� < x�start�f �� ≤ x�end�f ′�� and d�f � > d�f ′�. We need only
keep track of the diagonal numbers of all fragments that have this value
of Zl and cross the current row, query for the minimum diagonal, and
compare that diagonal number of d�f �. This is enough because by (2) of
Lemma 4.1 we can pick any fragment f ′ with the given value to the left
of start�f �. The data structure must be built dynamically as fragments are
processed and the values of Zl become available. We omit the details.

(c) Computation of Za. As for the computation of Za, we keep each
group corresponding to a value of Za separate. For a particular value of Za,
dynamic management of the fragments in it is essentially as in Algorithm
Left Influence in Section 4 in [5]. In the next subsection, for convenience
of the reader, we report a high-level description of that algorithm as well
as the minor changes needed to use it here.

4.2. Computation of Za

Fix a value of Za, say v. We show how to dynamically maintain the set of
fragments that, during the life of Algorithm PLCS, have a value of Za = v.
In what follows MDP refers to the dynamic programming matrix swept by

248 baker and giancarlo

Algorithm PLCS, while MDPv refers to the matrix restricted only to frag-
ments with value Za = v. The left influence of f is the region of MDPv below
the fragment and limited by the columns touching start�f � and end�f �.
Notice that the left influence of a fragment includes all possible start points
of fragments that have f above them.

In order to describe Algorithm Left Influence in [5] and then show
how it can be used to compute (2) for Za = v, it is best to extend each
fragment to “touch” the bottom boundary of MDPv (see Fig. 4). That has
the effect of extending the left influence of a fragment to be a triangular
region of the matrix, fitting the framework in [5]. From now on, a frag-
ment is represented by a single point: start�f �. Given two points x and y,
notice that their left influences may intersect. We need a criterion to estab-
lish which point is “better than the other” in the common part of their
left influence. Such a criterion is application dependent and the only two
important things are: (a) it can be applied in constant time to any point
z of the intersection; (b) if x is better than y at z, then it will be better
in any other point of the intersection. We use the following rule. Consider

FIG. 4. The matrix MDPv and the left influences of points in it. Part of a left influence may
be hidden by another.

sparse dynamic programming 249

two points x and y with nonempty intersection of left influences: x is better
than y whenever (a) the left influence of x completely contains that of y or
(b) x is to the left of y, i.e., the diagonal of the left influence of x crosses
the column of the left influence of y.

Algorithm Left Influence
(a) Input Description. We are given two sequences of batches B1� � � � � Bk

and A1� � � � �Ag. We refer to the B batches as partition batches and to the
A batches as query batches. Batch Bi� 1 ≤ i ≤ k, is composed of fragment
starting points on the same row of MDPv. Row numbers associated to the
batches are increasing with batch numbers. Query batches satisfy the same
conditions. A query batch Ai and a partition batch Bj can have equal row
numbers. In that case, the query batch “precedes” the partition batch. So,
the two types of batches can be organized in a unique linear ordering, which
we refer to as the sequence of batches. All the batches become available
on-line and must be processed in k+ g steps.

(b) Processing of Query Batches. Assume that we have reached step j
and that the jth batch of the sequence is query batch A. For each point z
in A return the point x in the partition batches preceding A that is best for
z. That is, z is in the left influence of x and, for any other point y having
it in its left influence and being in one of the partition batches preceding
A, x is better than y at z.

(c) Processing of Partition Batches. Assume that we have reached step
j and that the jth batch of the sequence is a partition batch B. Integrate
B with the previous partition batches so that (b) can be properly answered
for future query batches.

(d) Preparing for the Next Batch. Intersection points of regions are pro-
cessed as necessary to update the partition for the next row containing a
query batch or partition batch. The partition is updated in accordance with
the criterion established above for which region is “better” than the other.

Now, if the fragments in our LCS problem were really touching the bot-
tom boundary of the dynamic programming matrix, we could use Algorithm
Left Influence to answer queries in (2) of Lemma 4.1 for Za = v. Indeed,
as Algorithm PLCS sweeps MDP by rows, batches of points with Za = v
become available and they are interleaved with batches of points for which
PLCS needs to query in order to find out the fragments needed in (2) of
Lemma 4.1.

However, the relevant left influence of a fragment in Algorithm PLCS
is only under the fragment, and not the entire triangular region as above.
We show how to accommodate this change by hiding the irrelevant part
of the left influence, and briefly discuss the “inner working” of Algorithm
Left-Influence using the notion of left influence needed here.

250 baker and giancarlo

We consider two types of triangular regions: real and dummy. Given a
fragment f , a real region is the left influence originating at start�f � while a
dummy region is the left influence originating at end�f �. A dummy region is
always worse than a real region, in their intersection, except when compared
to its corresponding real region. The rule for comparing two regions is
modified as follows. Let f and f ′ be two fragments. The real region of f is
better than the real region of f ′ in their intersection if and only if f has its
endpoint on a column of higher number than the one on which f ′ has its
endpoint. The dummy region of f is better than the dummy region of f ′ in
their intersection if and only if the real region of f is better than the real
region of f ′ in their intersection.

We modify Algorithm PLCS to take both real and dummy regions into
account in generating and handling query batches and partition batches.
Partition batches will include the starting points of dummy regions as well
as starting points of real regions.

We now give some details on the “internal working” of Algorithm Left
Influence, using the notions of real and dummy regions. We assume that
we need to process query batch A, corresponding to row r. We also assume
that we have the partition of row r into regions (see Fig. 5) and that the next
batch to process after A is a partition batch B (see Fig. 6), corresponding
to the same row as A. We also have a data structure containing potential
intersection points of successive boundaries in the partition, where there is
a diagonal boundary to the left of a vertical boundary; these intersection
points may lie in rows to be processed in the future.

Representing and querying the partition. Each region is represented by
its boundaries. Each boundary can be encoded as a column number or
a diagonal number (see Fig. 5). We keep those boundaries in two distinct
data structures C-Bound and D-Bound. Given a query point x, we can eas-
ily find which region it belongs to in the current partition by identifying the
column in C-Bound to the left of y�c� and the diagonal in D-Bound below
d�x�. Additional details are provided in [5].

Updating the partition. For each point x in B, we identify the region R
in which it lies in the current partition. Assume that R belongs to y. A
decision is made as to whether x’s region is better or y’s region is better.
If x’s region is better, x’s region is inserted into the partition; y’s region
may be split in two. If y’s region is better, x is discarded. Obviously, in
the case where both regions are real and x loses to y because x’s fragment
reaches a column number lower than the one reached by the fragment
originating at y, discarding of x is the appropriate action because the part of
the matrix covered by the fragment at x is already covered by the fragment
at y. Changes to the partition are made by properly updating C-Bound and

sparse dynamic programming 251

FIG. 5. A partition of row r into regions, according to which left influence is best at their
intersection with row r. Solid diagonal lines show fragments, while dashed diagonal lines show
dummy left influences. Notice that regions appear linearly ordered with different types of bor-
ders, e.g., column–column; column–diagonal. Each point can “own” more than one region (see
point X). The query points A and B fall into regions owned by X and Y . Query point C falls
into a region that belongs to a dummy left influence. Therefore, it has no fragment above it.

D-Bound. Creation of a new region may also involve the creation of new
intersection points and the deletion of an old one. See Fig. 6.

Preparing for the next batch. Assume that the next batch corresponds to
row r ′ > r. Independently of whether it is a partition or query batch, we
need to have the correct partition when we get to row r ′. That means we
have to process the intersection points on rows from r + 1 to r ′. In process-
ing an intersection point, a region is removed, and a decision is made as
to which of its neighboring regions wins. Processing an intersection point
may also require adding another intersection point. See Fig. 6. Intersection
points to be processed are maintained dynamically and a conflict at an
intersection point is resolved only when needed.

252 baker and giancarlo

FIG. 6. Points F and G fall into a region owned by Z. In the figure, they have been inserted
in the partition assuming that their fragments “touch” a column to the right of that “touched”
by the fragment originating in Z. Notice that they create an intersection point, L in the figure,
where we have to decide how the partition must continue. Assuming that the next batch is on
a row past L, we need to resolve conflicts at intersection points T�H, and L.

Correctness and consistency of this approach with Algorithm PLCS and
with the requirements of Lemma 4.1 is straightforward, given the correct-
ness of Algorithm Left Influence. As before, operations of the same type
may be grouped together in order to take advantage of the efficiencies of
Johnson’s version of Flat Trees.

Lemma 4.2. [5] Assume that Algorithm Left Influence has given a
total of Mv query points and M ′

v partition points. For each query point
x, it returns the start point of a fragment above x. Then total time is
O�Mv log logmin�Mv� nm/Mv� +M ′

v log logmin�M ′
v� nm/M

′
v��, when D is

Johnson’s version of Flat Trees. When D is a balanced search tree, the time
is O�Mv logMv +M ′

v logM
′
v� time.

sparse dynamic programming 253

4.3. Correctness and Time Analysis

Theorem 4.1. Suppose X�1 n� and Y �1 m� are strings, and a set M
of fragments relating substrings of X and Y is given. One can use standard
balanced search trees to compute the LCS from Fragments in O��M� log �M��
time and O��M�� space for a cost measure where each insertion, deletion, or
fragment segment has cost 1. When one uses Johnson’s data structure, the time
reduces to O��M� log logmin��M�� nm/�M���.
Proof. Correctness follows from Lemma 4.1. As for the time analysis, we

limit ourselves to consider the O�n +m� instances of the Algorithm Left
Influence when D is Johnson’s version of Flat Trees. All other cases of
Algorithm PLCS, i.e., (a) and (b), can be handled similarly.

Assume that we have s ≤ n + m + 1 distinct values of Za during the
entire life of Algorithm PLCS. Let M ′

vi
be the number of partition points

for the ith value of Za. Then, the time due only to partition points is,
apart from multiplicative constants,

∑n+m+1
i=1 M ′

vi
log logmin�M ′

vi
� nm/M ′

vi
�.

But for some constant c�
∑n+m+1
i=1 M ′

vi
≤ c�M�, since there are at most two

regions per fragment, and each region has at most two intersection points
at the bottom. By the convexity of the log log function we obtain that the
time due only to partition points is O��M� log logmin��M�� nm/�M���. An
analogous reasoning holds for query points, since each fragment queries at
most one value of Za.

5. CONCLUDING REMARKS

We have shown how to compute longest common subsequence of two
strings X and Y from Fragments, i.e., from a set of “matching” pairs of
substrings of the two input strings. The notion of match is either exact tex-
tual match or parameterized match according to the definition given in [3,
4]. Moreover, we use two cost measures, one of which is motivated by a
software application. The algorithmic techniques that we obtain comple-
ment the ones already available in [5].

The two algorithms are quite elegant in that Lemmas 3.1 and 4.1 suc-
cinctly represent the requirements for each piece of the minimum cost path
through the edit graph and the algorithms cleverly store a minimal amount
of information to apply the lemmas.

For the software application, the database of matches may include both
exact matches (where the corresponding substrings are identical) and
parameterized matches (where the corresponding substrings contain dif-
ferent variable names). It may be desirable to assign a cost of 0 to exact
matches and a cost of 1 to parameterized matches that are not exact. It is
straightforward to modify the algorithm of the previous section to allow

254 baker and giancarlo

for this modification, without changing the time bounds. Other weights
may also be used as long as the cost of a fragment is less than the cost of
an insertion plus a deletion, otherwise Lemma 2.2 would fail.

ACKNOWLEDGMENT

The authors are deeply indebted to the referee for very punctual comments and suggestions
that have greatly helped in the presentation of our ideas.

REFERENCES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “Data Structures and Algorithms,” Addison-
Wesley, Reading, MA, 1983.

2. A. Apostolico, String editing and longest common subsequence, in “Handbook of Formal
Languages” (G. Rozenberg and A. Salomaa, Eds.), Vol. 2, pp. 361–398, Springer Verlag,
Berlin, 1997.

3. B. S. Baker, Parameterized pattern matching: Algorithms and applications, J. Comput.
Syst. Sci. 52(1) (1996), 28–42.

4. B. S. Baker, Parameterized duplication in strings: Algorithms and an application to soft-
ware maintenance, SIAM J. Comput. 26(5) (1997), 1343–1362.

5. D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano, Sparse dynamic programming I:
Linear cost functions, J. Assoc. Comput. Mach. 39 (1992), 519–545.

6. D. Eppstein, Z. Galil, R. Giancarlo, and G. Italiano, Sparse dynamic programming II:
Convex and concave cost functions, J. Assoc. Comput. Mach. 39 (1992), 546–567.

7. M. Farach and M. Thorup, Sparse dynamic programming for evolutionary tree compari-
son, SIAM J. Comput. 26 (1997), 210–230.

8. D. Gusfield, “Algorithms on Strings, Trees and Sequences—Computer Science and Com-
putational Biology,” Cambridge University Press, Cambridge, 1997.

9. D. S. Hirschberg, Serial computations of Levenshtein distances, in “Pattern Matching
Algorithms” (A. Apostolico and Z. Galil, Eds.), pp. 123–142, Oxford University Press,
Oxford, 1997.

10. J. W. Hunt and T. G. Szymanski, A fast algorithm for computing longest common subse-
quences, Comm. ACM 20 (1977), 350–353.

11. D. B. Johnson, A priority queue in which initialization and queue operations take
O�log logD� time, Math. Systems Theory 15 (1982), 295–309.

12. J. B. Kruskal and D. Sankoff (Eds.), “Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison,” Addison-Wesley, Reading, MA, 1983.

13. W. Miller and E. Myers, Chaining multiple alignment fragments in sub-quadratic time, in
“Proc. of 6th ACM—SIAM SODA,” 1995, pp. 48–57.

14. E. W. Myers, An O(ND) difference algorithm and its variations, Algorithmica 1 (1986),
251–266.

15. P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear
space, Inform. Process. Lett. 6 (1977), 80–82.

16. M. S. Waterman, “Introduction to Computational Biology. Maps, Sequences and
Genomes,” Chapman Hall, Los Angeles, 1995.

17. W. J. Wilbur and D. J. Lipman, Rapid similarity searches of nucleic acid and protein data
banks, in “Proc. Nat. Acad. Sci. USA 80,” 1983, pp. 726–730.

	1.INTRODUCTION
	FIG.1.

	2.DEFINITIONS AND PRELIMINARY LEMMAS
	FIG.2.
	FIG.3.

	3.LEVENSHTEIN COST MEASURE
	4.COST MEASURE WITH UNIT COST FOR FRAGMENT SEGMENTS
	FIG.4.
	FIG.5.
	FIG.6.

	5.CONCLUDING REMARKS
	ACKNOWLEDGMENT
	REFERENCES

