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Abstract Consider the dynamic program h(n) = min1≤j≤n a(n, j), where a(n, j) is
some formula that may (online) or may not (offline) depend on the previously com-
puted h(i), for i < n. The goal is to compute all h(n), for 1 ≤ n ≤ N . It is well
known that, if a(n, j) satisfy the Monge property, then the SMAWK algorithm (Ag-
garwal et al., Algorithmica 2(1):195–208, 1987) can solve the offline problem in
O(N) time; a �(N) speedup over the naive algorithm.

In this paper we extend this speedup to the online case, that is, to compute h(n) in
the order n = 1,2, . . . ,N when (i) we do not know the values of a(n′, j) for n′ > n

before h(n) has been computed and (ii) do not know the problem size N in advance.
We show that if a(n, j) satisfy a stronger, but sometimes still natural, property than
the Monge one, then each h(n) can be computed in online fashion in O(1) amortized
time. This maintains the speedup online, in the sense that the total time to compute all
h(n) is O(N). We also show how to compute each h(n) in the worst case O(logN)

time, while maintaining the amortized time bound.
For a(n, j) satisfying our stronger property, our algorithm is also simpler than the

standard SMAWK algorithm for solving the offline case. We illustrate our technique
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on two examples from the literature; the first is the D-median problem on a line, and
the second comes from mobile wireless paging.

Keywords Dynamic programming · Monge property

1 Introduction

Consider the class of problems defined by

h(n) = min
1≤j≤n

a(n, j), ∀ 1 ≤ n ≤ N, (1)

where a(n, j) is some formula that might depend upon the values of h(i), for
1 ≤ i < n. Our goal is to compute all h(n) for 1 ≤ n ≤ N .

In many applications, the values of a(n, j) do depend1 on the previously computed
values {h(i) : 1 ≤ i < n} so, (1) essentially represents a simple dynamic program
(DP). A simple example would be DPs in the form

h(n) = min
1≤j≤n

{
h(j − 1) + w(n, j)

}
, ∀ 1 ≤ n ≤ N, (2)

i.e., a(n, j) = h(j − 1) + w(n, j) where h(0) is given and w(n, j) is some function
that does not depend upon any of the h(·) values.

A naive calculation of the h(n) as defined by (1) would require �(N2) time. It
is well known that if the a(n, j) satisfy some special conditions, e.g., the Monge
property, then this calculation can be reduced down to �(N) time. These speedups
require that the problem be static and do not allow online computation of the h(n).
The main result of this paper is an algorithm that, in the presence of a stronger version
of the Monge property, does permit maintaining the speedup in an online setting.

In the remainder of this section we define our terms and then state our results. In
Sect. 2 we quickly review the Monge property and place our new stronger property
in context. We also discuss a possible confusion that might occur due to the fact
that the word “online” appeared previously in the Monge literature with a different
meaning. Section 3 presents our new algorithm and Sect. 4 some modifications and
generalizations. Section 5 presents two applications to problems in the literature. We
conclude in Sect. 6 with an open question.

1.1 Definition of Online

For arbitrary functions a(n, j), it would require �(N2) time to compute all the h(n).
We can do better if the a(n, j) possess special properties.

Definition 1 The values of a(n, j) satisfy the Monge property [4], if for all 1 ≤ j <

n < N ,

a(n, j) + a(n + 1, j + 1) ≤ a(n + 1, j) + a(n, j + 1). (3)

1In this paper we follow the standard practice of assuming that any particular a(n, j) can be computed in
O(1) time when needed, provided that the values of h(i) upon which it depends are known.
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From our perspective, the major result on such functions is the SMAWK2 algo-
rithm [1] which permits finding the h(n) in linear time.

Theorem 2 (SMAWK [1]) Consider the DP defined by (1). If a(n, j) satisfy the
Monge property, and

1. for any n and j , the value of a(n, j) can be computed in O(1) time, i.e., a(n, j)

does not depend on any h(i);
2. and the value of N is known in advance,

then the SMAWK algorithm can compute all of the h(n), for 1 ≤ n ≤ N , in O(N)

time.

The SMAWK algorithm therefore provides a �(N) speedup to the naive algo-
rithm, in the offline case. Section 2.1 provides more background on the Monge prop-
erty and the SMAWK algorithm.

The main purpose of this paper is to consider the DP problem in online settings.
In applications, “online” means that some sort of “data” arrives one at a time, and,
after each arrival, we recompute the optimal solution. Translating to mathematics, at
each step, say step n, the values of a(n, j) for 1 ≤ j ≤ n become available, and we
need to compute h(n). We will see some applications in Sect. 5.

An online algorithm would allow both of

(C1) the value of a(n, j) may depend on any (or all) h(i), for 1 ≤ i < n,
(C2) and the value of N is not known in advance.

(C1) violates condition 1 of Theorem 2 and (C2) violates condition 2; the SMAWK
algorithm therefore can’t work in the presence of either. We call (C1) and (C2) the
online conditions.

The online condition (C2) is straightforward, but to understand (C1) we need to
clarify the meaning of “depend”. There can actually be two types of dependencies:

1. Explicit dependency. The formula a(n, j) contains some h(i) explicitly. For ex-
ample, in (2), we have a(n, j) = h(j − 1) + w(n, j).

2. Implicit dependency. The value of a(n, j) depends on h(i) because the problem
is physically online, i.e., before computing h(i) for i < n, the value of a(n, j) is
simply not available due to the problem setting.

Our algorithm will physically calculate all of the h(i), for i < n, before calculating
h(n), so it does not need to distinguish between these two types.

In Sect. 2.3 we briefly mention the literature solving the case in which a(n, j) may
depend on some of the values in {h(i) : i < j} (as opposed to {h(i) : i < n}), which
we call the “semi-online” problem, and discuss how it differs from this one.

2SMAWK is an acronym of the first letters of the last names of the authors of [1].
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1.2 The Results

Definition 3 The values of a(n, j) satisfy the online Monge property, if for all 1 ≤
j < n ≤ N ,

a(n, j) − a(n − 1, j) = cn + δjβn, (4)

where cn, βn and δj are constants satisfying

1. for all 2 ≤ n ≤ N , βn ≥ 0,
2. and δ1 ≥ δ2 ≥ · · · ≥ δN−1.

The main result of this paper is

Theorem 4 Consider the DP defined by (1). If a(n, j) satisfy the online Monge prop-
erty, and

1. for any n and j , the value of a(n, j) can be computed in O(1) time, provided that
the values of h(i) for 1 ≤ i < n are known,

then there is an algorithm (Sects. 3 and 4) that computes the values of h(n) in the
order n = 1,2, . . . ,N in O(1) amortized and O(logN) worst case time for each
h(n).

Note that, from the statement of the theorem, the algorithm does not need to know
the value of N in advance.

It is easy to see that the online Monge property implies that

a(n + 1, j) + a(n, j + 1) − a(n, j) − a(n + 1, j + 1) = (δj − δj+1)βn+1 ≥ 0,

i.e., it implies that a(n, j) satisfy the standard Monge property. However, the online
Monge property seems quite artificial. In Sect. 2.2, we will see that it actually has a
very natural interpretation in that it is equivalent to a Monge property with rank one
matrices in the standard decomposition.

As mentioned before, the SMAWK algorithm provides a �(N) speedup in the
calculation of the h(n) when a(n, j) satisfy the Monge property and the problem
is offline. Theorem 4 says that if a(n, j) satisfy a stronger version of the Monge
property, then this same speedup can be maintained online, in the sense that the time
to compute all h(n) is still O(N).

Note that the online Monge property only requires that cn, βn and δj exist. It does
not require that cn, βn and δj be given or computable in O(1) time. But, if δj is given,
the algorithm will be much easier to develop and understand. So, in what follows we
will start by assuming we have an extra condition:

(C3) For any j , the value of δj can be computed in O(1) time, provided that the
values of h(i) for 1 ≤ i < j are known.

This condition is not really necessary and in Sect. 4.3, we will show how to remove it.
We point out that Auletta et al. [2] and Fleisher et al. [6] model the problem of

placing K medians on an undirected line with N nodes by a DP that looks as if it
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requires �(KN2) time to solve. Fleischer et al. [6] also noted that this problem has
a Monge property that permits reducing the running time to �(KN) in the offline
case. Both references then provide special purpose algorithms that show how to solve
the problem online, i.e., adding the nodes one at a time to the right of the line and
recomputing the medians after each addition, without losing the DP speedup. After
deconstruction, the algorithms provided there can be seen as a very special case of
the general algorithm given in this paper.

2 More Background

2.1 The Monge Property and the SMAWK Algorithm

We start with a brief introduction to the Monge property and the SMAWK algorithm.
The survey [4] provides many more details. Consider an N × N matrix M . Denote
by R(n) the index of the rightmost minimum of row n of M , i.e.,

R(n) = max
{
j : Mn,j = min

1≤i≤N
Mn,i

}
.

A matrix M is monotone if R(1) ≤ R(2) ≤ · · · ≤ R(N), M is totally monotone if all
submatrices3 of M are monotone. The SMAWK algorithm says that if M is totally
monotone, then the set of all of the R(n) for 1 ≤ n ≤ N can be computed in O(N)

time.
For our problem, if we set

Mn,j =
{

a(n, j), 1 ≤ j ≤ n ≤ N ;
∞, otherwise,

(5)

then h(n) = a(n,R(n)). Hence, if we can show that the matrix M defined by (5) is to-
tally monotone, then the SMAWK algorithm can solve our problem (offline version)
in O(N) time.

Total monotonicity is quite difficult to demonstrate directly. In practice, it is usu-
ally established by demonstrating that the matrix possesses the Monge property
which is essentially what we introduced in Definition 1 if we consider the matrix
as a two-variable function.

Definition 5 An N × N matrix M is Monge, if for all 1 ≤ n < N and 1 ≤ j < N ,

Mn,j + Mn+1,j+1 ≤ Mn+1,j + Mn,j+1. (6)

Note that if the a(n, j) are Monge as in Definition 1, then the associated M given
in (5) is a Monge matrix as in Definition 5.

It is easy to show [4] that if M is Monge, then it is totally monotone. So, if a(n, j)

are Monge, then the SMAWK algorithm can calculate all of the h(n), in the offline
case, in O(N) time.

3In this paper, submatrices can take non-consecutive rows and columns from the original matrix, and are
not necessarily square matrices.
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2.2 Decompositions and the Online Monge Property

As already shown, the online Monge property is a special case of the Monge property.
We now make this more formal. Monge matrices can be decomposed (Sect. 2.2 of [4])
as follows.

Lemma 6 An N × N matrix M is Monge if and only if for all Mn,j �= ∞,

Mn,j = Pn + Qj +
N∑

k=n

j∑

i=1

Fki (7)

where P and Q are vectors of length N , and F is an N × N matrix, whose entries
are all nonnegative.

The matrix F is called the density matrix. We now show that the matrices satisfy-
ing the online Monge property are exactly those that have rank-one density matrices.
Recall the definition of online Monge property. Let δ0 = δ1, then

a(n, j) = a(n + 1, j) − cn+1 − δjβn+1

= a(n + 2, j) − (cn+2 + cn+1) − δj (βn+2 + βn+1)

= · · ·

= a(N, j) −
N∑

k=n+1

ck − δj

N∑

k=n+1

βk

= a(N, j) −
N∑

k=n+1

ck − δ0

N∑

k=n+1

βk + (δ0 − δj )

N∑

k=n+1

βk.

So, for the online Monge property,

Pn = −
N∑

k=n+1

(ck + δ0βk), Qj = a(N, j), Fki = (δi−1 − δi)βk+1,

where we set βN+1 = 0. So, the online Monge property is a special case of the Monge
property where the density matrix F is of rank 1.

Conversely, if rank(F ) = 1, then Fki = UkVi where U , V are nonnegative vectors
of length N . From (7),

a(n, j) − a(n − 1, j) = Pn − Pn−1 − Un−1

j∑

i=1

Vi.

That is, the values of a(n, j) satisfy the online Monge property with

cn = Pn − Pn−1, βn = Un−1, δj = −
j∑

i=1

Vi.
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So, what we are calling the online Monge property is exactly the Monge property
with rank one density matrices.

2.3 Semi-Online Problems

There is a series of papers discussing another type of “online” version of (1), e.g., [5,
7–9, 11, 12]. The final ‘best’ result in this line is given by

Theorem 7 (LARSCH [11]) Consider the DP defined by (1). If a(n, j) satisfy the
Monge property, and

1. for any n and j , the value of a(n, j) can be computed in O(1) time, provided that
the values of h(i) for 1 ≤ i < j are known;

2. and the value of N is known in advance,

then the LARSCH algorithm can compute all of the h(n), for 1 ≤ n ≤ N , in O(N)

time.

We call this type of problem “semi-online” because the a(n, j) are only allowed
to depend on {h(i) : i < j}, and not on all of the {h(i) : i < n} as in the online condi-
tion (C1). Also, the LARSCH algorithm does not support the online condition (C2)
since it requires the problem size N to be fixed in advance.

3 The Main Algorithm

In this section, we develop the online algorithm that achieves the O(1) amortized
bound in Theorem 4. For the purposes of this section, we assume the slightly simpler
condition δ1 > δ2 > · · · > δN−1 for simplicity. We postpone the extension to the case
where, for some i, δi = δi+1, the analysis of the worst-case bound, and other details
to Sect. 4.

We will show the algorithm at step n, where the values of {h(i) : 1 ≤ i < n} have
been computed, and we want to compute h(n). By the conditions in Theorem 4 and
the extra condition (C3), all the values a(n, j) and δj for 1 ≤ j ≤ n ≤ N are known.

3.1 The Lower Envelope

The key to the algorithm is the following set of straight lines:

Definition 8 For all 1 ≤ j ≤ n ≤ N , we define

Ln
j (x) = a(n, j) + δj · x. (8)

So, h(n) = min1≤j≤n Ln
j (0). To compute min1≤j≤n Ln

j (x) at x = 0 efficiently, the
algorithm maintains min1≤j≤n Ln

j (x) for the entire range x ≥ 0, i.e., at step n, the
algorithm maintains the lower envelope of the set of lines {Ln

j (x) : 1 ≤ j ≤ n} in the
range x ∈ [0,∞).
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3.1.1 The Data Structure

The only data structure used is an array, called the active-indices array, Z =
(z1, . . . , zt ) for some t ≤ n. It will be used to represent the lower envelope. It stores,
from left to right, the indices of the lines that appear on the lower envelope in the
range x ∈ [0,∞). That is, at step n, if we walk along the lower envelope from x = 0
to the right, then we will sequentially encounter the lines Ln

z1
(x),Ln

z2
(x), . . . ,Ln

zt
(x).

The slopes of the line segments forming the lower envelope of a set of lines decreases
as one sweeps from left to right. Since δ1 > δ2 > · · · > δn, we have z1 < z2 < · · · <

zt = n, and no line can appear more than once in the active-indices array.
Given the active-indices array, computing h(n) is a constant time operation since

h(n) = Ln
z1

(0) = a(n, z1).

So, the problem is how to obtain and maintain the active-indices array. Inductively,
at the time that the algorithm enters step n from step n − 1, it maintains the active-
indices array for the step n − 1, which represents the lower envelope of the lines
{Ln−1

j (x) : 1 ≤ j ≤ n − 1}. So, the main part of the algorithm is to update the old
active-indices array to become the new active-indices array for {Ln

j (x) : 1 ≤ j ≤ n}.
Before introducing the algorithm, we introduce another concept, the break-point

array, X = (x0, . . . , xt ), where x0 = 0, xt = ∞ and xi (1 ≤ i < t) is the x-coordinate
of the intersection point of lines Ln

zi
(x) and Ln

zi+1
(x). The break-point array is not

stored explicitly, since for any i, the value of xi can be computed in O(1) time, given
the active-indices array. That is, xi is the unique solution to the equation

a(n, zi) + δzi
· x = Ln

zi
(x) = Ln

zi+1
(x) = a(n, zi+1) + δzi+1 · x,

or

x = −a(n, zi+1) − a(n, zi)

δzi+1 − δzi

. (9)

3.2 Updating the Lower Envelope

In step n, we need to consider n lines {Ln
j (x) : 1 ≤ j ≤ n}. The algorithm will first

deal with the n − 1 lines {Ln
j (x) : 1 ≤ j ≤ n − 1}, and then add the last line Ln

n(x).
Figure 1 illustrates the update process via an example. Figure 1(a) shows what we
have from step n − 1, Fig. 1(b) shows the movements of the first n − 1 lines, and
Fig. 1(c) shows the adding of the last line.

3.2.1 Updating the first n − 1 lines

For the first n − 1 lines {Ln
j (x) : 1 ≤ j ≤ n − 1}, the key observation is the following

lemma.

Lemma 9 For all 1 < n ≤ N and for all x,

Ln
j (x) = Ln−1

j (x + βn) + cn, ∀ 1 ≤ j ≤ n − 1.
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Fig. 1 The update of the active-indices array from Step n − 1 to Step n, where n = 8. The thick solid
chains are the lower envelopes. (a) Shows the lower envelope for the lines {Ln−1

j
(x) : 1 ≤ j ≤ n − 1},

(b) shows the lower envelope for the lines {Ln
j
(x) : 1 ≤ j ≤ n − 1}, and (c) shows the lower envelope

for the lines {Ln
j
(x) : 1 ≤ j ≤ n}. The numbers beside the line segments are the indices of the lines. The

active-indices array changes from (a) (1,2,4,5,7), to (b) (4,5,7), then to (c) (4,5,8)

Proof By (4) and (8),

Ln
j (x) = [a(n, j) − δj βn] + δj (x + βn)

= [a(n − 1, j) + cn] + δj (x + βn)

= Ln−1
j (x + βn) + cn. �
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Lemma 9 says that if we translate the line Ln−1
j (x) to the left by βn and upward

by cn, then we obtain the line Ln
j (x). The translation is independent of j , for 1 ≤ j ≤

n − 1.

Corollary 10 The lower envelope of the lines {Ln
j (x) : 1 ≤ j ≤ n − 1} is the transla-

tion of the lower envelope of {Ln−1
j (x) : 1 ≤ j ≤ n − 1} to the left by βn and upward

by cn.

As an example, see Fig. 1(a) and 1(b). From Fig. 1(a) to 1(b), the entire lower
envelope translates to the left by βn and upward by cn.

We call an active-index zi negative if the part of Ln
zi
(x) that appears on the lower

envelope is completely contained in the range x ∈ (−∞,0). By Corollary 10, to ob-
tain the active-indices array for {Ln

j (x) : 1 ≤ j ≤ n − 1} from the old active-indices
array, we only need to delete those active-indices that become negative due to the
translation. This can be done by a simple sequential scan. We scan the old active-
indices array from left to right, and check each active-index to see whether it be-
comes negative. If it does, we delete it. As soon as we find the first active-index that
is nonnegative, we can stop the scan, since the rest of the indices are all nonnegative.

To be precise, we scan the old active-indices array from z1 to zt . For each zi , we
compute xi , the right break-point of the segment zi . If xi < 0, then zi is negative.
Let zmin be the first active-index that is nonnegative, then the active-indices array for
{Ln

j (x) : 1 ≤ j ≤ n − 1} is (zmin, . . . , zt ). See Part 2.1 of Fig. 2.

3.2.2 Adding the Last Line

We now add the line Ln
n(x). Recall that we assume δ1 > δ2 > · · · > δN−1. Since

Ln
n(x) has a smaller slope than any line currently in the lower envelope, it must be

the rightmost segment on the lower envelope. There are now two mutually exclusive
possibilities; either (i) Ln

n(x) becomes the only line on the new lower envelope or
(ii) Ln

n(x) will not become the only line on the new lower envelope.
Possibility (i) occurs if and only if Ln

n(0) ≤ Ln
zmin

(0), which can be checked in
constant time.

If (i) does not occur, then (ii) does. In this case, since no line can appear on the
lower envelope more than once, we only need to find the intersection point between
Ln

n(x) and the lower envelope of {Ln
j (x) : 1 ≤ j ≤ n − 1}. Assume they intersect

on segment zmax; then the new lower envelope should be (zmin, . . . , zmax, n). See
Fig. 1(c); in the example, zmax = 5.

To find zmax, we also use a sequential scan, but now from right to left. We scan the
active-indices array starting from zt , stepping down to zmin. For each zi , we compute
xi−1, the left break-point of segment zi , and compare the values of Ln

n(xi−1) and
Ln

zi
(xi−1). If Ln

n(xi−1) is smaller, then zi is deleted from the active-indices array.
Otherwise, we stop and let zmax be zi . See Part 2.2 of Fig. 2.

3.3 Running Time

The sequential scans use O(1) time for each insertion and deletion in the active-
indices array. Since each line can be inserted or deleted at most once, the algorithm
uses O(1) amortized time per step.
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Fig. 2 The pseudo-code for the amortized O(1) time algorithm. Part 2.1 of this figure corresponds to
Sect. 3.2.1. Part 2.2 corresponds to Sect. 3.2.2

4 Extensions to the Analysis and the Algorithm

4.1 δ1 ≥ δ2 ≥ · · · ≥ δN−1

In Sect. 3, we assumed δ1 > δ2 > · · · > δN−1, which, for example, is what occurs in
the applications in Sect. 5. But in general, the values of δj may not be distinct.
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The only place that is affected is the adding of the last line Ln
n(x). This line may

no longer be the rightmost segment of the lower envelope when the values of δj

can be the same. To be precise, consider the case δt = δn, where t is the index of
the rightmost segment before Ln

n(x) is considered. Then, according to (8), Ln
n(x)

is the rightmost segment if and only if a(n, t) ≥ a(n,n). So it is only necessary to
modify the algorithm as follows: (i) If a(n, t) ≥ a(n,n) proceed as in Sect. 3.2.2.
(ii) If a(n, t) < a(n,n), leave the lower envelope unchanged (throwing away Ln

n(x)).

4.2 The Worst-Case Bound

To achieve the worst-case bound, we can use binary search to find zmin and zmax.
Since for a given index z and any real number x, the y-coordinate of Ln

z (x) at x can
be evaluated in O(1) time, the binary search takes O(logN) time in the worst case.

To keep both the O(1) amortized and the O(logN) worst-case time bounds per
step, we can run both the sequential search and the binary search in parallel, inter-
leaving their steps, stopping when the first one of the two searches completes. Then
the total search time is at most 2 times the minimum of the two and we maintain both
time bounds.

4.3 Dropping the Extra Condition (C3)

In this section, we will show how to drop the condition

(C3) For any j , the value of δj can be computed in O(1) time, provided that the
values of h(i) for 1 ≤ i < j are known.

The algorithm uses the δj to define the lines Ln
j (x) using (8) and to calculate the

break-points using (9). Most of the calculations in step n only require using δj for j <

n and we can assume, inductively, that these have already been previously calculated
and stored for our use. The only place that uses δn, i.e., the line Ln

n(x), in step n is
the right-to-left scan when inserting line Ln

n(x) into the lower envelope.
The difficulty is that, if we are not somehow explicitly given the value δn, we can-

not compute δn from other values available at step n, since the constraints containing
δn will only first appear from step n + 1. So, we will not know the line Ln

n(x) during
the end of step n when we need it.

The idea is to postpone the computation of δn and the addition of Ln
n(x) to the

lower envelope, until the beginning of step n + 1. To compute h(n) at step n, we can
evaluate the lower envelope — now without Ln

n(x) — at x = 0, compare this value
with Ln

n(0) = a(n,n), and return the smaller of the two.
What is left is to show

Lemma 11 A feasible value of δn can be computed in O(1) time at step n + 1.

Proof We will show an algorithm that computes cn and βn at step n, and computes
δn at step n + 1.

There are actually many feasible solutions of cn, βn and δj for (4). Consider a
particular solution cn, βn and δj . If we set c′

n = cn + xβn, β ′
n = βn and δ′

j = δj − x
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for some arbitrary value x, then the new solution c′
n, β ′

n and δ′
j still satisfies (4). This

gives us the degree of freedom to choose δ1. We choose δ1 = 0 and immediately get

cn = a(n,1) − a(n − 1,1), ∀1 < n ≤ N. (10)

So, we can compute cn at step n.
To compute βn and δj , we substitute (10) into (4):

δjβn = a(n, j) − a(n − 1, j) − cn, ∀1 < j < n ≤ N. (11)

β2 does not show up in (11). In fact, the value of β2 cannot affect the algorithm. So,
we can choose an arbitrary value for it, e.g., β2 = 0. All other values, βn (3 ≤ n ≤ N)

and δj (2 ≤ j < N), appear in (11), but we still have one degree of freedom:
Consider a particular set of solutions βn and δj to (11). If we set β ′

n = βn/x, and
δ′
j = δj · x for some x > 0, then it is still a feasible solution. So, we can choose δ2

to be an arbitrary negative value, say δ2 = −1. The rest is easy. In step n, we can
compute βn by

βn = [a(n,2) − a(n − 1,2) − cn]/δ2,

and in step n + 1, we compute δn by

δn = [a(n + 1, n) − a(n,n) − cn+1]/βn+1.

The lemma follows. �

4.4 Removing Conditions on δj and βj

After developing the algorithm it is interesting to go back and ask whether all of
the conditions we imposed are necessary. In particular, consider the case that the
values of a(n, j) only satisfy (4), i.e., βn and δj can be arbitrary real values without
the nonnegative or the nonincreasing constraints. Note that in this case the values of
a(n, j) are no longer Monge.

In this case, we keep the entire lower envelope for the range x ∈ (−∞,∞). The
sequential search will fail, but the binary search still works. So, we get a worst case
O(logN) time algorithm.

Corollary 12 Consider the DP defined by (1). If for all 1 ≤ j < n ≤ N , there exists
cn, βn and δj such that (4) is satisfied and

1. for any n and j , the value of a(n, j) can be computed in O(1) time, provided that
the values of h(i) for 1 ≤ i < n are known,

then there is an algorithm that computes the values of h(n) in the order n =
1,2, . . . ,N in O(logN) worst-case time for each h(n).
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5 Applications

We will now see two applications. Both will require multiple applications of our
technique, and both will be in the form

H(d,n) = min
d−1≤j≤n−1

(
H(d − 1, j) + W

(d)
n,j

)
, (12)

where the values of H(d,n) for d = 0 or n = d are given, the values of W
(d)
n,j can be

computed in O(1) time and, for each fixed d (1 ≤ d ≤ D), the W
(d)
n,j satisfy the online

Monge property in Theorem 4, i.e.,

W
(d)
n,j − W

(d)
n−1,j = c(d)

n + δ
(d)
j β(d)

n ,

where δ
(d)
j decreases as j increases, and β

(d)
n ≥ 0. The goal is to compute H(D,N).

Setting

a(d)(n, j) = H(d − 1, j) + W
(d)
n,j ,

it is easy to see that for each fixed d (1 ≤ d ≤ D), the values of a(d)(n, j) satisfy the
online Monge property as well since

a(d)(n, j) − a(d)(n − 1, j) = W
(d)
n,j − W

(d)
n−1,j = c(d)

n + δ
(d)
j β(d)

n . (13)

As before, we want to compute H(d,n) in online fashion, i.e., as n increases
from 1 to N , at step n, we want to compute the set Hn = {H(d,n) | 1 ≤ d ≤ D}. By
Theorem 4, for each d , the value of H(d,n) can be computed in O(1) amortized time.
So, the set of values Hn can be computed in O(D) amortized time. This gives a total
of O(DN) time to compute H(D,N), while the naive algorithm requires O(DN2)

time.

5.1 D-Medians on a Directed Line

The first application comes from [13]. It is the classic D-median problem when the
underlying graph is restricted to a directed line. In this problem we have N points
(users) v1 < v2 < · · · < vN , where we also denote by vi the x-coordinate of the point
on the line. Each user vi has a weight, denoted by wi , representing the amount of
service it requests. We want to choose a subset S ⊆ V as servers (medians) to provide
service to the users’ requests. The line is directed, in the sense that the requests from
a user can only be serviced by a server to its left. So, v1 must be a server.

The cost of a server at point vl servicing w units of request by point vi is
wi(vi − vl); to minimize this a user will always be serviced by the nearest server
to its left. Denote by �(vi, S) the distance from vi to the nearest server to its left, i.e.,
�(vi, S) = min{vi − vl | vl ∈ S, vl ≤ vi}. The minimum cost of servicing vi will then
be wi�(vi, S).
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The objective is to choose D servers (not counting v1) to minimize the total service
cost, that is

min|S|=D+1

N∑

i=1

wi�(vi, S).

The problem can be solved by the following DP. Denote by H(d,n) the minimum
cost of servicing v1, v2, . . . , vn using exactly d servers (not counting v1). Denote
by Wn,j = ∑n

l=j+1 wl(vl − vj+1) the cost of servicing vj+1, . . . , vn by server vj+1.
Then

H(d,n) =

⎧
⎪⎨

⎪⎩

0, n = d ,
Wn,0, d = 0, n ≥ 1,

min
d−1≤j≤n−1

(H(d − 1, j) + Wn,j ), 1 ≤ d < n.

The optimal cost we are looking for is H(D,N).
Note that

Wn,j − Wn−1,j = wn(vn − vj+1),

which gives the online Monge property with cn = wnvn, δj = −vj+1 and βn = wn,
satisfying (13). So, Theorem 4 will solve the online problem in O(D) amortized time
per step, and the total time to compute H(D,N) is O(DN).

Woeginger [13] gives an offline O(DN) time algorithm for this problem, by ob-
serving that the standard Monge property holds and applying the SMAWK algorithm
(D times).

The online problem has a physical interpretation here. Consider the users arriving
one by one, each new user arriving to the right of the previous users (we therefore
call this the one-sided online problem). After a new user arrives we want to calculate
the new set of D medians that minimizes the cost. Our algorithm permits doing this
in O(D) amortized and O(D logN) worst case time.

We note that the corresponding online problem for solving the D-median on an
undirected line was treated in [6], where a problem-specific solution was developed.
As previously mentioned, the technique in this paper can be regarded as a generaliza-
tion of that algorithm.

5.2 Wireless Mobile Paging

The second application comes from wireless networking [10]. In this problem, we
are given N regions, called cells, and a user located in one of them. We want to find
which cell contains the user. To do this, we can only query a cell whether the user
is located in it; the cell will answer yes or no. For each cell i, we know in advance
the probability, denoted by pi , that it contains the user. Without loss of generality, we
assume p1 ≥ p2 ≥ · · · ≥ pN . We also approximate the real situation by assuming the
cells are disjoint, so pi is the probability that exactly one cell contains the user.

Such a search exhibits a tradeoff between delay and (expected) bandwidth require-
ment. For example, consider the following two strategies. The first strategy queries
all cells simultaneously, while the second strategy consists of N rounds, querying
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the cells one by one from p1 to pN , stopping as soon as the user is found. The first
strategy has the minimum delay, which is only one round, but has the maximum
bandwidth requirement since it queries all N cells. The second strategy has the max-
imum worst case delay of N rounds, but the expected bandwidth requirement can be
calculated to be

∑N
i=1 ipi queries, which can be shown to be the minimum possible.

In the tradeoff, we are given a parameter D, which is the worst case delay that can
be tolerated, and our goal is to find an optimal strategy that minimizes the expected
number of queries.

It is obvious that a cell with larger pi should be queried no later than one with
smaller pi . So, the optimal strategy actually breaks the sequence p1,p2, . . . , pN into
D contiguous subsequences, and queries one subsequence in each round. Let 0 =
r0 < r1 < · · · < rD = N , and assume in round i, we query the cells from pri−1+1 to
pri . Recall that the cells are disjoint. The expected number of queries, defined as the
cost, is

D∑

i=1

ri

(
ri∑

l=ri−1+1

pl

)

. (14)

Krishnamachari et al. [10] used this equation to develop a DP formulation to solve
this problem. It is essentially the following DP. Let H(d,n) be the optimal cost for
querying cells p1, . . . , pn using exactly d rounds. Let Wn,j = n

∑n
l=j+1 pl denote

the contribution to (14) of one round that queries pj+1, . . . , pn. Then

H(d,n) =

⎧
⎪⎨

⎪⎩

∑n
l=1 lpl, n = d ,

∞, d = 0, n ≥ 1,
min

d−1≤j≤n−1

(
H(d − 1, j) + Wn,j

)
, 1 ≤ d < n.

Krishnamachari et al. [10] applied the naive approach to solve the DP in O(DN2)

time. But, since

Wn,j − Wn−1,j = npn +
n−1∑

l=j+1

pl,

we can set cn = npn + ∑n−1
l=1 pl , δj = −∑j

l=1 pl and βn = 1, satisfying (13). This
DP therefore satisfies the online Monge property and can thus be solved in O(DN)

time, using either the SMAWK algorithm or the online technique in this paper.
In this problem, we know of no physical interpretation to the online problem.

However due to the simplicity of our algorithm (performing simple scans), it seems
to run faster than the SMAWK algorithm in practice, as suggested by the experiments
in [3], and therefore might be more suitable for real time applications.

6 Open Problems

It is well known that the solution of Dynamic Programs can be sped up if they possess
a Monge property. This speedup is inherently restricted to offline problems. In this
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paper, we showed (Theorem 4) how, if the problem possesses what we call an online
Monge property, we can maintain the speedup in an online setting.

In Sect. 2.2 we showed that our online Monge property was equivalent to a Monge
property with rank 1 density matrices. This raises the question of how tight our results
are. Is it possible to show that there are online algorithms that maintain the speedup
for all Monge properties with rank ≤ k density matrices for some k > 1? Or, might it
be possible to show that no such general algorithm exists for k > 1?
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