
DISCRETE
APPLIED

ELSEVIER Discrete Applied Mathematics 85 (1998) IL24

MATHEMATICS

Consecutive interval query and dynamic programming
on intervals

Alok Aggarwal”, Takeshi Tokuyamab,*

aIBM Research Division, T. J. Watson Rex C‘tr., P.O. Box 218, Yorktown Heights. NY 10598, USA

b IBM Research Dicision. Tokyo Rex Lab., 1623-14 Shimotsurumcl. Yumato, Kanagabva, 242, .Jupn

Received 2 April 1993; received in revised form 28 August 1996; accepted 22 December 1997

Abstract

Given a set of n points (nodes) on a line and a set of m weighted intervals defined on

the nodes, we consider a particular dynamic programming (DP) problem on these intervals. If

the weight function of the DP has convex or concave property, we can solve this DP problem
efficiently by using matrix searching in Monge matrices, together with a new query data structure,
which we call the consecutive query structure. We invoke our algorithm to obtain fast algorithms
for sequential partition of a graph and for maximum K-clique of an interval graph. 0 1998
Elsevier Science B.V. All rights reserved.

Keywords: Dynamic programming; Matrix searching; Sequential partition; Clique covermg;
Interval query

1. Introduction

We consider special dynamic programming (DP) problems called Mange interual

DP problems, motivated by its applications to sequential partition ?f u graph and

maximum K-clique of an interval graph.

Let U be a set of n integers { 1,2, n}. Given a non-decreasing sequence ,f(i), i =

1,2, n-l such that i < f(i)<n, a set of ordered pairsX = {(i,,j) : i < ,j<,f(i)},

and a weight function F : X --f 9, let us define a function D(j) by the initial condition

D(1) = 0 and the recurrence formula

WA = ,<~$,(D’(‘) + F(W),

where D’(i) is computed from D(i) in 0(1) time. Consider the problem of computing

D(n), together with the sequence of indices 1 = Q(1) < a(2) < < o(l) = n

satisfying D(o(i + 1)) = D’(o(i)) + F(o(i), o(i + 1)) for i = 1,2, . . . , 1 - 1.

* Corresponding author. E-mail: ttoku@trl.ibm.co.jp.

0166-218X/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.

PII SOl66-2lSX(98)00021-3

2 A. Aggarwal, T. Tokuyamal Discrete Applied Mathematics 85 (1998) 1-24

This is a DP problem associated with the weight function F and the sequence j’, and

denoted by DP(F, f). In order to simplify the notation, we write DP(F) for DP(F, f)
unless f is needed explicitly.

An 0(n2) time algorithm for solving DP(F) was given by Kernighan [15], in which

he used it as a subroutine for solving the sequential partition problem (defined later)

of a graph with n vertices in O(n2) time.

Asano [l] defined the following special DP problems: Regard the set U as a set of

points on a line, and let 2 be a set of m intervals, which are left-open and right-closed,

and have their endpoints in U. Without loss of generality, we assume m 3 n. A weight

w(l) is associated with each interval. Define W(i,j) = xl,9 and I CCi,jl w(Z), which

is the sum of the weights of subintervals of (i,j] in %, and regard W as a weight

function on X = {(i,j) : i -=c j<f(i)}. DP(W) (to be precise, DP(W,f)) is called

the interval DP problem. Asano [l] gave an O(m log n) time algorithm for the interval

DP problem, and applied it to solved the sequential partition problem of a graph with

12 nodes and m edges in O(m log n) time.

1.1. Main results

We say a weight timction F is concave (resp. convex) if the quadrangle inequality

F(i,j) + F(i + 1,j + I)dF(i + 1,j) + F(i,j + 1) (resp. F(i,j) + F(i + 1,j + 1)3F(i

+ l,j)+F(i,j+ 1)) holds for such indices 1 di, j<n that all four terms in the inequality

are defined.

We consider the concave (resp. convex) interval DP problems, where the weight

function W are concave (resp. convex). We also call them Mange interval DP prob-

lems, since the quadrangle inequality is often called the Monge inequality. Monge

interval DP is an important class of interval DP problems; Indeed, if w is a nonnega-

tive (resp. nonpositive) function, W becomes concave (resp. convex).

Specializing to Monge interval DP, we improve the time complexity: We give an

O(m +n log log n) time algorithm for a concave interval DP, and an O(m +n log n) time

algorithm for a convex interval DP. Applying the above algorithms, we give efficient

solutions of the sequential partition problem of graphs and the maximum K-clique

problem of interval graphs.

1.2. Sequential partition of graph

Let H = (V,E) be a graph with n vertices and m edges, An edge-weight function

w : E -+ Rf, a vertex-weight function $: V ----f R+, and a positive number K are

given. Furthermore, we fix a linear ordering of the vertices of V labeled from 1 to n.

For an integral sequence 0 = t(0) < t(1) < t(2) < . . . < t(l) = IZ (for any 1), we

define vi = {vt(i-l)+l,vt(i-1)+2,..., vt(+l, v,ci)}. Then, V is a disjoint union of subsets

(called clusters) VI ,. . ., VI, which is called a sequential partition of V. If the sum of

weights of the vertices in each cluster is no more than K, the sequential partition is

A. Aggarwul, T Tokuyamal Discrete Applied Mathematics 85 (1998) 1-24

Fig. 1. Sequential partition of a graph, n = 11, K = 4. Each vertex and each edge have unit weights. Broken
edges connect different clusters.

called a feasible partition (Fig. 1). We want to solve the following sequential partition

problem:

Find the feasible partition that minimizes the total weight of the edges connect-

ing different clusters.

Sequential partition problem is a common heuristics to solve the (NP-hard) graph

partition problem [l 11; and hence a key subroutine in several practical applications

(e.g. VLSI layout) [15]. By formulating the problem as a convex interval DP problem,

we can solve the sequential partition problem in O(m + II log n) time, improving O(n2)

time of Kemighan [151 and O(m log n) time of Asano [11.

1.3. Maximum K-clique of interval graph

Let H = H(T) = (V(ZY),E(T)) be an interval graph associated with a set _Y

of m intervals whose endpoints are among U = { 1,2, n}. There is a one-to-one

correspondence from J’(Z) to 2, and two vertices of H are adjacent if and only

if the corresponding intervals overlap with each other. Note that H(T) has m ver-

tices, and n becomes a hidden parameter of the graph. We fix a vertex-weight func-

tion Ic/ : V(3) + R+. We want to solve the following maximum K-clique

problem.

Given a positive integer K, compute the set %? = {Cl, C2 , . . , CK} of cliques of

H such that the total weight of vertices in the union of the cliques is maximized.

Fig. 2 shows an interval graph (right figure) associated with a set of nine seg-

ments (left figure, lifted up to two dimensional space), and its maximum 2-clique

if each vertex weight is 1. The maximum K-clique problem on an interval graph

has applications to classification rule generation in AI [13, 141 (especially to data

discretization [141).

Using our concave interval DP algorithm, we can compute the maximum K-clique

of H(Z) in O(m + nmin{log r log log n, Z’(m), K log log n}) time, where

r is the maximum of the vertex weights (if we assume each weight is an

integer).

A. Aggarwal, T. TokuyamalDiscrete Applied Mathematics 8.5 (1998) 1-24

a b

C de
L

Fig. 2. Maximum Z-clique of an interval graph.

2. Consecutive interval query

2.1. Mange interval DP and interval query

Dynamic programming problems with concave or convex weight functions (Monge

DP) are well-studied in the literature [3, 4, 8, 10, 18, 231. A Monge DP problem DP(F)
for a concave (resp. convex) F can be solved in 0(T + nq(n)) time [16, 18, 231 (resp.

O(T + na(n)q(n)) time [17], where CI is the inverse Ackerman function), if F can be

implicitly stored using O(T) preprocessing time so that its each value can be queried

in O(q(n)) time. Hence, a Monge DP problem can be efficiently solved if its weight

function can be queried efficiently.

For our Monge interval DP, the problem of querying a value W(i,j) of W is a well-

known problem called interval query (to be precise, interval query on a set of weighted

intervals) in computational geometry. A naive solution method is to precompute the

function W completely in 0(n2) time, and to query a value of it in 0(1) time by

using the table. Instead, a range tree [20] data structure answers the interval query in

O(logn) time after spending O(m log n) time on preprocessing. However, because of

the high preprocessing time, applying them as query data structures in known Monge

DP algorithms will not improve Asano’s O(m log n) time complexity.

Unfortunately, it appears to be difficult to obtain an efficient interval query data

structure in O(m) preprocessing time. We can construct an O(n&) time query data

structure for any constant E in O(m) preprocessing time [6], but it only gives an

O(m + n’+E) time algorithm for Monge interval DP.

In order to overcome this difficulty, we first construct data structures for what we

call the consecutive query problem, and then show that our data structures give efficient

amortized query time for solving our Monge interval DP problems.

We remark that a similar amortized query technique for a Monge DP problem was

introduced by Hershberger and Suri [12] for solving the problem of computing the

farthest distance within a simple polygon. This can be formulated as a concave DP

problem, and q(n) becomes the time needed to query the interior distance between

two given vertices of a polygon. Although the current best data structure requires

A. Aggavwal, T Tokuyama I Discrete Applied Mathematics 85 i 1998) I-24 5

an O(log n) query time, Hershberger and Suri [12] reduced q(n) to a constant in an

amortized sense, and obtained an optimal O(n) algorithm for computing the farthest

distance.

2.2. Consecutive query problem

Let us define the consecutive interval query problem (consecutive query, in short)

given below.

Query W(i f io,j +,jo) efficiently after we have queried W(i,j).

The data structure for Monge interval DP consists of three different kind of consec-

utive query data structures: the first one answers in 0(Ii01 + Ijo\) time, the second in

O((li~l + Ijoi)/(logn)’ + logn) time for a constant c, the third is the h-skip data struc-

ture described in Section 2.5. The data structures are constructed by using ,fiwctionul

ctiscuding [7] in O(m) time.

It will be shown in later sections that these consecutive query data structures give an

O(log logn) (resp. O(logn)) amortized query time for the query sequence in a solution

of a concave (resp. convex) interval DP problem.

2.3. An O(lio(+ I,jol) query time data structure

We first describe a data structure that answers the consecutive query in O(/io/ + 1 jo i)
query time. Without loss of generality, we assume that both io and jo are nonnegative

from now on. We remark that, in order to perform the consecutive interval query, it

suffices to compute W(i,j) - W(i + io,j) and W(i + io,j) - W(i + io,j +.jo).
Let us denote the left and right endpoints of a interval I of .ZE by left(l) and

riyhl(l). In other words, I = (left(r), riyht(l)].

Let 6P3k be the set of intervals of 3 whose left endpoint is k. Yk is the sorted list

of the right endpoints of .J?CZk.

Lemma 2.1. W(i,,j) - W(i + io,j) = cc!+, y(Y3lk,.j)

Proof. The value W(i,j) - W(i + io,j) equals the total weight of intervals (a, b] of y

satisfying that i + 1 <a <i + i. and 1 ,< h <,j. This leads the lemma immediately. 0

For all k = 1,2,. . , n and q E Yk, we precompute cp(-l;uZk, II), which are prefix

sums of weights of 9.Zk sorted with respect to the right endpoints. Thus, for any

nonnegative integer j, if we have the location of j (i.e. largest entry which is not

larger than j) in the list Yk, cp(y%k,j) can be computed in 0(1) time.

Hence, what we need is a data structure which computes the locations of ,j in Yk

for k = i + 1,; + 2,i + io efficiently. For this purpose, we construct a data structure

which is a slight modification of the ,fi-uctional cuscuding data structure of Chazelle

and Guibas [7].

6 A. Aggarwal, T Tokuyama I Discrete Applied Mathematics 85 (1998) 1-24

In the data structure, an augmented list pk is constructed for each list Yk such that the

location of j in Yk can be computed in 0(1) time from the location of j in Pk and vice

versa. Further, the locations of j in Yk+i and Pk-1 can be found in 0(1) time from its

location in f,+. See Chazelle and Guibas [7] how to create such augmented lists for k =
1,2,. . . , n in O(m) time. We call the above structure the left-end-based-structure. It is

clear from the properties of the data structure that we can find all the locations of j in Yk

for k = i+ 1, i+ 2, i+io in O(io) time, provided that we know the location of j in pi.

We construct a similar structure (called the right-end-based-structure) by exchanging

the roles of the right endpoint and the left endpoint. The sorted list of the left endpoints

of points of &?Zk (the intervals whose right endpoint is k) is denoted by X,, and

the associated augmented list is denoted by Xk. We can compute W(i + io,j) -

W(i + io,j +ja) in O(jo) time if we know the location of i + io in Xj.

When we query W(i, j), we store not only the value W(i,j) but also both the location

of j in & and the location of i in Xj. Thus, we can find the location of j in pi in

0(1) time. Furthermore, we can find the location of i + io in Xj in O(i0) time, since

we can move at most ia steps up the list Xj to have the location of i + io, and we can

have the location in Xj in 0(1) time from it.

Therefore, we can compute W(i + io,j fjo) - W(i,j) in O(io +js) time. Furthermore,

we can simultaneously compute the location of i + io in Xj+jO and that of j + js in

Yi+i,,. Hence, we obtain the following:

Theorem 2.2. We can query W(i + io,j +jo) after querying W(i,j) in O(lioj + [joi)
time, by using the above data structure.

Proposition 2.3. The data structure can be computed in O(m) time.

Proof. We prepare the sorted lists Yk (k = 1,2,. . . , n) using O(m) time for all

columns. This can be done by first bucket-sorting all the elements of S with respect

to the y-coordinate values, and then distributing the points into queues associated with

COhInS. The COmpUtatiOU of prefix sums &Tiabk, y) for q E Yk for k = 1,2,. . . , n can

be done in O(m) time in total by using a prefix-sum algorithm. Finally, the construction

of the fractional cascading data structure can be done in O(m) time [7]. 0

2.4. An O(#$$$ + logn) query time data structure

We next construct an O(& + logn) query time data structure for any given

nonnegative integral constant c. Although we use only for c = 1 later to solve Monge

interval DP, we here describe the data structure for a general c.

Let L be a natural number such that L M logn. For simplicity, we assume that n/L’
is an integer (it is easy to remove this assumption). Let z(s) = n/L” for s = 0,1,2,c.

Let us consider a set of vertices {v(s, t)/ s = 0, 1, c; t = 1,2, r(s)}. For each

vertex v(s, t), we draw an undirected edges to v(s, t + 1), v(s - 1, tL) and v(s - 1,

(t - 1)L + 1) (if these vertices are defined). Now we have a graph G (Fig. 3).

A. Aggarwal, T Tokuyamal Discrete Applied Mathamutics 65 11998) I-24

v(O;18)

Level 1

Level 2

Level 3

Fig. 3. Underlying graph of fractional cascading (n = 18. L = 3. c = 2)

For each z? = z)(s, t) E G, we define closed intervals J(c) = J(v(s, f)) = [(t - I)L‘

+ l,tLS]. Let 93(c) = {I E 3‘ : left(l) E J(v)}, and let Y(v) be the sorted

list of right endpoints of elements of YCZ’(r). cp(9?3(v), v) is similarly defined as

(p(~?Z~,y). We precompute prefix sums (p(P’Z(r),y~) for all u E G and q E Y(c).

In O(m) time, we can construct the fractional cascading data structure which has the

underlying graph G, so that for any j, the data structure can answer the location of

j in Y(v) for all u on any path p of length 1 in G in O(I i logn) time (see [7] for

details).

We construct an analogous structure exchanging the roles of right endpoint and left

endpoint.

Theorem 2.4. A data structure can be constructed in such a way’ that it answers the

query W(i+io,,j+jo) in O(#f + log n) time as long as the query W(i,,j) has been

answered before; this data structure can be constructed in O(m + n) time, where c is

a nonnegative integer and is considered as a constant.

Proof. The interval [i + 1, i + io] can be represented as a disjoint union UcE&(~) of

subintervals, such that the corresponding set Il of vertices lies on a path p, which has

at most 2cL + (i,/L’) vertices, on the graph G (Fig. 4). W(i + io, j) - W(i, j) equals

the total sum of ~(9!.Z’(u), j) for v E LZ. Since L z log n and c is a constant, the

query time is O([io/(logn)“] + logn). Similarly, we can compute W(i + io, j + j0) -

W(i + io,.j). 0

2.5. h-skip data structure

In addition to the consecutive interval query data structures of Theorems 2.2 and 2.4,

we use a variant of the consecutive interval query data structure called h-skip structure

for a fixed integer h, which only deals with W(i, jh) for nonnegative integers j, and

can query W(i + io,(j + jo)h) in O(io + jo) time if W(i,jh) was queried before. This

data structure is easy to construct in O(n + m) time by rounding each interval (s, t] in

9 to (s, h[t/hl] (if more than one interval is rounded to the same interval, we assign

to the rounded interval the sum of the weights of the original intervals) and construct

the data structure of Theorem 2.2 for those rounded intervals.

8 A. Aggarwal, T. Tokuyamal Discrete Applied Mathematics 85 (1998) 1-24

Level 1

Level 2

Level 3

Fig. 4. (Black) vertices ~(2, I), u(1,4), u(O,13) and u(O,l4) associated with the decomposition [1,9] U
[lo, 121 U [13,13] U [14,14] of [I, 141, and the path p (bold arcs).

3. Algorithms for Monge interval DP problems

3.1. Matrix searching in a Monge matrix

First, we give a brief summary on matrix searching, which is a key subroutine in

our algorithms.

A matrix M = (M(i,j))i=1,2,...,k;j=1,2 ,_.., i is called a convex Monge matrix if

M(i,j) + M(i + 1,j + 1) >M(i,j + 1) + M(i + l,j> (2)

and a concave Monge matrix if

M(i,j) + M(i f 1,j + 1) bM(i,j + 1) + M(i + l,j> (3)

for 1 <id I and 1 <j < 1. Entries of a matrix can be positive-infinity entries, and we

permit 03 > 00 to be correct in quadrangle relations.

For a matrix M, we define mj(M) and rM(j) (or r(j) if we can fix M) to denote the

value and the row index of the minimum entry of the jth column of M. The problem

of computing mj(M) for all j = 1,2,. . . , 1 in an n x I matrix is called the matrix
searching problem.

Although Q(nZ) time is necessary for matrix searching in a general matrix, it is well

known [4] that matrix searching in a Monge matrix can be done in O(n + Z) time, if

each entry can be queried in a constant time.

We consider the DP defined by Eq.(1) in the introduction, specializing for the weight

function W (i.e. interval DP). We extend W(i, j) so that it is 03 unless i < j<f(i),
and let A be a matrix defined by A(i, j) = D’(i) + W(i, j). By definition, D(1) = 0,

D(i) = mi(A) for i = 2,3,. . , rz, and we can compute D’(i) from D(i) in 0(1) time.

Hence, it suffices to solve the matrix searching problem of A.

A matrix searching problem in a matrix M is called an “off-line” problem if any

entry of M(i, j) can be queried without any knowledge of column minima of M;
otherwise, it is called an “on-line” problem. Matrix searching in the matrix A is an

on-line problem, since we need D(i), which is m&4), in order to compute an entry

A(i, j). The following lemma shows the relation between matrix searching and concave

interval DP (convex case will be discussed later):

A. Aggarwal, T. TokuyamaIDiscrete Applied Mathrmatics 85 (1998) l-24 9

Lemma 3.1. If W is concave, A is a concave Mange matrix.

Proof. If all four entries are defined (i.e. noninfinity), the Monge relation comes from

the concavity of W. Otherwise, if either A(i,j) or A(i+ l,j+ 1) is 30, then A(i+ l,,j)

must be (x, because of the monotonicity of f. Hence, the Monge relation holds. 0

3.2. Off-line matrix searching using consecutive interval query

From now on, throughout this paper, we set n as the size of the original DP (i.e. size

of A), and h = jlog’ nJ. Without loss of generality, we assume that n is an integral

multiple of h. We use the h-skip data structure, as well as 0(Ii”1 + Ij,l) time query

data structure (Theorem 2.2) and 0((Ii,-1 + ij,l)/ log n + log n) time query data structure

(Theorem 2.4 for c = 1).

A submatrix of A is called rigid if it has contiguous column indices and row indices.

In this subsection, we consider a key subroutine of our solutions for Monge interval

DP, namely, the off-line matrix searching in a rectangular rigid Monge submatrix A4

of A of size k x 1.

We investigate the order in which W is queried in an off-line matrix searching algo-

rithm, and show that the consecutive query structures give an O(log logn) amortized

query time. Without loss of generality, we assume that M is concave Monge, since if

A4 is a k x 1 convex Monge matrix, the matrix h;I defined by hi(i,j) = M(i, k - j) is

concave Monge.

Given an algorithm .d that searches for minima of a matrix M, we define a directed

path called the search path of ~2 whose vertices are entries of M. (This path is not

always a simple path, and may visit an entry several times). For two entries M(i,j) and

M(i’,j’) in a matrix M, we define an edcge between them with length Ii - i’l + lj -,j’i.

Intuitively, the edge corresponds to a rectilinear shortest path between them in the

matrix (regarded as a grid). The search path is defined incrementally according to the

behavior of ,Q!. Initially, it consists of a single vertex that corresponds to the first entry

queried by .d. When d queries a new entry, we connect it to the path by the edge

from the current destination of the search path to the new entry of M. The total sum

len(d) of the length of edges in the search path of .~4 is called the length of the

search path of the algorithm ,d.

We assume that the starting entry of ~2 has already visited before, and we need not

worry about the query time for it. This assumption holds for our interval DP algorithms.

The following two lemmas follow immediately from our definitions and Theorems 2.2

and 2.4.

Lemma 3.2. Zf we use the consecutive interval query! of Theorem 2.2 for querying

entries of mutri-x A, the total cost of queries in an algorithm d is O(len(.cd)).

Lemma 3.3. If we use the consecutive interval query of Theorem 2.4 for querying

entries of matrix A, and an algorithm ~2 queries P entries, the total cost of queries

in .d is O(P log n + Zen(d)/ log’ n).

10 A. Aggarwal, T. Tokuyamal Discrete Applied Mathematics 85 (1998) I-24

Fig. 5. Location of column minima in a concave Monge matrix.

A popular strategy for the matrix searching is the divide-and-conquer strategy. We

start querying matrix entries from the north-west comer of the matrix to reach the top

entry M(1, [Z/21) of the center-column, and then query all entries of the center column

to find its minimum entry, The following lemma is fundamental, and is easily derived

from the Monge property:

Lemma 3.4. The row indices r(i) (i = 1,2,. . . , 1) of the column minima of a concave

(resp. conoex) Mange matrix form a non-increasing (resp. non-decreasing) sequence

(Fig. 5).

Because of the above lemma, r(i) 3 Y([Z/2]) if i > [Z/21 and ~0’) <r(rZ/21) if

j < [Z/21. Therefore, it suffices to compute the column minima in the north-west

(upper-left) I-([Z/21) x ([Z/21 - 1) su ma rix b t and the south-east (lower right) (k + 1
- r([Z/21)) x ([Z/21 - 1) submatrix, which correspond to shaded regions in Fig. 6.

We recursively process the northwest submatrix first, and the southeast submatrix

next.

Lemma 3.5. The length of the search path of the divide-and-conquer algorithm is

O((k + Z) log I)

Proof. The search path for the case where Z = 7 is shown in Fig. 7. The length

Zen(&‘(k, I)) of the search path of the algorithm satisfies Een(&‘(k, I)) 6 Zen(&(r([Z/21),

[Z/21 - 1) + Zen(&(k + 1 - r([Z/21), [Z/21 - 1) + 2k + Z. Hence, Zen(&(k, I)) =

O((k + I) log Z). 0

Moreover, we use the following strategy (modified the one given in SMWK algo-

rithm in [3]): We first process the submatrix M’ consisting of columns whose indices

A. Aggarwal, T. Tokuyamal Discrete Applied Muthematics 85 11998) l-24 II

Fig. 6. Possible locations of minima

Fig. 7. Search path

(in A) are integer multiples of h, and next process M - M’ using the information of

column minima of M’.

Lemma 3.6. All the minima of columns of Ml can be computed in O(k + I) time.

Proof. M’ has k contiguous rows and s = jl/h] (noncontiguous) columns. We use the

REDUCE subroutine of the SMAWK algorithm of Aggarwal et al. [3]. If REDUCE

is applied to a k’ x 1’ rigid submatrix of A where k’ > I’, it removes k’ - 1’ rows

and reduces the matrix searching problem to matrix searching in a submatrix of size

I’ x I’. An example of the searching order of entries in REDUCE is given in Fig. 8.

It is observed that length of any edge of the search path of REDUCE is at most two

(see [3] for the behavior of REDUCE in details). Hence, Zen(REDUCE) = O(k’ + I’).

In our matrix M’, the column indices are not contiguous. However, since we deal

only with columns whose indices are multiples of h, we can use the h-skip data structure

for querying the entries of the matrix. Hence, if k > s, we can remove k--s (s = jl/hj)

rows from the searched matrix M’ in O(k + I) time.

12 A. Aggarwal, T. Tokuyamal Discrete Applied Mathematics 85 (1998) l-24

Fig. 8. Search order of REDUCE; Shaded rows are removed

Thus, we have a matrix M” that has at most s rows and s columns. However, neither

the column indices nor the row indices are contiguous. We process this matrix by using

the divide-and-conquer algorithm. The length of the search path is still O((k + I) log rt),

but the algorithm only queries O(slogn) entries. Thus, from Lemma 3.3, if we set c =

1, the algorithm spends O(s log2 n + k + 1) = O(k + 1) time querying entries, and the

time complexity of the algorithm is O(k + 1). Cl

Lemma 3.7. All the column minima of M can be computed in O((k + 1) log logn)

time.

Proof. If 1 <h, we apply a divide-and-conquer strategy to solve in 0((1+ h) log I) =

O((Z + h)loglogn). If 1 > h, we use Lemma 3.6 to compute all minima r(ih) for

i = 1,2,..., s (s = [Z/h]) of M’ (here, we identify indices of A4 and A without loss

of generality). Given i, for every j such that iL <j 6 (i + 1)h, r(ih) <r(j) d r((i + 1)h)

because of the non-decreasing property of the column minimum locations. Therefore,

it suffices to search in submatrices Mi , . . . , MS, such that Mi is a ki x (h - 1) matrix

and Cs=, ki = k +s (Fig. 9). These submatrices can be computed in a total of Cy=,(h

+ ki) log h = O((k + 1) log log n) time. 0

3.3. Klawe’s Algorithm for Concave DP

We introduce Klawe’s algorithm [161, which solves a concave DP problem in

O(nq(n)) time if it takes O(q(n)) time to query each value of the weight function, and

A. Aggarwul, T. TokuyamalDiscrete Applied Mathematics 85 (1998) I-24 13

h 2h 3h 4h

*h-l -

Fig. 9. Submatrices M, (shaded regions).

Fig. 10. Klawe’s algorithm.

show that it can solve the concave interval DP problem in O(m + n log log n) time by

using the consecutive interval query data structures.

The algorithm of Klawe [161 is the following procedure DYN. Fig. 10 illustrate

the state of the procedure when i = 3 (and j = 13). We use A[a,s; 6, t] to denote

the submatrix of A associated with the (i,j) entries for a <id b and s <j < t. In other

words, this is a rectangular submatrix whose upper-left comer entry is A(a,s) and

whose lower-right comer entry is A(b,t).

To improve readability, in steps 5.2.2.1 and 5.2.2.2 of the procedure, we use a

convention whereby mt(A~,j;n,n]) represents the minimum entry of the intersection

of Au,j; n, n] and the tth column of A, which should be written as m,_j+l(Au,j; n, n])

mathematically, since it is the (t - j + 1)th column of Ab,j; n, II]. We use the same

convention for mt(Ui) in steps 5.2.2.1 and 5.3.1. Process 5.2.2 is designed to run

concurrently with 5.2.1 so that 5.2.2.1 is invoked immediately after mt(Ab,,j; n, n]) has

been computed in 5.2.1.

14 A. Aggarwal, T. Tokuyamal Discrete Applied Mathematics 85 (1998) I-24

Procedure DYN(A) {Outputs m,(A) for t = 1,2,. . . , n}

begin

1: i=o;

2: r = min{n,2’+‘};

3: Compute all the column minima of Ui = A[1,2’ + 1; 2’, r];

4: x = the minimum of the rightmost column of Ui; {located in the rth column of A}

5: For j = 2’ to r;

5.1: Compute y = A(j,r);

5.2: If y<x; {Now all unknown minima are located in Ab,j; n,n] or Ui }

5.2.1: Call DYN(ALj,j; n,n]);

5.2.2: For t = j to n; { This process runs concurrently with 5.2.1 }

5.2.2.1: If j<t<r, m&4) = min{mt(u,),mt(ALi,j;n,n])};

5.2.2.2: Else, mt(A) = mt(Au,j; n, n]);

5.2.3: Exit;

5.3: Else (i.e. y > x)

{Now all column minima in A[1,2’ + 1; j, r] is located in Ui }

5.3.1: Wlj+l(A) = T?lj+](Ui);

6: End for ;

7: If Y = IZ, exit; else, i = i + 1 and GOT0 2;

end;

Lemma 3.8 ((Klawe [16])). The algorithm correctly computes all the column minima

correctly.

Proof. We give an outline, and refer to [16] for a detailed proof.

If we want to query an entry A(s,j) = D’(s) + F(s,j) (s < j<f(s)) in the sth

row of A, it is necessary that m,(A) should have been computed already. Note that

A(s,j) = cc if j<s.

We first show that there is no deadlock. When we want to execute Step 3, m,(A)

has already been computed for each s = 1,2,3,. . , 2’. Thus, Step 3 can be executed

without a deadlock. Similarly, mj(A) has been already computed (in 5.3.1) when we

want to execute Step 5.1. Since 5.2.2 is designed to run concurrently with 5.2.1 so

that 5.2.2.1 is invoked immediately after mt(Ab,j; n,n]) has been computed, there is

no deadlock in computing the column minima of Au, j; n, n] in Step 5.2.1.

We next claim that the minima computed in the procedure are the true column

minima of A. If y > x, Lemma 3.4 implies that there is no column minimum to the

left of (k, 2’+’) in the k-th row for 2’ + 1 <k <j. Thus, the (j + 1)-th column minimum

must lie in the first 2’ rows, and hence, in Ui.

If y <x, we know that the minima of the columns to the right of the 2’+‘th column

are located in or below the jth row, because of Lemma 3.4; Hence, we only need to

search in Ab,j; n,n] for these minima. For a column between the jth and the 2’+‘th,

the column minimum is located either in Au, j; n,n] or in Uj. Thus, the procedure

computes the correct column minima. 0

.4. A~gurw~l, T Tokuyama I Discwte Applied Muthenwtic~s 85 11998) I-24 Ii

Theorem 3.9. The concave interzlal DP problem can he sold in O(m + n log log n)

time.

Proof. We analyze Klawe’s algorithm when it is applied to our concave interval DP

problem. As a preprocess, we have constructed the three kinds of consecutive query

data structure in O(m) time.

When we start processing U,, the column minima m,(A) have been already known

for j <2’. Thus, matrix searching in U, is an off-line problem.

Besides processing the submatrices Lij in Step 3. the algorithm computes entries on

some specific columns (Step 5.1). We stop the algorithm when we call DYN(A[j,j,n, n])

in Step 5.2.1. Then the length of the search path so far is O(j) if we ignore the edges

associated with processing of the submatrices C’;.

Thus, the length of edges except those corresponding to Step 3 in the search path

of the whole algorithm is O(n). Thus, the time complexity is dominated by the time

taken to compute the column minima of rigid Monge submatrices U,. Since the total

of the heights and widths of these submatrices is O(n), the theorem follows. C-1

-3.4. Conws intcwal DP

This section uses the same notation as in the concave case, except that the weight

function is convex. Unfortunately, different from the concave case, the matrix A defined

by A(i,,j) = D’(i) + W(i,j) is not a convex Monge matrix; hence, we utilize a weaker

property.

A matrix is called a partial Monge matrix if the Monge relation holds when all four

entries in the quadrangle equality are non-infinity. Then, by definition, A is a partial

convex Monge matrix such that A(i,j) is non-infinity if and only if i < ,j <,f(i).

A partial convex Monge matrix A4 is called a .fdling staircase matrix (associated

with .cl,~() if there exists a non-decreasing sequence yM such that M(i,j) is non-infinity

if and only if i <c/~(j) (Fig. 11). We often write y for y,bf unless we explicitly need

MM is called a ret’erse-fdling staircase if its transposition is a falling staircase matrix.

The matrix A can be decomposed into falling staircase submatrices and reverse-

falling staircase submatrices (Fig. 12), so that each of these submatrix is rigid, and the

total sum of the heights and widths of them is O(n). This fact was shown by Aggarwal

and Klawe [2] in a more general statement.

We process these submatrices of the matrix A from left to right. Each reverse-falling

staircase submatrix in the decomposition has a form A[a, 6; s, t] such that s < a. Thus,

when we compute this reverse-falling staircase submatrix, the values D(i) have already

been computed for all ids, and therefore we can process it by using an off-line matrix

searching algorithm. A falling submatrix in the decomposition has a form A(a,a; s,.~).

for some a < s.

Therefore, it suffices to show that matrix searching in a falling staircase convex

Monge submatrix of A can be done in O(n logn) time using consecutive query in

an on-line fashion. Thus, from now on, we pretend that A itself is a falling staircase

16 A. Aggarwal, i? Tokuyamal Discrete Applied Mathematics 85 (1998) l-24

Fig. 11. Falling staircase matrix (shaded region has non-infinity entries) associated with a sequence g.

submatrices

Fig. 12 Decomposition into falling and reverse falling matrices.

matrix associated with

consecutive query data

problem.

a sequence g, and values of FV can be queried by using our

structures. Note that g(i) -=z i for i = 1,2,. . . , II for an on-line

Theorem 3.10. Using consecutive query datu structures, all the column minima of

the matrix A can be computed in O(n log n) time in on-line fashion.

We give a proof of the above theorem in the next subsection. Our following target

result is an immediate corollary of Theorem 3.10.

Theorem 3.11. COIW~S intevvul DP can he solved in O(m + n logn) time.

Our algorithm is obtained by modifying the following divide-and-conquer algorithm

(which is different from the one in Section 3.2). Let T(k, I) be the computing time

for on-line matrix searching in an k x I failing staircase matrix A4 (with respect to 9).

which is a rigid submatrix of A. We, without loss of generality. assume 1 is even. We

divide the matrix A4 into four submatrices M NW =M[l,l;g(/;‘2),l,i2)],MNE =M[I,I.2

t l;<g(1!2),1], Mskv = M[g(1/2)+ 1, l;k,1!2], and MOE = M[y(1:‘2)+ 1,1/2+ I;k,l] in

the upper-left (northwest), upper-right, lower-left, and lower-right to the (l/2, g(li2))th

entry, respectively. All the entries in the lower-left submatrix Msw are infinities. and

can therefore be ignored.

We first compute, in T(g(l/Z), i/2)) time, the column minima of JV&U.. which is

a falling staircase matrix of size g(1/2) x l/2. We next compute the column minima

of A&; this is a rectangular Monge matrix, and we can process it in an off-line

fashion. Thus, we can compute all the column minima of Mt.,,a in O((k + I) log logn)

time using Lemma 3.7. Finally, we compute all the column minima of Mst:, which

is a falling staircase matrix, in T(k -- g(1/2), l/2) time. Concurrently, we compare

the column minima of MNE with those of A4 sa in O(I) time. We have T(k, I) =

T(q(/!Z). 1’2) -t T(k - g(/!2), l/2) +O((k + i) log logn), and hence the time complexity

is O((k + /)logIloglogn).

If we naively apply the above algorithm for M = A, the time complexity becomes

O(n log n log logn) time, which is worse than our target. So, we modify the divide-

and-conquer strategy using the idea that the processing time of ANE (resp. ASE) can be

reduced making use of information obtained during the processing of ANW (resp. .4h~

and A’\;r).

For i = I ,,... n/h, let B; = A[y((i - 1)h-t l),(i -- I)h + l;g(ih),ih] (Fig. 13). We

define the union B = U,=, .,,,,nhB, of those submatrices. We define C = A - B, which

is the block falling staircase matrix obtained by removing the entries of B from A.

It is clear that the minimum m;(A) of the jth column of A is the minimum of

“j(B) and n?,(C). We assume temporarily that all the column minima of the matrix

B have been computed in advance, and concentrate on how to process the matrix C.

We define CYM.. CNE, Csw, and CsE similarly to the submatrices of A. Since C is a

block-upper-triangular matrix with block width h, we can stop the divide-and-conquer

process when the width of a matrix becomes h. We use H (resp. HNW, HUE, HSF) to

denote the submatrix of C (resp. CNw, Ckk, Csr) consisting of all the columns whose

column indices are integer multiples ot’ h.

We can process H in the divide-and-conquer strategy in O(n logn) time, since we

can compute the column minima of H NE in O(n) time (Lemma 3.6) when processing

the reCtangUh- matrix CNE.

When we process C;\IE - Ht+, we utilize the fact that the column minima of HIM;

(as well as those of &E) are already known when we process CNE, because of the

18 A. Aqqaraal, T Tokuvama / Diwrete Applied Mathematic~.v 85 i 1998) I-24

T-l-

Fig. 13. Matrices L3,

properties of the divide-and-conquer strategy.

of HNW and HNE when we process CUE.

and matrix C.

Similarly, we know the column minima

Let r(i) = vc(i) be the row index of the minimum entry of the ith column of C. For

any j > i, either r(j)<r(i) or r(j) > gc(i), because of the Monge property. Notice

the difference from the rectangular case in Lemma 3.7; the Monge relation holds only

if the four terms in the relation are non-infinity.

Let us consider how we can reduce the computation time by using a knowledge of

r(ih). We have not yet computed the part of C - H to the left of the [(i - I)hJth

column when we compute r(ih). If ih < j, either r(j)<r(ih) or v(j) > g&i/z); also,

if i(h - 1) + 1 <,j < ih then r(j) 2 r(ih). Thus, the shaded region, which is the union of

two rectangular matrices lgft stripe A[l,(i ~ I)h + 1; r(ih) ~ I,ih ~ l] and right stripe

A[r(ih) + 1, ih + 1; gc(ih),n], in Fig. 14, cannot contain column minima. We prune

away from C ~ H the entries in the portion of the matrix that is located in the stripes

for each v(ih) i = 1,2,..., n/h. If r(ih) = yc(ih), the right stripe is empty; in this

case, we cut each rigid submatrix of the surviving part of C - H containing both the

[r(ih)]th row and (r(ih) + 1)th row into two rigid submatrices by the horizontal line

between these two rows. We denote the surviving part of the matrix by Q (Fig. 15)

and prove the following claim:

Lemma 3.12. Q consists of O(n/ log’ n) rigid .submatrices Q1 , . . . , Qs. The matrix Qi

bus size qj x (h - 1) cmi C’z=, qi = O(n).

Proof. See Aggarwal and Klawe [2] for the proof that C;;:, qi = O(n), (Aggarwal and

Klawe defined Q in a slightly different form). We, therefore, show that Q consists of

O(n/ log2 n) rigid submatrices. See Fig. 16 to intuit the proof. We define C[i] to be the

ith block-column, which is the portion of C between the ((i- l)h+ 1)th column and the

ihth column of A. Note that C[I] is empty, and C[n/h] is the rightmost block-column.

Fig. 14. Entries that can be pruned by using the minima (~.(ih).ih)

. : Locations of minima of
ih-th columns (i=2,...,n/h -1)

@j : Q

Fig. 15. hlatrlr Q

We define y(i) as the number of connected components of Qr!C[i]. We prune away

the entries of C by using the row minima of H from left to right. Let Q[j) be the

matrix obtained by using 42/z),r(jh) to prune entries from C ~ II. By definition.

Q(n/lr) = Q and Q(1) = C ~ H. It 1s easy to see that the number of connected

components of Q(j) n Cb] equals ;*(j).

We define p(j) as the number of connected components of Q(j)flC[n/h]. The entries

pruned because of r(jh) form a horizontal stripe in C[nih]. Thus, ,~(,j) <,~(,j .- I) A I

20 A. Aggarwal, T TokuyamalDiscrete Applied Mathematics 85 (1998) 1-24

Y (9)= w W- F(9) +2 p (9)=4

Fig. 16. Proof of Lemma 3.12

and p(1) = 1. On the other hand, y(j) = /Aj - 1) - p(j) + 2 if j <n/h - 1, since the

right stripe pruned by r(jh) contains y(j) -2 connected components of Q(j)flC[n/h] if

r(jh) # g&h), and it increments one connected components if djh) = g&h) (where

y(j) = 1). It is easy to see that y(n/h) <p(n/h - 1). Hence, C$, y(j)< 1 + 2(n/h
- 1) - p(n/h - 1) + y(n/h) ,<2n/h, and we have proved the claim. q

The right stripe A[r(ih) + 1, ih + 1; gc(ih), n] (or the horizontal separating line if

r(ih) = gc(ih)) has already separated the matrix into the northeast part and the south-

east part when we need to divide the matrix at the ihth column and the gc(ih)th row

in the divide-and-conquer algorithm.

Thus, in the divide-and-conquer algorithm, each of the O(n/ log2 n) rigid submatrices

of Q can be computed by using the off-line matrix searching algorithm of Lemma 3.7

in (h + qi) log logn) time, where qi is the height of the submatrix. Hence, we can

process Q in O((hn/ log’ n + cy=, qi) log n log n) = O(n log log n) time.

Finally, let us consider the processing of B. Bi is processed just after all column

minima of C to the left of the ihth column have been computed. Since each Bi

has O(log’n) consecutive columns, all column minima in Bi can be computed in

O((gA(hi) - gA(h(i - 1)) + log2 n)(log log n)2) time by applying the naive divide-and-

conquer algorithm. Thus, we can compute all column minima of B in O(n(log log n)2)

time.

In total, the time complexity of the algorithm is O(n log n).

4. Applications

The following lemma implies that the Monge properties are not very artificial con-

ditions for interval DP problems:

A. Ayyarwal, T. Tokuyama I Discrete Applied Mcrthematics 85 11998) 1-24 ?I

Lemma 4.1. If’ w(e) is nonnegative for every e E Y, W(i,j) is u concave Junction.

If w(e) is nonpositive for every e, W(i, j) is u c0nve.Y jiinction.

Proof. We only prove the first statement, since the other statement can be proved

similarly. Since W(i, j) = C, CCi,i, w(Z),

(W(i,j + 1) + W(i + l,j)) - (W(i,,j) +- W(i + l,.j + I)) = w((i,,j + 1])30.

This gives the concave Monge property. Ll

Before discussing applications, we consider the following modified version

interval DP defined by the following recursion for fixed nonnegative integers a

O(j) = ,<y>f,i,(D’(i) + W(i + a,j - b)).

of the

and h:

Here, W(i + a, j - b) = 0 if i + a>,j - h, D(0) = 0, and D’(i) can be computed in

0(1) time from D(i).

Lemma 4.2. Given u set 2 of m weighted intervals on U = { 1,2,. ., n}, D(n) cun

be computed in O(m + n log log n) (resp. O(m + n log II)) time if the weight of’ each

interval is nonnegative (resp. nonpositive).

Proof. Given an interval I = (i, j], we define Q,(I) = (i - a, j + b]. The problem is

then equivalent to computing the interval DP on the set rc,,,~,(F) = {r~~.~,(l)lZ E Y} of

intervals. 0

4.1. Sequential partition of a graph

We use notations given in section 1. We can consider a vertex of H as a node

(integral point) of the interval (O,n], the edge e between i and j as a sub-interval

Z(e) = (i,,j] of (0, n], and a cluster Vi of a sequential partition as an interval (t(i
- 1) t(i)]. Then, the cost of edges in the cluster Vi is xeEE, I(f)C(,(i_,I+,,f(i), w(e) =

W(t(i - 1) + 1, t(i)), if we consider 9 = {I(e) : e E E}. We define a sequence f(i)

i = 1,2,. . , n such that f(i) is the largest integer satisfying the condition that the

summation of the vertex weights of {I_++, , . , Vf(i)} does not exceed K.

We want to maximize

J‘(t(i - 1)). Consequently,

ing the functions D(i) on

g=, W(t(i - 1) + l,t(i>> under the condition that t(i) <

the sequential partitioning problem becomes one of comput-

U, such that D(0) = 0 and

t W(i + l,.j)}.

Theorem 4.3. The optimal sequential partition of H is obtained in O(m + n logn)

time.

Proof. It is easy to see that the sequence f can be computed in O(n) time. By

replacing each weight with its negative, we can formulate the rest of the computation

22 A. Aggarwal, T Tokuyamul Discrete Applied Mathematics 85 (1998) 1-24

Fig. 17. Interval representation of cliques of an interval graph.

as a minimizing problem, where the weight of each interval is nonpositive. Thus, the

problem is a convex interval DP, and can be solved in O(m + n logn) time. 0

4.2. Maximum K-clique of un interval gruph

For a set %? of cliques of the interval graph H(T), we denote J%l for the cardinality

(number of cliques) of %’ and Y(%?) for the vertex-weight sum of the union of cliques

of V. Then, the maximum K-clique maximizes Y(V) under the constraint that (VI = K.

In order to solve the maximum K-clique problem, we solve the following “parametric

partial edge-covering with cliques (PPEC)” as a subproblem:

Given a positive real number t, find a set G!S of cliques such that Y(g) - tl’ei

is maximized.

Let %P be the set of all intervals of Y containing p E U in each of them. ZJ’

corresponds to a clique CP of H(3). Also, any maximal clique has this form. We

can assume that every clique in % of the solution of PPEC is a maximal clique, since

otherwise we can replace a clique in % with a maximal clique containing it without

decreasing Y(V).

The dotted lines in the left panel of Fig. 17 represent p and p’ such that the cliques

associated with {a, c, 9, h} and {h, e, J’, i} are 9” and ZYp’, respectively.

Thus, PPEC is equivalent to the problem that finds a sequence pi < p2 < . . < pi

of nodes (I is not given in advance) such that -It + C,Eui_,ri,, w(Z) is maximized.

If we subtract C,,,;;, Y,J, w>(Z) from the total sum of weights of intervals in H(T),

we have the total weight of intervals that contain no node of { pl , . , pl}. Hence, the

above problem is equivalent to the one that finds a set ~1, p2 , . . . , p/ of nodes such

that cf:: (W(p;_ 1, p, - 1) + t) is minimized, where we set po to be 0. Now, we have

the following theorem:

Theorem 4.4. PPEC can be solved in O(m + n log log n) time.

Proof. The problem can be solved by computing I>(11 it I). using the recursion

O(j) = i;;i:(D’(i) + W(i,,j ~ I)) and D’(i) =- n(i) 4 t.

Since \I(/) is nonnegative for each interval I, the problem is an instance of conca\:c

Monge DP. I_!

We search for a parameter value I,,,~ such that the solution of PPEC at I = I,,~,,

has exactly ti cliques. Apparently. this solution gives the maximum K-clique of‘ tho

original inter\,al graph. Suppose we know that the solution of the PPEC has K,) cliques

at f := to. Then. t,,,,t < to if K > KC,, and fop, > /,) if ti < K,,. Thus, M’C can

use a binary searching method to find fit,,,. If F is the maximum 01‘ the weight. the

time complexity is O(m + M log log 12 log I-). since we can solve partial clique partition

problems in O(17 log r) time if the consecutive intcr\.al query data structure is gi\:en 111

advance. Note that preprocessing of the interval query is required only once.

We can apply the parametric searching technique [I91 to make the above algot-lthm

strongly polynomial. By applying an algorithm of Schieber [22] for solvine a concave

DP problem, \ve can solve the maximum K-clique problem in 0(~7”’ I’ ““’ !‘v ‘i’C” ’

log log 17) z (](,72”(d-1) time,

A different approach to solving the maximum K-clique problem is the direct LISC ot

the matrix searching K times (see [3] for a similar solution for computing the extrcmal

K-gon of a convex polygon). It follows from Lemma 3.7 that this approach requires

O(r~7 + K/r log log 17) time (we omit details)

Combining these three approaches, we ha\:e the following:

5. Concluding remarks

In this paper, we have dealt with the convex and concave cases of rhe dynamic

programming problem on intervals. Our solution for the concave case runs in O(lrz

A- 17 log log 17) time. and is thus generally faster than the previous-best 0(111 log II I tltnc

algorithm. The solution for the convex case takes O(HI :- II log II) time. and lbstcr thall

the previous O(r~zlog~) time algorithm only if 17 :~ o(m j. Bridging this gap in the time

complexity remains an open problem.

Whether a general interval DP problem can be sol*ed in o(171 log 17) tinw remain\

another open question.

Acknowledgements

The authors thank the anonymous referees for many valuable comments.

24 A. Aggarwal, T Tokuyamal Discrete Applied Mathematics 85 (1998) I-24

References

[II

PI

[31

[41

[51

[61

[71

PI

[91

[lOI

[Ill

WI

P31

[I41

[I51

[161

u71

1181

[I91

PO1

Pll

P21

~231

T. Asano, Dynamic programming on intervals, Intemat. J. Comput. Geom. Appl. 3 (1991) 323-330.

A. Agganval, M. Klawe, Applications of generalized matrix searching to geometric algorithms, Discrete

Appl. Math. 27 (1990) 2-23.

A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric Applications of a matrix-

searching algorithm, Algorithmica 2 (1987) 209-233.

A. Aggarwal, J. Park, Notes on searching in multidimensional monotone arrays, Proc. 29th IEEE Symp.

on Foundations of Computer Science, 1988, pp. 4977512.

A. Aggarwal, B. Schieber, T. Tokuyama, Finding a minimum weight K-link path in graphs with Monge

property and applications, Discrete Comput. Geom. 12 (1994) 263-280.

A. Aggarwal, T. Tokuyama, Unpublished result.

B. Chazelle, L. Guibas, Fractional cascading: I. A data structure technique, Algorithmica 1 (1986)

133-162.

D. Eppstein, Sequence comparison with mixed convex and concave costs, J. Algorithm 11 (1990)

855101.

D. Eppstein, Z. Galil, R. Giancarlo, G. Jtaliano, Sparse dynamic programming, Proc. 1 ACM-SIAM

Symp. on Discrete Algorithms, 1990, pp. 513-522.

Z. Galil, K. Park, A linear-time algorithm for concave one-dimensional dynamic programming, Inform,

Process. Lett. 33 (1990) 309-311.

M. R. Garey, D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness,

W. H. Freeman, San Francisco, 1979.

J. Hershberger, S. Suri, Matrix searching with the shortest path metric, Proc. 25th ACM Symp. on

Theory of Computing, 1993, pp. 485494.

S. J. Hong, R-Mini: a heuristic algorithm for generating minimal rules from examples, in: Proc. PRICAI-

94.

S. J. Hong, Use of contextual information for feature ranking and discretization, IBM research report,

RC-19664, 1994.

B. Kemighan, Optimal sequential partitions of graphs, J. ACM 18 (1971) 3440.

M. Klawe, A simple linear time algorithm for concave one-dimensional dynamic programming,

Technical Report, University of British Columbia, Vancouver, 1989.

M. Klawe, D. Kleitman, An almost linear time algorithm for generalized matrix searching, Technical

Report, IBM Almaden RC 1988.

L. Larmore, B. Schieber, On-line dynamic programming with applications to the prediction of RNA

secondary structure, J. Algorithms 12 (199 1) 490-5 15.

N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. ACM 30

(1983) 852-865.

F. Preparata, M. Shamos, Computational Geometry, An Introduction, 2nd ed., Springer, Berlin, 1988.

R. Sedgewick, Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1988.

B. Schieber, Computing a minimum-weight k-link path in graphs with the concave monge property,

Proc. 6th ACM-SIAM SODA, 1995, pp. 405411.

R. Wilber, The concave least-weight subsequence problem revisited, J. Algorithms 9 (1988) 418425.

