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Abstract 

Given a set of n points (nodes) on a line and a set of m weighted intervals defined on 

the nodes, we consider a particular dynamic programming (DP) problem on these intervals. If 

the weight function of the DP has convex or concave property, we can solve this DP problem 
efficiently by using matrix searching in Monge matrices, together with a new query data structure, 
which we call the consecutive query structure. We invoke our algorithm to obtain fast algorithms 
for sequential partition of a graph and for maximum K-clique of an interval graph. 0 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

We consider special dynamic programming (DP) problems called Mange interual 

DP problems, motivated by its applications to sequential partition ?f u graph and 

maximum K-clique of an interval graph. 

Let U be a set of n integers { 1,2, . . . . n}. Given a non-decreasing sequence ,f(i), i = 

1,2, . . . . n-l such that i < f(i)<n, a set of ordered pairsX = {(i,,j) : i < ,j<,f(i)}, 

and a weight function F : X --f 9, let us define a function D(j) by the initial condition 

D( 1) = 0 and the recurrence formula 

WA = ,<~$,(D’(‘) + F(W), 

where D’(i) is computed from D(i) in 0( 1) time. Consider the problem of computing 

D(n), together with the sequence of indices 1 = Q( 1) < a(2) < < o(l) = n 

satisfying D(o(i + 1)) = D’(o(i)) + F(o(i), o(i + 1)) for i = 1,2, . . . , 1 - 1. 
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This is a DP problem associated with the weight function F and the sequence j’, and 

denoted by DP(F, f ). In order to simplify the notation, we write DP(F) for DP(F, f) 
unless f is needed explicitly. 

An 0(n2) time algorithm for solving DP(F) was given by Kernighan [15], in which 

he used it as a subroutine for solving the sequential partition problem (defined later) 

of a graph with n vertices in O(n2) time. 

Asano [l] defined the following special DP problems: Regard the set U as a set of 

points on a line, and let 2 be a set of m intervals, which are left-open and right-closed, 

and have their endpoints in U. Without loss of generality, we assume m 3 n. A weight 

w(l) is associated with each interval. Define W(i,j) = xl,9 and I CCi,jl w(Z), which 

is the sum of the weights of subintervals of (i,j] in %, and regard W as a weight 

function on X = {(i,j) : i -=c j<f(i)}. DP( W) (to be precise, DP( W,f)) is called 

the interval DP problem. Asano [l] gave an O(m log n) time algorithm for the interval 

DP problem, and applied it to solved the sequential partition problem of a graph with 

12 nodes and m edges in O(m log n) time. 

1.1. Main results 

We say a weight timction F is concave (resp. convex) if the quadrangle inequality 

F(i,j) + F(i + 1,j + I)dF(i + 1,j) + F(i,j + 1) (resp. F(i,j) + F(i + 1,j + 1)3F(i 

+ l,j)+F(i,j+ 1)) holds for such indices 1 di, j<n that all four terms in the inequality 

are defined. 

We consider the concave (resp. convex) interval DP problems, where the weight 

function W are concave (resp. convex). We also call them Mange interval DP prob- 

lems, since the quadrangle inequality is often called the Monge inequality. Monge 

interval DP is an important class of interval DP problems; Indeed, if w is a nonnega- 

tive (resp. nonpositive) function, W becomes concave (resp. convex). 

Specializing to Monge interval DP, we improve the time complexity: We give an 

O(m +n log log n) time algorithm for a concave interval DP, and an O(m +n log n) time 

algorithm for a convex interval DP. Applying the above algorithms, we give efficient 

solutions of the sequential partition problem of graphs and the maximum K-clique 

problem of interval graphs. 

1.2. Sequential partition of graph 

Let H = (V,E) be a graph with n vertices and m edges, An edge-weight function 

w : E -+ Rf, a vertex-weight function $ : V ----f R+, and a positive number K are 

given. Furthermore, we fix a linear ordering of the vertices of V labeled from 1 to n. 

For an integral sequence 0 = t(0) < t( 1) < t(2) < . . . < t(l) = IZ (for any 1), we 

define vi = {vt(i-l)+l,vt(i-1)+2,..., vt(+l, v,ci)}. Then, V is a disjoint union of subsets 

(called clusters) VI ,. . ., VI, which is called a sequential partition of V. If the sum of 

weights of the vertices in each cluster is no more than K, the sequential partition is 
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Fig. 1. Sequential partition of a graph, n = 11, K = 4. Each vertex and each edge have unit weights. Broken 
edges connect different clusters. 

called a feasible partition (Fig. 1). We want to solve the following sequential partition 

problem: 

Find the feasible partition that minimizes the total weight of the edges connect- 

ing different clusters. 

Sequential partition problem is a common heuristics to solve the (NP-hard) graph 

partition problem [l 11; and hence a key subroutine in several practical applications 

(e.g. VLSI layout) [15]. By formulating the problem as a convex interval DP problem, 

we can solve the sequential partition problem in O(m + II log n) time, improving O(n2) 

time of Kemighan [ 151 and O(m log n) time of Asano [ 11. 

1.3. Maximum K-clique of interval graph 

Let H = H(T) = (V(ZY),E(T)) be an interval graph associated with a set _Y 

of m intervals whose endpoints are among U = { 1,2, . . . . n}. There is a one-to-one 

correspondence from J’(Z) to 2, and two vertices of H are adjacent if and only 

if the corresponding intervals overlap with each other. Note that H(T) has m ver- 

tices, and n becomes a hidden parameter of the graph. We fix a vertex-weight func- 

tion Ic/ : V(3) + R+. We want to solve the following maximum K-clique 

problem. 

Given a positive integer K, compute the set %? = {Cl, C2 , . . , CK} of cliques of 

H such that the total weight of vertices in the union of the cliques is maximized. 

Fig. 2 shows an interval graph (right figure) associated with a set of nine seg- 

ments (left figure, lifted up to two dimensional space), and its maximum 2-clique 

if each vertex weight is 1. The maximum K-clique problem on an interval graph 

has applications to classification rule generation in AI [13, 141 (especially to data 

discretization [ 141). 

Using our concave interval DP algorithm, we can compute the maximum K-clique 

of H(Z) in O(m + nmin{log r log log n, Z’(m), K log log n}) time, where 

r is the maximum of the vertex weights (if we assume each weight is an 

integer). 
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Fig. 2. Maximum Z-clique of an interval graph. 

2. Consecutive interval query 

2.1. Mange interval DP and interval query 

Dynamic programming problems with concave or convex weight functions (Monge 

DP) are well-studied in the literature [3, 4, 8, 10, 18, 231. A Monge DP problem DP(F) 
for a concave (resp. convex) F can be solved in 0( T + nq(n)) time [ 16, 18, 231 (resp. 

O(T + na(n)q(n)) time [17], where CI is the inverse Ackerman function), if F can be 

implicitly stored using O(T) preprocessing time so that its each value can be queried 

in O(q(n)) time. Hence, a Monge DP problem can be efficiently solved if its weight 

function can be queried efficiently. 

For our Monge interval DP, the problem of querying a value W(i,j) of W is a well- 

known problem called interval query (to be precise, interval query on a set of weighted 

intervals) in computational geometry. A naive solution method is to precompute the 

function W completely in 0(n2) time, and to query a value of it in 0( 1) time by 

using the table. Instead, a range tree [20] data structure answers the interval query in 

O(logn) time after spending O(m log n) time on preprocessing. However, because of 

the high preprocessing time, applying them as query data structures in known Monge 

DP algorithms will not improve Asano’s O(m log n) time complexity. 

Unfortunately, it appears to be difficult to obtain an efficient interval query data 

structure in O(m) preprocessing time. We can construct an O(n&) time query data 

structure for any constant E in O(m) preprocessing time [6], but it only gives an 

O(m + n’+E) time algorithm for Monge interval DP. 

In order to overcome this difficulty, we first construct data structures for what we 

call the consecutive query problem, and then show that our data structures give efficient 

amortized query time for solving our Monge interval DP problems. 

We remark that a similar amortized query technique for a Monge DP problem was 

introduced by Hershberger and Suri [12] for solving the problem of computing the 

farthest distance within a simple polygon. This can be formulated as a concave DP 

problem, and q(n) becomes the time needed to query the interior distance between 

two given vertices of a polygon. Although the current best data structure requires 
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an O(log n) query time, Hershberger and Suri [12] reduced q(n) to a constant in an 

amortized sense, and obtained an optimal O(n) algorithm for computing the farthest 

distance. 

2.2. Consecutive query problem 

Let us define the consecutive interval query problem (consecutive query, in short) 

given below. 

Query W(i f io,j +,jo) efficiently after we have queried W(i,j). 

The data structure for Monge interval DP consists of three different kind of consec- 

utive query data structures: the first one answers in 0( Ii01 + Ijo\) time, the second in 

O((li~l + Ijoi)/(logn)’ + logn) time for a constant c, the third is the h-skip data struc- 

ture described in Section 2.5. The data structures are constructed by using ,fiwctionul 

ctiscuding [7] in O(m) time. 

It will be shown in later sections that these consecutive query data structures give an 

O(log logn) (resp. O(logn)) amortized query time for the query sequence in a solution 

of a concave (resp. convex) interval DP problem. 

2.3. An O(lio( + I,jol) query time data structure 

We first describe a data structure that answers the consecutive query in O( /io/ + 1 jo i ) 
query time. Without loss of generality, we assume that both io and jo are nonnegative 

from now on. We remark that, in order to perform the consecutive interval query, it 

suffices to compute W(i,j) - W(i + io,j) and W(i + io,j) - W(i + io,j +.jo). 
Let us denote the left and right endpoints of a interval I of .ZE by left(l) and 

riyhl(l). In other words, I = (left(r), riyht(l)]. 

Let 6P3k be the set of intervals of 3 whose left endpoint is k. Yk is the sorted list 

of the right endpoints of .J?CZk. 

Lemma 2.1. W(i,,j) - W(i + io,j) = cc!+, y(Y3lk,.j) 

Proof. The value W(i,j) - W(i + io,j) equals the total weight of intervals (a, b] of y 

satisfying that i + 1 <a <i + i. and 1 ,< h <,j. This leads the lemma immediately. 0 

For all k = 1,2,. . , n and q E Yk, we precompute cp(-l;uZk, II), which are prefix 

sums of weights of 9.Zk sorted with respect to the right endpoints. Thus, for any 

nonnegative integer j, if we have the location of j (i.e. largest entry which is not 

larger than j) in the list Yk, cp(y%k,j) can be computed in 0( 1) time. 

Hence, what we need is a data structure which computes the locations of ,j in Yk 

for k = i + 1,; + 2, . . ..i + io efficiently. For this purpose, we construct a data structure 

which is a slight modification of the ,fi-uctional cuscuding data structure of Chazelle 

and Guibas [7]. 
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In the data structure, an augmented list pk is constructed for each list Yk such that the 

location of j in Yk can be computed in 0( 1) time from the location of j in Pk and vice 

versa. Further, the locations of j in Yk+i and Pk-1 can be found in 0( 1) time from its 

location in f,+. See Chazelle and Guibas [7] how to create such augmented lists for k = 
1,2,. . . , n in O(m) time. We call the above structure the left-end-based-structure. It is 

clear from the properties of the data structure that we can find all the locations of j in Yk 

for k = i+ 1, i+ 2, . . . . i+io in O(io) time, provided that we know the location of j in pi. 

We construct a similar structure (called the right-end-based-structure) by exchanging 

the roles of the right endpoint and the left endpoint. The sorted list of the left endpoints 

of points of &?Zk (the intervals whose right endpoint is k) is denoted by X,, and 

the associated augmented list is denoted by Xk. We can compute W(i + io,j) - 

W(i + io,j +ja) in O(jo) time if we know the location of i + io in Xj. 

When we query W(i, j), we store not only the value W(i,j) but also both the location 

of j in & and the location of i in Xj. Thus, we can find the location of j in pi in 

0( 1) time. Furthermore, we can find the location of i + io in Xj in O(i0) time, since 

we can move at most ia steps up the list Xj to have the location of i + io, and we can 

have the location in Xj in 0( 1) time from it. 

Therefore, we can compute W(i + io,j fjo) - W(i,j) in O(io +js) time. Furthermore, 

we can simultaneously compute the location of i + io in Xj+jO and that of j + js in 

Yi+i,,. Hence, we obtain the following: 

Theorem 2.2. We can query W(i + io,j +jo) after querying W(i,j) in O(lioj + [joi) 
time, by using the above data structure. 

Proposition 2.3. The data structure can be computed in O(m) time. 

Proof. We prepare the sorted lists Yk (k = 1,2,. . . , n) using O(m) time for all 

columns. This can be done by first bucket-sorting all the elements of S with respect 

to the y-coordinate values, and then distributing the points into queues associated with 

COhInS. The COmpUtatiOU of prefix sums &Tiabk, y) for q E Yk for k = 1,2,. . . , n can 

be done in O(m) time in total by using a prefix-sum algorithm. Finally, the construction 

of the fractional cascading data structure can be done in O(m) time [7]. 0 

2.4. An O(#$$$ + logn) query time data structure 

We next construct an O(& + logn) query time data structure for any given 

nonnegative integral constant c. Although we use only for c = 1 later to solve Monge 

interval DP, we here describe the data structure for a general c. 

Let L be a natural number such that L M logn. For simplicity, we assume that n/L’ 
is an integer (it is easy to remove this assumption). Let z(s) = n/L” for s = 0,1,2, . . ..c. 

Let us consider a set of vertices {v(s, t)/ s = 0, 1, . . . . c; t = 1,2, . . . . r(s)}. For each 

vertex v(s, t), we draw an undirected edges to v(s, t + 1 ), v(s - 1, tL) and v(s - 1, 

(t - 1)L + 1) (if these vertices are defined). Now we have a graph G (Fig. 3). 
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Level 3 

Fig. 3. Underlying graph of fractional cascading (n = 18. L = 3. c = 2) 

For each z? = z)(s, t) E G, we define closed intervals J(c) = J(v(s, f)) = [(t - I )L‘ 

+ l,tLS]. Let 93(c) = {I E 3‘ : left(l) E J(v)}, and let Y(v) be the sorted 

list of right endpoints of elements of YCZ’(r). cp( 9?3(v), v) is similarly defined as 

(p(~?Z~,y). We precompute prefix sums (p(P’Z(r),y~) for all u E G and q E Y(c). 

In O(m) time, we can construct the fractional cascading data structure which has the 

underlying graph G, so that for any j, the data structure can answer the location of 

j in Y(v) for all u on any path p of length 1 in G in O( I i logn) time (see [7] for 

details). 

We construct an analogous structure exchanging the roles of right endpoint and left 

endpoint. 

Theorem 2.4. A data structure can be constructed in such a way’ that it answers the 

query W(i+io,,j+jo) in O(#$f$ + log n) time as long as the query W(i,,j) has been 

answered before; this data structure can be constructed in O(m + n) time, where c is 

a nonnegative integer and is considered as a constant. 

Proof. The interval [i + 1, i + io] can be represented as a disjoint union UcE&(~) of 

subintervals, such that the corresponding set Il of vertices lies on a path p, which has 

at most 2cL + (i,/L’) vertices, on the graph G (Fig. 4). W(i + io, j) - W(i, j) equals 

the total sum of ~(9!.Z’(u), j) for v E LZ. Since L z log n and c is a constant, the 

query time is O([io/(logn)“] + logn). Similarly, we can compute W(i + io, j + j0) - 

W(i + io,.j). 0 

2.5. h-skip data structure 

In addition to the consecutive interval query data structures of Theorems 2.2 and 2.4, 

we use a variant of the consecutive interval query data structure called h-skip structure 

for a fixed integer h, which only deals with W(i, jh) for nonnegative integers j, and 

can query W(i + io,(j + jo)h) in O(io + jo) time if W(i,jh) was queried before. This 

data structure is easy to construct in O(n + m) time by rounding each interval (s, t] in 

9 to (s, h[t/hl] (if more than one interval is rounded to the same interval, we assign 

to the rounded interval the sum of the weights of the original intervals) and construct 

the data structure of Theorem 2.2 for those rounded intervals. 
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Level 1 

Level 2 

Level 3 

Fig. 4. (Black) vertices ~(2, I), u(1,4), u(O,13) and u(O,l4) associated with the decomposition [1,9] U 
[lo, 121 U [13,13] U [14,14] of [I, 141, and the path p (bold arcs). 

3. Algorithms for Monge interval DP problems 

3.1. Matrix searching in a Monge matrix 

First, we give a brief summary on matrix searching, which is a key subroutine in 

our algorithms. 

A matrix M = (M(i,j))i=1,2,...,k;j=1,2 ,_.., i is called a convex Monge matrix if 

M(i,j) + M(i + 1,j + 1) >M(i,j + 1) + M(i + l,j> (2) 

and a concave Monge matrix if 

M(i,j) + M(i f 1,j + 1) bM(i,j + 1) + M(i + l,j> (3) 

for 1 <id I and 1 <j < 1. Entries of a matrix can be positive-infinity entries, and we 

permit 03 > 00 to be correct in quadrangle relations. 

For a matrix M, we define mj(M) and rM(j) (or r(j) if we can fix M) to denote the 

value and the row index of the minimum entry of the jth column of M. The problem 

of computing mj(M) for all j = 1,2,. . . , 1 in an n x I matrix is called the matrix 
searching problem. 

Although Q(nZ) time is necessary for matrix searching in a general matrix, it is well 

known [4] that matrix searching in a Monge matrix can be done in O(n + Z) time, if 

each entry can be queried in a constant time. 

We consider the DP defined by Eq.( 1) in the introduction, specializing for the weight 

function W (i.e. interval DP). We extend W(i, j) so that it is 03 unless i < j<f(i), 
and let A be a matrix defined by A(i, j) = D’(i) + W(i, j). By definition, D( 1) = 0, 

D(i) = mi(A) for i = 2,3,. . , rz, and we can compute D’(i) from D(i) in 0( 1) time. 

Hence, it suffices to solve the matrix searching problem of A. 

A matrix searching problem in a matrix M is called an “off-line” problem if any 

entry of M(i, j) can be queried without any knowledge of column minima of M; 
otherwise, it is called an “on-line” problem. Matrix searching in the matrix A is an 

on-line problem, since we need D(i), which is m&4), in order to compute an entry 

A(i, j). The following lemma shows the relation between matrix searching and concave 

interval DP (convex case will be discussed later): 
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Lemma 3.1. If W is concave, A is a concave Mange matrix. 

Proof. If all four entries are defined (i.e. noninfinity), the Monge relation comes from 

the concavity of W. Otherwise, if either A(i,j) or A(i+ l,j+ 1) is 30, then A(i+ l,,j) 

must be (x, because of the monotonicity of f. Hence, the Monge relation holds. 0 

3.2. Off-line matrix searching using consecutive interval query 

From now on, throughout this paper, we set n as the size of the original DP (i.e. size 

of A), and h = jlog’ nJ. Without loss of generality, we assume that n is an integral 

multiple of h. We use the h-skip data structure, as well as 0( Ii”1 + Ij,l) time query 

data structure (Theorem 2.2) and 0(( Ii,-1 + ij,l)/ log n + log n) time query data structure 

(Theorem 2.4 for c = 1). 

A submatrix of A is called rigid if it has contiguous column indices and row indices. 

In this subsection, we consider a key subroutine of our solutions for Monge interval 

DP, namely, the off-line matrix searching in a rectangular rigid Monge submatrix A4 

of A of size k x 1. 

We investigate the order in which W is queried in an off-line matrix searching algo- 

rithm, and show that the consecutive query structures give an O(log logn) amortized 

query time. Without loss of generality, we assume that M is concave Monge, since if 

A4 is a k x 1 convex Monge matrix, the matrix h;I defined by hi(i,j) = M(i, k - j) is 

concave Monge. 

Given an algorithm .d that searches for minima of a matrix M, we define a directed 

path called the search path of ~2 whose vertices are entries of M. (This path is not 

always a simple path, and may visit an entry several times). For two entries M(i,j) and 

M(i’,j’) in a matrix M, we define an edcge between them with length Ii - i’l + lj -,j’i. 

Intuitively, the edge corresponds to a rectilinear shortest path between them in the 

matrix (regarded as a grid). The search path is defined incrementally according to the 

behavior of ,Q!. Initially, it consists of a single vertex that corresponds to the first entry 

queried by .d. When d queries a new entry, we connect it to the path by the edge 

from the current destination of the search path to the new entry of M. The total sum 

len(d) of the length of edges in the search path of .~4 is called the length of the 

search path of the algorithm ,d. 

We assume that the starting entry of ~2 has already visited before, and we need not 

worry about the query time for it. This assumption holds for our interval DP algorithms. 

The following two lemmas follow immediately from our definitions and Theorems 2.2 

and 2.4. 

Lemma 3.2. Zf we use the consecutive interval query! of Theorem 2.2 for querying 

entries of mutri-x A, the total cost of queries in an algorithm d is O(len(.cd)). 

Lemma 3.3. If we use the consecutive interval query of Theorem 2.4 for querying 

entries of matrix A, and an algorithm ~2 queries P entries, the total cost of queries 

in .d is O(P log n + Zen(d)/ log’ n). 
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Fig. 5. Location of column minima in a concave Monge matrix. 

A popular strategy for the matrix searching is the divide-and-conquer strategy. We 

start querying matrix entries from the north-west comer of the matrix to reach the top 

entry M( 1, [Z/21 ) of the center-column, and then query all entries of the center column 

to find its minimum entry, The following lemma is fundamental, and is easily derived 

from the Monge property: 

Lemma 3.4. The row indices r(i) (i = 1,2,. . . , 1) of the column minima of a concave 

(resp. conoex) Mange matrix form a non-increasing (resp. non-decreasing) sequence 

(Fig. 5). 

Because of the above lemma, r(i) 3 Y( [Z/2] ) if i > [Z/21 and ~0’) <r( rZ/21) if 

j < [Z/21. Therefore, it suffices to compute the column minima in the north-west 

(upper-left) I-( [Z/21 ) x ([Z/21 - 1) su ma rix b t and the south-east (lower right) (k + 1 
- r( [Z/21 )) x ([Z/21 - 1) submatrix, which correspond to shaded regions in Fig. 6. 

We recursively process the northwest submatrix first, and the southeast submatrix 

next. 

Lemma 3.5. The length of the search path of the divide-and-conquer algorithm is 

O((k + Z) log I) 

Proof. The search path for the case where Z = 7 is shown in Fig. 7. The length 

Zen(&‘(k, I)) of the search path of the algorithm satisfies Een(&‘(k, I)) 6 Zen(&(r( [Z/21 ), 

[Z/21 - 1) + Zen(&(k + 1 - r( [Z/21 ), [Z/21 - 1) + 2k + Z. Hence, Zen(&(k, I)) = 

O((k + I) log Z). 0 

Moreover, we use the following strategy (modified the one given in SMWK algo- 

rithm in [3]): We first process the submatrix M’ consisting of columns whose indices 
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Fig. 6. Possible locations of minima 

Fig. 7. Search path 

(in A) are integer multiples of h, and next process M - M’ using the information of 

column minima of M’. 

Lemma 3.6. All the minima of columns of Ml can be computed in O(k + I) time. 

Proof. M’ has k contiguous rows and s = jl/h] ( noncontiguous) columns. We use the 

REDUCE subroutine of the SMAWK algorithm of Aggarwal et al. [3]. If REDUCE 

is applied to a k’ x 1’ rigid submatrix of A where k’ > I’, it removes k’ - 1’ rows 

and reduces the matrix searching problem to matrix searching in a submatrix of size 

I’ x I’. An example of the searching order of entries in REDUCE is given in Fig. 8. 

It is observed that length of any edge of the search path of REDUCE is at most two 

(see [3] for the behavior of REDUCE in details). Hence, Zen(REDUCE) = O(k’ + I’). 

In our matrix M’, the column indices are not contiguous. However, since we deal 

only with columns whose indices are multiples of h, we can use the h-skip data structure 

for querying the entries of the matrix. Hence, if k > s, we can remove k--s (s = jl/hj ) 

rows from the searched matrix M’ in O(k + I) time. 
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Fig. 8. Search order of REDUCE; Shaded rows are removed 

Thus, we have a matrix M” that has at most s rows and s columns. However, neither 

the column indices nor the row indices are contiguous. We process this matrix by using 

the divide-and-conquer algorithm. The length of the search path is still O((k + I) log rt), 

but the algorithm only queries O(slogn) entries. Thus, from Lemma 3.3, if we set c = 

1, the algorithm spends O(s log2 n + k + 1) = O(k + 1) time querying entries, and the 

time complexity of the algorithm is O(k + 1). Cl 

Lemma 3.7. All the column minima of M can be computed in O((k + 1) log logn) 

time. 

Proof. If 1 <h, we apply a divide-and-conquer strategy to solve in 0((1+ h) log I) = 

O((Z + h)loglogn). If 1 > h, we use Lemma 3.6 to compute all minima r(ih) for 

i = 1,2,..., s (s = [Z/h]) of M’ (here, we identify indices of A4 and A without loss 

of generality). Given i, for every j such that iL <j 6 (i + 1 )h, r(ih) <r(j) d r((i + 1)h) 

because of the non-decreasing property of the column minimum locations. Therefore, 

it suffices to search in submatrices Mi , . . . , MS, such that Mi is a ki x (h - 1) matrix 

and Cs=, ki = k +s (Fig. 9). These submatrices can be computed in a total of Cy=,(h 

+ ki) log h = O((k + 1) log log n) time. 0 

3.3. Klawe’s Algorithm for Concave DP 

We introduce Klawe’s algorithm [ 161, which solves a concave DP problem in 

O(nq(n)) time if it takes O(q(n)) time to query each value of the weight function, and 
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h 2h 3h 4h 

*h-l - 

Fig. 9. Submatrices M, (shaded regions). 

Fig. 10. Klawe’s algorithm. 

show that it can solve the concave interval DP problem in O(m + n log log n) time by 

using the consecutive interval query data structures. 

The algorithm of Klawe [ 161 is the following procedure DYN. Fig. 10 illustrate 

the state of the procedure when i = 3 (and j = 13). We use A[a,s; 6, t] to denote 

the submatrix of A associated with the (i,j) entries for a <id b and s <j < t. In other 

words, this is a rectangular submatrix whose upper-left comer entry is A(a,s) and 

whose lower-right comer entry is A(b,t). 

To improve readability, in steps 5.2.2.1 and 5.2.2.2 of the procedure, we use a 

convention whereby mt(A~,j;n,n]) represents the minimum entry of the intersection 

of Au,j; n, n] and the tth column of A, which should be written as m,_j+l(Au,j; n, n]) 

mathematically, since it is the (t - j + 1 )th column of Ab,j; n, II]. We use the same 

convention for mt( Ui) in steps 5.2.2.1 and 5.3.1. Process 5.2.2 is designed to run 

concurrently with 5.2.1 so that 5.2.2.1 is invoked immediately after mt(Ab,,j; n, n]) has 

been computed in 5.2.1. 
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Procedure DYN(A) {Outputs m,(A) for t = 1,2,. . . , n} 

begin 

1: i=o; 

2: r = min{n,2’+‘}; 

3: Compute all the column minima of Ui = A[ 1,2’ + 1; 2’, r]; 

4: x = the minimum of the rightmost column of Ui; {located in the rth column of A} 

5: For j = 2’ to r; 

5.1: Compute y = A(j,r); 

5.2: If y<x; {Now all unknown minima are located in Ab,j; n,n] or Ui } 

5.2.1: Call DYN(ALj,j; n,n]); 

5.2.2: For t = j to n; { This process runs concurrently with 5.2.1 } 

5.2.2.1: If j<t<r, m&4) = min{mt(u,),mt(ALi,j;n,n])}; 

5.2.2.2: Else, mt(A) = mt(Au,j; n, n]); 

5.2.3: Exit; 

5.3: Else (i.e. y > x) 

{Now all column minima in A[ 1,2’ + 1; j, r] is located in Ui } 

5.3.1: Wlj+l(A) = T?lj+](Ui); 

6: End for ; 

7: If Y = IZ, exit; else, i = i + 1 and GOT0 2; 

end; 

Lemma 3.8 ((Klawe [16])). The algorithm correctly computes all the column minima 

correctly. 

Proof. We give an outline, and refer to [16] for a detailed proof. 

If we want to query an entry A(s,j) = D’(s) + F(s,j) (s < j<f(s)) in the sth 

row of A, it is necessary that m,(A) should have been computed already. Note that 

A(s,j) = cc if j<s. 

We first show that there is no deadlock. When we want to execute Step 3, m,(A) 

has already been computed for each s = 1,2,3,. . , 2’. Thus, Step 3 can be executed 

without a deadlock. Similarly, mj(A) has been already computed (in 5.3.1) when we 

want to execute Step 5.1. Since 5.2.2 is designed to run concurrently with 5.2.1 so 

that 5.2.2.1 is invoked immediately after mt(Ab,j; n,n]) has been computed, there is 

no deadlock in computing the column minima of Au, j; n, n] in Step 5.2.1. 

We next claim that the minima computed in the procedure are the true column 

minima of A. If y > x, Lemma 3.4 implies that there is no column minimum to the 

left of (k, 2’+’ ) in the k-th row for 2’ + 1 <k <j. Thus, the (j + 1 )-th column minimum 

must lie in the first 2’ rows, and hence, in Ui. 

If y <x, we know that the minima of the columns to the right of the 2’+‘th column 

are located in or below the jth row, because of Lemma 3.4; Hence, we only need to 

search in Ab,j; n,n] for these minima. For a column between the jth and the 2’+‘th, 

the column minimum is located either in Au, j; n,n] or in Uj. Thus, the procedure 

computes the correct column minima. 0 
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Theorem 3.9. The concave interzlal DP problem can he sold in O(m + n log log n) 

time. 

Proof. We analyze Klawe’s algorithm when it is applied to our concave interval DP 

problem. As a preprocess, we have constructed the three kinds of consecutive query 

data structure in O(m) time. 

When we start processing U,, the column minima m,(A) have been already known 

for j <2’. Thus, matrix searching in U, is an off-line problem. 

Besides processing the submatrices Lij in Step 3. the algorithm computes entries on 

some specific columns (Step 5.1). We stop the algorithm when we call DYN(A[j,j,n, n] ) 

in Step 5.2.1. Then the length of the search path so far is O(j) if we ignore the edges 

associated with processing of the submatrices C’;. 

Thus, the length of edges except those corresponding to Step 3 in the search path 

of the whole algorithm is O(n). Thus, the time complexity is dominated by the time 

taken to compute the column minima of rigid Monge submatrices U,. Since the total 

of the heights and widths of these submatrices is O(n), the theorem follows. C-1 

-3.4. Conws intcwal DP 

This section uses the same notation as in the concave case, except that the weight 

function is convex. Unfortunately, different from the concave case, the matrix A defined 

by A(i,,j) = D’(i) + W(i,j) is not a convex Monge matrix; hence, we utilize a weaker 

property. 

A matrix is called a partial Monge matrix if the Monge relation holds when all four 

entries in the quadrangle equality are non-infinity. Then, by definition, A is a partial 

convex Monge matrix such that A(i,j) is non-infinity if and only if i < ,j <,f(i). 

A partial convex Monge matrix A4 is called a .fdling staircase matrix (associated 

with .cl,~( ) if there exists a non-decreasing sequence yM such that M(i,j) is non-infinity 

if and only if i <c/~(j) (Fig. 11). We often write y for y,bf unless we explicitly need 

MM is called a ret’erse-fdling staircase if its transposition is a falling staircase matrix. 

The matrix A can be decomposed into falling staircase submatrices and reverse- 

falling staircase submatrices (Fig. 12), so that each of these submatrix is rigid, and the 

total sum of the heights and widths of them is O(n). This fact was shown by Aggarwal 

and Klawe [2] in a more general statement. 

We process these submatrices of the matrix A from left to right. Each reverse-falling 

staircase submatrix in the decomposition has a form A[a, 6; s, t] such that s < a. Thus, 

when we compute this reverse-falling staircase submatrix, the values D(i) have already 

been computed for all ids, and therefore we can process it by using an off-line matrix 

searching algorithm. A falling submatrix in the decomposition has a form A(a,a; s,.~). 

for some a < s. 

Therefore, it suffices to show that matrix searching in a falling staircase convex 

Monge submatrix of A can be done in O(n logn) time using consecutive query in 

an on-line fashion. Thus, from now on, we pretend that A itself is a falling staircase 
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Fig. 11. Falling staircase matrix (shaded region has non-infinity entries) associated with a sequence g. 

submatrices 

Fig. 12 Decomposition into falling and reverse falling matrices. 

matrix associated with 

consecutive query data 

problem. 

a sequence g, and values of FV can be queried by using our 

structures. Note that g(i) -=z i for i = 1,2,. . . , II for an on-line 

Theorem 3.10. Using consecutive query datu structures, all the column minima of 

the matrix A can be computed in O(n log n) time in on-line fashion. 

We give a proof of the above theorem in the next subsection. Our following target 

result is an immediate corollary of Theorem 3.10. 



Theorem 3.11. COIW~S intevvul DP can he solved in O(m + n logn) time. 

Our algorithm is obtained by modifying the following divide-and-conquer algorithm 

(which is different from the one in Section 3.2). Let T(k, I) be the computing time 

for on-line matrix searching in an k x I failing staircase matrix A4 (with respect to 9). 

which is a rigid submatrix of A. We, without loss of generality. assume 1 is even. We 

divide the matrix A4 into four submatrices M NW =M[l,l;g(/;‘2),l,i2)],MNE =M[I,I.2 

t l;<g(1!2),1], Mskv = M[g(1/2)+ 1, l;k,1!2], and MOE = M[y(1:‘2)+ 1,1/2+ I;k,l] in 

the upper-left (northwest), upper-right, lower-left, and lower-right to the (l/2, g( li2))th 

entry, respectively. All the entries in the lower-left submatrix Msw are infinities. and 

can therefore be ignored. 

We first compute, in T(g(l/Z), i/2)) time, the column minima of JV&U.. which is 

a falling staircase matrix of size g(1/2) x l/2. We next compute the column minima 

of A&; this is a rectangular Monge matrix, and we can process it in an off-line 

fashion. Thus, we can compute all the column minima of Mt.,,a in O((k + I) log logn) 

time using Lemma 3.7. Finally, we compute all the column minima of Mst:, which 

is a falling staircase matrix, in T(k -- g(1/2), l/2) time. Concurrently, we compare 

the column minima of MNE with those of A4 sa in O(I) time. We have T(k, I) = 

T(q(/!Z). 1’2) -t T(k - g(/!2), l/2) +O((k + i) log logn), and hence the time complexity 

is O((k + /)logIloglogn). 

If we naively apply the above algorithm for M = A, the time complexity becomes 

O(n log n log logn) time, which is worse than our target. So, we modify the divide- 

and-conquer strategy using the idea that the processing time of ANE (resp. ASE) can be 

reduced making use of information obtained during the processing of ANW (resp. .4h~ 

and A’\;r). 

For i = I ,,... n/h, let B; = A[y((i - 1)h-t l),(i -- I)h + l;g(ih),ih] (Fig. 13). We 

define the union B = U,=, .,,,,nhB, of those submatrices. We define C = A - B, which 

is the block falling staircase matrix obtained by removing the entries of B from A. 

It is clear that the minimum m;(A) of the jth column of A is the minimum of 

“j(B) and n?,(C). We assume temporarily that all the column minima of the matrix 

B have been computed in advance, and concentrate on how to process the matrix C. 

We define CYM.. CNE, Csw, and CsE similarly to the submatrices of A. Since C is a 

block-upper-triangular matrix with block width h, we can stop the divide-and-conquer 

process when the width of a matrix becomes h. We use H (resp. HNW, HUE, HSF) to 

denote the submatrix of C (resp. CNw, Ckk, Csr) consisting of all the columns whose 

column indices are integer multiples ot’ h. 

We can process H in the divide-and-conquer strategy in O(n logn) time, since we 

can compute the column minima of H NE in O(n) time (Lemma 3.6) when processing 

the reCtangUh- matrix CNE. 

When we process C;\IE - Ht+, we utilize the fact that the column minima of HIM; 

(as well as those of &E) are already known when we process CNE, because of the 
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T-l- 

Fig. 13. Matrices L3, 

properties of the divide-and-conquer strategy. 

of HNW and HNE when we process CUE. 

and matrix C. 

Similarly, we know the column minima 

Let r(i) = vc(i) be the row index of the minimum entry of the ith column of C. For 

any j > i, either r(j)<r(i) or r(j) > gc(i), because of the Monge property. Notice 

the difference from the rectangular case in Lemma 3.7; the Monge relation holds only 

if the four terms in the relation are non-infinity. 

Let us consider how we can reduce the computation time by using a knowledge of 

r(ih). We have not yet computed the part of C - H to the left of the [(i - I)hJth 

column when we compute r(ih). If ih < j, either r(j)<r(ih) or v(j) > g&i/z); also, 

if i(h - 1) + 1 <,j < ih then r(j) 2 r(ih). Thus, the shaded region, which is the union of 

two rectangular matrices lgft stripe A[l,(i ~ I)h + 1; r(ih) ~ I,ih ~ l] and right stripe 

A[r(ih) + 1, ih + 1; gc(ih),n], in Fig. 14, cannot contain column minima. We prune 

away from C ~ H the entries in the portion of the matrix that is located in the stripes 

for each v(ih) i = 1,2,..., n/h. If r(ih) = yc(ih), the right stripe is empty; in this 

case, we cut each rigid submatrix of the surviving part of C - H containing both the 

[r(ih)]th row and (r(ih) + 1)th row into two rigid submatrices by the horizontal line 

between these two rows. We denote the surviving part of the matrix by Q (Fig. 15) 

and prove the following claim: 

Lemma 3.12. Q consists of O(n/ log’ n) rigid .submatrices Q1 , . . . , Qs. The matrix Qi 

bus size qj x (h - 1) cmi C’z=, qi = O(n). 

Proof. See Aggarwal and Klawe [2] for the proof that C;;:, qi = O(n), (Aggarwal and 

Klawe defined Q in a slightly different form). We, therefore, show that Q consists of 

O(n/ log2 n) rigid submatrices. See Fig. 16 to intuit the proof. We define C[i] to be the 

ith block-column, which is the portion of C between the ((i- l)h+ 1 )th column and the 

ihth column of A. Note that C[ I] is empty, and C[n/h] is the rightmost block-column. 



Fig. 14. Entries that can be pruned by using the minima (~.(ih).ih) 

. : Locations of minima of 
ih-th columns (i=2,...,n/h -1) 

@j : Q 

Fig. 15. hlatrlr Q 

We define y(i) as the number of connected components of Qr!C[i]. We prune away 

the entries of C by using the row minima of H from left to right. Let Q[j) be the 

matrix obtained by using 42/z), . . ..r(jh) to prune entries from C ~ II. By definition. 

Q(n/lr) = Q and Q( 1) = C ~ H. It 1s easy to see that the number of connected 

components of Q(j) n Cb] equals ;*(j). 

We define p(j) as the number of connected components of Q(j)flC[n/h]. The entries 

pruned because of r(jh) form a horizontal stripe in C[nih]. Thus, ,~(,j) <,~(,j .- I ) A I 
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Y (9)= w W- F(9) +2 p (9)=4 

Fig. 16. Proof of Lemma 3.12 

and p( 1) = 1. On the other hand, y(j) = /Aj - 1) - p(j) + 2 if j <n/h - 1, since the 

right stripe pruned by r(jh) contains y(j) -2 connected components of Q(j)flC[n/h] if 

r(jh) # g&h), and it increments one connected components if djh) = g&h) (where 

y(j) = 1). It is easy to see that y(n/h) <p(n/h - 1). Hence, C$, y(j)< 1 + 2(n/h 
- 1) - p(n/h - 1) + y(n/h) ,<2n/h, and we have proved the claim. q 

The right stripe A[r(ih) + 1, ih + 1; gc(ih), n] (or the horizontal separating line if 

r(ih) = gc(ih)) has already separated the matrix into the northeast part and the south- 

east part when we need to divide the matrix at the ihth column and the gc(ih)th row 

in the divide-and-conquer algorithm. 

Thus, in the divide-and-conquer algorithm, each of the O(n/ log2 n) rigid submatrices 

of Q can be computed by using the off-line matrix searching algorithm of Lemma 3.7 

in (h + qi) log logn) time, where qi is the height of the submatrix. Hence, we can 

process Q in O((hn/ log’ n + cy=, qi) log n log n) = O(n log log n) time. 

Finally, let us consider the processing of B. Bi is processed just after all column 

minima of C to the left of the ihth column have been computed. Since each Bi 

has O(log’n) consecutive columns, all column minima in Bi can be computed in 

O((gA(hi) - gA(h(i - 1)) + log2 n)(log log n)2) time by applying the naive divide-and- 

conquer algorithm. Thus, we can compute all column minima of B in O(n( log log n)2) 

time. 

In total, the time complexity of the algorithm is O(n log n). 

4. Applications 

The following lemma implies that the Monge properties are not very artificial con- 

ditions for interval DP problems: 
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Lemma 4.1. If’ w(e) is nonnegative for every e E Y, W(i,j) is u concave Junction. 

If w(e) is nonpositive for every e, W(i, j) is u c0nve.Y jiinction. 

Proof. We only prove the first statement, since the other statement can be proved 

similarly. Since W(i, j) = C, CCi,i, w(Z), 

(W(i,j + 1) + W(i + l,j)) - (W(i,,j) +- W(i + l,.j + I)) = w((i,,j + 1])30. 

This gives the concave Monge property. Ll 

Before discussing applications, we consider the following modified version 

interval DP defined by the following recursion for fixed nonnegative integers a 

O(j) = ,<y>f,i,(D’(i) + W(i + a,j - b)). 

of the 

and h: 

Here, W(i + a, j - b) = 0 if i + a>,j - h, D(0) = 0, and D’(i) can be computed in 

0( 1) time from D(i). 

Lemma 4.2. Given u set 2 of m weighted intervals on U = { 1,2,. ., n}, D(n) cun 

be computed in O(m + n log log n) (resp. O(m + n log II)) time if the weight of’ each 

interval is nonnegative (resp. nonpositive). 

Proof. Given an interval I = (i, j], we define Q,(I) = (i - a, j + b]. The problem is 

then equivalent to computing the interval DP on the set rc,,,~,(F) = {r~~.~,(l)lZ E Y} of 

intervals. 0 

4.1. Sequential partition of a graph 

We use notations given in section 1. We can consider a vertex of H as a node 

(integral point) of the interval (O,n], the edge e between i and j as a sub-interval 

Z(e) = (i,,j] of (0, n], and a cluster Vi of a sequential partition as an interval (t( i 
- 1) t(i)]. Then, the cost of edges in the cluster Vi is xeEE, I(f)C(,(i_,I+,,f(i), w(e) = 

W(t(i - 1) + 1, t(i)), if we consider 9 = {I(e) : e E E}. We define a sequence f(i) 

i = 1,2,. . , n such that f(i) is the largest integer satisfying the condition that the 

summation of the vertex weights of {I_++, , . , Vf(i)} does not exceed K. 

We want to maximize 

J‘( t( i - 1)). Consequently, 

ing the functions D(i) on 

g=, W(t(i - 1) + l,t(i>> under the condition that t( i ) < 

the sequential partitioning problem becomes one of comput- 

U, such that D(0) = 0 and 

t W(i + l,.j)}. 

Theorem 4.3. The optimal sequential partition of H is obtained in O(m + n logn) 

time. 

Proof. It is easy to see that the sequence f can be computed in O(n) time. By 

replacing each weight with its negative, we can formulate the rest of the computation 
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Fig. 17. Interval representation of cliques of an interval graph. 

as a minimizing problem, where the weight of each interval is nonpositive. Thus, the 

problem is a convex interval DP, and can be solved in O(m + n logn) time. 0 

4.2. Maximum K-clique of un interval gruph 

For a set %? of cliques of the interval graph H(T), we denote J%l for the cardinality 

(number of cliques) of %’ and Y(%?) for the vertex-weight sum of the union of cliques 

of V. Then, the maximum K-clique maximizes Y(V) under the constraint that (VI = K. 

In order to solve the maximum K-clique problem, we solve the following “parametric 

partial edge-covering with cliques (PPEC)” as a subproblem: 

Given a positive real number t, find a set G!S of cliques such that Y(g) - tl’ei 

is maximized. 

Let %P be the set of all intervals of Y containing p E U in each of them. ZJ’ 

corresponds to a clique CP of H(3). Also, any maximal clique has this form. We 

can assume that every clique in % of the solution of PPEC is a maximal clique, since 

otherwise we can replace a clique in % with a maximal clique containing it without 

decreasing Y(V). 

The dotted lines in the left panel of Fig. 17 represent p and p’ such that the cliques 

associated with {a, c, 9, h} and {h, e, J’, i} are 9” and ZYp’, respectively. 

Thus, PPEC is equivalent to the problem that finds a sequence pi < p2 < . . < pi 

of nodes (I is not given in advance) such that -It + C,Eui_,ri,, w(Z) is maximized. 

If we subtract C,,,;;, Y,J, w>(Z) from the total sum of weights of intervals in H(T), 

we have the total weight of intervals that contain no node of { pl , . , pl}. Hence, the 

above problem is equivalent to the one that finds a set ~1, p2 , . . . , p/ of nodes such 

that cf:: ( W(p;_ 1, p, - 1) + t) is minimized, where we set po to be 0. Now, we have 

the following theorem: 

Theorem 4.4. PPEC can be solved in O(m + n log log n) time. 



Proof. The problem can be solved by computing I>( 11 it I ). using the recursion 

O(j) = i;;i:(D’(i) + W(i,,j ~ I )) and D’(i) =- n(i) 4 t. 

Since \I(/) is nonnegative for each interval I, the problem is an instance of conca\:c 

Monge DP. I_! 

We search for a parameter value I,,,~ such that the solution of PPEC at I = I,,~,, 

has exactly ti cliques. Apparently. this solution gives the maximum K-clique of‘ tho 

original inter\,al graph. Suppose we know that the solution of the PPEC has K,) cliques 

at f := to. Then. t,,,,t < to if K > KC,, and fop, > /,) if ti < K,,. Thus, M’C can 

use a binary searching method to find fit,,,. If F is the maximum 01‘ the weight. the 

time complexity is O(m + M log log 12 log I-). since we can solve partial clique partition 

problems in O(17 log r) time if the consecutive intcr\.al query data structure is gi\:en 111 

advance. Note that preprocessing of the interval query is required only once. 

We can apply the parametric searching technique [I91 to make the above algot-lthm 

strongly polynomial. By applying an algorithm of Schieber [22] for solvine a concave 

DP problem, \ve can solve the maximum K-clique problem in 0( ~7”’ I’ ““’ !‘v ‘i’C” ’ 

log log 17 ) z (](,72”( d-1 ) time, 

A different approach to solving the maximum K-clique problem is the direct LISC ot 

the matrix searching K times (see [3] for a similar solution for computing the extrcmal 

K-gon of a convex polygon). It follows from Lemma 3.7 that this approach requires 

O(r~7 + K/r log log 17) time (we omit details) 

Combining these three approaches, we ha\:e the following: 

5. Concluding remarks 

In this paper, we have dealt with the convex and concave cases of rhe dynamic 

programming problem on intervals. Our solution for the concave case runs in O(lrz 

A- 17 log log 17) time. and is thus generally faster than the previous-best 0( 111 log II I tltnc 

algorithm. The solution for the convex case takes O(HI :- II log II) time. and lbstcr thall 

the previous O(r~zlog~) time algorithm only if 17 :~ o(m j. Bridging this gap in the time 

complexity remains an open problem. 

Whether a general interval DP problem can be sol\*ed in o( 171 log 17 ) tinw remain\ 

another open question. 
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