Consecutive Interval Query and Dynamic
Programming on Intervals

Alok Aggarwal' and Takeshi Tokuyama®

! IBM Research Division, T. J. Watson Research Center, P.O.Box 218, Yorktown
Heights, NY 10598
IBM Research Division, Tokyo Research Laboratory, 1623-14, Shimotsuruma,
Yamato-shi, Kanagawa, 242 Japan

)
'

Abstract. Given a set of n points on a line and a set of m weighted
mtervals defined on these points, we consider a particular dynamic pro-
gramming problem on these intervals. If the weights are all nonnegative
or all nonpositive, we solve this dynamic programming problem efhicient-
ly by using matrix searching in Monge arrays, together with a new query
data structure which we call the consecutive interval query structure. We
invoke our algorithm to obtain fast algorithms for the sequential partition
of a graph and for the partial clique covering of an interval graph.

1 Introduction

Let U be a set of n integers {1,2,..,n} that can be regarded as a set of points
on a line, and let Z be a set of m intervals which have their endpoints in 7. We
associate a weight w(I) with each interval. Let W (i,) = Zlc(i‘j]'w(f). Assume
that there exists a non-decreasing sequence f(z);: = 1,2,..,n — 1 such that
i < f(i) < n. We define W(i,j) = W(i,5) if i <j < f(i) and oo, otherwise. The
problem is to compute two functions D(z) and E(z) on U, where it is assumed

that D(z) can be computed in O(1) time from E(z), E(1) = 0, and E(z) is defined
by the following recurrence:

- .

E(i) = min{D(7) + W(i,7)}. (1)

) >

In [1], Asano showed several problemns in computational geometry and graph
algorithms can be solved by using the recurrence given above and he also gave
an O(mlogn) time algorithm for solving this recurrence. (Note that his algorith-
m is worse than the simple dynamic programming algorithm that takes O(n?)
time, when m > n®/logn.) His algorithm needs a solution of the nterval query
problem that can be defined as follows: “Given a set of m weighted intervals,
preprocess the set so that the total weight of the intervals contained in a query
interval I can be computed efficiently”. A well-known data structure called the
interval tree answers the query in O(logn) time after using O(mlogn) time in
preprocessing. Thus, the preprocessing time dominates the total time complexity
of Asano’s dynamic programming algorithm. '

467

In this paper, we solve the above dynamic programming problem by using a
different approach. Our algorithm runs in O(m + nloglogn) time for the con-
cave version of this problem and in O(m + nlogn) time for the convex version;
the problem is called concave (convex) if all weights are non-negative (resp.
non-positive). Our algorithm uses a data structure for solving a different query
problem (the consecutive query problem) in conjuction with searching in Monge
arrays (2, 3, 10]; this data structure is sufficient for solving our dynamic program-
ming problem but not for solving the general interval query problem. Finally,
we use our algorithms to obtain efficient algorithms for the following problems:

Sequential partition of graph (Figure 1). Let G be an undirected weight-
ed graph on n nodes and m edges, where m may be much larger than n. Let the
nodes be numbered according to a specified order. The problem 1s to partition
these nodes into subsets such that each subset consists of contiguous nodes, each

subset contains at most A" nodes, and the total weight of edges connecting nodes
1n different subsets 1s minimized.

r/———‘T Partition lines

Fig. 1. Sequential partition of graph, n=10, IKX=4. Solid edges have weight 2, and broken
edges have weight 1.

Partial clique covering of interval graph (Figure 2). Given a set of
n points on a line and a set of mn weighted intervals on these points, let G be
the associated interval graph. Given a number K, compute K subgraphs of G so

that the total weight of the intervals associated with the nodes in the union of
the subgraphs is maximized.

]
4
" L
R . S ———————
L]
|
A e A *
' [
——————————————
’ ’
L ./
i e

————-—-{-—_——_——-—— ’

Fig. 2. Partial clique cover of interval graph, IK=2

468

2 Consecutive Interval query

The interval query problem 1s defined as follows:

Given two integers ¢ and j such that 1 <: < j3 < n, compute the total weight
W (i,) of intervals of Z that are covered by the closed interval |z, j].

Many O(log n) query-time and O(m log n) preprocessing-time data structures
for the interval query problem are known in the literature, e.g., the segment
tree and the orthogonal range tree [12]. However, for these data structures, the
O(m log n) preprocessing time dominates the time complexity when m > n. We
can, indeed, improve the preprocessing time by providing a data structure that
answers the query in O(n¢) query time and O(m) preprocessing time. However,
such a data structure will improve the time bound of Asano’s algorithm only
when m > n'T¢, Similarly, we can provide a data structure that answers a query
in O(log” n/loglogn) query time and O(mlogn/loglogn) preprocessing time
but this also improves Asano’s algorithm for only certain values of m and n.
Keeping this in view, we restrict our attention to the dynamic programming
problem at hand, and show 1n section 3 that the sequence of queries that we
need, have some nice properties. In particular, this sequence of queries can be
answered by solving the consecutive query problem given below. Consequently,
in this section, we describe a data structure that can be constructed using O(m)
preprocessing time and that answers the consecutive query problem efhiciently;

more precisely, we answer the query W (i + 29,7 + jo) in O(l’(‘;’;?fl + clogn) time

(where c i1s a non-negative constant, and can be 0) as long as we have already

queried W (i,) before. This data structure is constructed using fractional cas-
cading |5).

The consecutive query problem: Query W (i + 19,7 + jo) efficiently after
we have queried W (z, 7).

We first describe a data structure for consecutive query in O(i9+7¢) time with
O(m) preprocessing time. We map an interval I = [(7, j)] to a point p(I) = (¢,)
in the n x n planar grid G. Then, we obtain a set S(Z) of m points in the
grid G. An interval J = [,)] is contained the interval I = [7,] if and only if
a >t and b < j; in other words, p(J) is located in the South-East of p(I). Thus,
the problem i1s reduced to a South-East rectilinear range search problem in a
grid (usually, the problem is referred as the North-West search, after a reflection
transformation). The value W (i 4 2¢9,7) — W (2,) 1s simply the total weight of
the points located in the rectangle whose corners are (z,n), (2,7), (¢ +19,n), and
(¢ + 19, 7). Let Ry be the set of points located on the k-th row of the grid. We
equip the sorted list of R, with respect to the ordinate for each & = 1,2, .., n.
This can be obtained in O(n + m) time as follows:

We compute the sorted list of mn points with respect to the ordinate; this can
be done in O(m + n) time by using bucket sorting. Then, we distribute the list
into Ry,.., K, to obtain the sorted list of each subset. For each element r of a
list, we store the sum of the weight of its elements that are greater than x with
respect to the sorted order. Now, it is easy to compute W (i + 19,7) — W(z,)
in g log n time by locating j in each of R;44,.., R;1+;,. To avoid consuming log n

469

time for searching in each list, we adapt the fractional cascading method of [5],
which attains O(logn + 19) query-time with O(m + n) preprocessing-time.

Theorem 1. [5/ Let G be an undirected graph with mazximum node degree d.
Suppose a sorted list of elements in an totally ordered set A 1s associated with
each node of G. Let s be the total size of these lists. Then, with O(s) preprocessing
time we can construct a data structure such that we can locate any given element
a of A wn all lists on a path p of length 1 of G in O(llogd + log s) time.

In our case, the underlying graph G 1s the path v, vs,..,v,, and the lst
R 1s the one associated with v;. Next, an augmented list R;. is constructed
for each list Ry, and the location of) i R can be computed from that ju
f?.k i O(1) time. Further, the location of j in R4, 1s known from that in Ry
in O(1) time by using the bridge between R; and Rj4,. Since the method is
well-known, we omit the details and refer the readers to Cole [6] and Chazelle-
Guibas [5]. We call above structure the row-structure. Note that in such a data

structure, when we compute W (: 4 ¢9,7) — W (s,), we spend O(logn) time for
locating 9 in the initial list R;+1, and the remaining computation is done in
O(29) time. We give a similar structure (called column-structure) for computing

W'(J + 10,7 + Jo) — W (2 + 10, 7). The sorted list of the points in the k-th column
1s denoted by C)., and the associated augmented list 1s denoted by C}.. Using the
above arguments, it is clear that we can compute W (i + 19,7 + j0) — W(2,)) ,
and hence Wi+ 19,7 + jo), in O(tg + jo + logn) time. We show below that we
can remove the logn term for the consecutive search problem.

When we query W(i, j), we remember not only the value W(z,j) but also
hoth the position of j 1n R; and the position of 2 1n é When we compute

Wi+ 19,7 +1¢), we can find the location of j in Rz+1 from that 1n R im O(1)
time. Thus, it takes O(ip) time for computing W (i + 29,7) — W(z, 7). Besides,
we can find the location of : + 1o 1n CJ in O(2p) time since 1t suflices to move
up the list C'j from the location of z, at most O(zg) steps. Therefore, we can
compute W(z + 29,7 + jo) — W(t 4+ 20,7) in O(29 + Jo) time. Furthermore, we
can simultaneously compute the location of 2 4+ 23 1n C'j+j0 and that of j + j¢ 1n
Riy; . Hence, we obtain the following:

Theorem 2. A data structure can be built that answers the consecutive query
Wi+ 10,7 + j0) after querying W(i,3) in O(29 + Jo) time; this structure can be
constructed in O(m) preprocessing time. If we only know the value W (i, 7), then

this consecutive query can be answered in O(ig + jo + logn) time by using the
same data structure.

We construct an O(ﬁi‘)’—c + logn) query time data structure for any giv-

en Constant c. Let L = |logn], and h(s) = |F| for s = 1,2,..,c. For each
k= 1,2,..,h(s), we consider the set R(s); of the points of S(Z) whose ab-
scissa 1s in the interval [(k — 1)L%,kL®) if s # 0, where R(0);, = Rj. For
each s and k, we sort R(s); with respect to the ordinate values, and store
the sorted list. If more than two points has the same ordinate value, we sort

470

them with respect to the z-coordinate value; it 1s easy to see the sorting can
be done in O(m + n) time. We construct a fractional cascading structure for
the set of lists {12(s)o, .., B(8)n(s)|s = 0, 1,..,c}. The underlying graph has nodes
{v(8)1,v(8)2s ., v(8)nsy|s = 0,1,..,c}. The edges are given between (v(s);, v(8)ix1))
for : = 1,2,..,h(s) — 1 and s = 0,1,..,c, and (v(s)x,v(s — 1)xr) for k =
1,2,..,h(s)—1and s = 1,2,..c, where the list R(s); is associated with v(s);. We

.

denote R(s); for the augmented list of R(s);.

Lemma 3. By usz'nj the above data structure, W (i + 19,7) — W(z,3) can be
computed in O + logn) time.

(log n)c¢

Proof. Since thereis a path of length at most — =+clogn from v(z) to v(z+1p)
in the underlying graph, the above lemma follows from Theorem 1. O

By constructing a similar structure for the columns, we can similarly compute
Wi+ 10,7 +J0) — W(t + 20,7). Hence, we have the following theorem:

Theorem 4. A data structure can be constructed such that i1t answers the query
W + 19,7 + 70) 1 O(nlg—;%%; + clogn) time as long as the query W(z,)) has
been answered before; this data structure can be constructed in O(m + n) time;
where the constant c 1s non-negative but can be zero.

3 Dynamic programming on intervals

3.1 Dynamic programming and Matrix searching

In this section, we show how to solve the dynamic programming on intervals by
using above data structure. Let us give a brief summary of dynamic programming
on concave (or convex) functions.

A matrix A = (A(7,7))i j=12,..n 1s called a convex Monge (concave Monge)
matrix if A(¢,7)+A0¢+1.9+1) 2> A(e,7+1)+A(t+1,7) (resp. A(z,7)+ A(e +
1,741) < A(e,g4+1)+A(2+1,))) for 1 < z,7 < n. A matrix A is called a staircase
matrix if A(z,7) is oo unless 1 < 3 < f(z) for some non-decreasing sequence f(z).
A staircase matrix is called a convex staircase Monge matrix (or concave staircase
Monge matrix) if the Monge relation holds within the staircase. Note that if a
matrix 1s concave staircase, then it 1s a concave Monge matrix, although the
same statement is not true for a convex staircase matrix. Let U = {1,2,..,n}.
A function F(2,7) on U x U is called convex (resp.concave) if the associated
matrix is convex staircase Monge (resp. concave staircase Monge). The convex
(resp. concave) dynamic programming problem is to compute a function E(z2) by
using the inductive formula E(:) = min;«;{D(y) + F(¢,))}, where D(j) can be
computed in O(1) time from FE(7), and F'(z,)) is convex (or concave).

It 1s known that such kind of dynamic programming problems can be solved
efficiently by using the matrix searching technique {10, 8, 7]. In particular, if it
takes O(q) time to compute F'(z,) for an arbitrary (¢, 7), it is known the concave
problem can be solved in O(ngq) time [10], and convex problem can be solved in
in O(nqa(n)) time [11], where a(n) is the inverse Ackermann function.

471

3.2 Dynamic programming for concave problems

Let S be a set of m intervals whose endpoints are among {1, 2, .., n}. Each interval
e has a nonnegative weight w(e). We define W (4, j), W(i, j), D(i), and E(i) a

in the introduction, where the function W is the weight function. The followmg
lemma 1s a key observation, which 1s easy to verify:

Lemma 5. If w(e) are nonnegative, ﬁf"(i,j) 18 a concave function.

We define the matrix A by A(:,)) = D(z2) + ﬁ/'(i,j). By definition, E(j) 1s

the minimuin element 1in the j-th column. The following lemma is easy to show:

Lemma 6. A is concave staircase Monge.

If it takes O(q) time to query the value of the weight function W for an
arbitrary (z, j), the problem is solved in O(ngq) time [10]. Hence, if we use segment
tree as the query structure, the overall time complexity becomes O(mlogn),
which matches that of Asano [1]; we improve it to O(m + nloglogn) by using
the consecutive interval query data structure. We 1nvestigate the ordering ot
querying W in the algorithm of Klawe [10], and show that consecutive query
structure 1s an efhicient amortized query time structure.

The algorithm of Klawe [10] consists of a series of off-line matrix searching
in rectangular submatrices; here, off-line means that D(:) is known for each
row index : of the matrix even before the algorithm begins. Each rectangular
submatrix has contiguous column indices and row indices. The total sum of the
column size and row size of the submatrices is O(n). Therefore, we first consider

the problem of searching all column minima of a (1'ecta11gula1') Monge matrix
M of size n x | where the value of D(2) i1s known for the i-th row of M. We use

the consecutive query structure, so that M(z + 29,) + Jo) can be computed in
O(29 + Jo) time from M (z,).

Lemma 7. All column minima of M can be computed in O((n + 1)logl) time.

Proof. Let us denote the row index of the minimum of :-th column by »(2). We
first compute r(1/2) (we can assume that [is even). This takes O(n + 1) time
since we can find all entries M (2,1/2) in O(n + 1) time by using the consecutive
search. Because of the concave Monge property, the row indices of the column
minima is a non-increasing sequence. Thus, r(3) > r(1/2) (resp. r(3) < r(1/2))

7 > 1/2 (resp.) < 1/2). So, it suffices to compute in the shaded regions in Flgule
3. Lemma 7 then easily follows from the corresponding recursion. | O

We 1mprove the time complexity of Lemma 7 by usmg the data structure for
computing Wi + 19,7 + jo) from W(z,) in O(“’—;-L + logn) time. Let A be

log“ n
our n X n staircase Monge matrix, and let M be its submatrix corresponding to

contiguous k rows and [columns of A.

Lemma8. All column minima of M can be computed in O((k + l)loglogn)
time.

472

) \\ \\\ \.\x\\xx\\\\xxxx\\\\\\\\\\\\

Fig. 3. Possible location of minima

Proof. If both [is smaller than log® n, then the lemma follows from Lemma 7,
since log ! = O(loglog n). Consequently, assume that ! is larger than log® n.

We consider the columns which has a column index of an integer multiple
of L = |log” n|. Assume that we have already computed the minimum of those
columns. Given i, for every j such that:L > 3 > (: 4+ 1)L, r(2L) > r(3) 2 r((7 +
1)L) because of Monge property. Therefore, it suffices to search in submatrices
My,..,Ms, where s = [I/L], such that M; isa (L —1) x k; matrix and > _,_, k; =
k. These sumbatrices can be computed in O((k +1) loglogn) time in total, since
each submatrix has log® n contiguous columns. Thus, it suffices to compute 7 (i L)
for: =1,2,..,s. We first use the REDUCE subroutine of the SMAWL algorithm
of [2]. Since REDUCE computes the entry in a consecutive manner, we can

remove k — -E— rows from the searched matrix in O(k + [) time by using the

Consecutive query structure with ¢ = 0. Thus we have a matrix M’ which has —Il-,-

rows and - columns However, neither the column indices nor the row indices are

contlguous We process this matrix by using the algorithm implicit in Lemma 7.
By using the consecutive query structure, we can find all element on a column

(and a row) of M’ in O(log ~ l_lng_q) = O(loé —) time. Thus, the algorithm of
Lemma 7 computes all column minimum of M’ in O(l) time. O

Using the algorithm of Klawe [10] together with the matrix searching algorithm
of Lemma 8, we obtain the following:

Theorem 9. The concave dynamic programmang problem on intervals can be
solved in O(m + nloglogn) time.

3.3 Dynamic programming for convex problems

This section uses the same notation as the concave case except that each interval
e has a nonpositive weight.

Lemma 10. If w(e) are nonpositive for all e, ﬁ-"(i,j) 18 a concave function.

The algorithms of Klawe-Kleitman [11] and Aggarwal-IKlawe (2] are based on
matrix searching in rectangular submatrices; the difference from the convex case
1s that these submatrices do not have contiguous column indices. We first give a

relatively naive O(m + nlognloglogn) time algorithm, and then improve it to
O(m + nlogn) time.

473

Proposition1l1l. The dynamic programmang for convexr weights can be solved in
O(m + nlognloglogn) taime.

Proof. The matrix A(7,J) is a convex staircase matrix. As shown in (2], a s-
taircase matrix can be decomposed into upper triangular submatrices and lower
triangular submatrices. The total sum of the row size and column size of these
submatricesis O(n), and each submatrices has contiguous row indices and colum-
n indices. Thus, we can solve our problem as a series of matrix searching problems
1 triangular matrices. When we compute a lower triangular matrix, the value
D(1) tfor each row 1index of it has been already computed, thus we can process it by
using Lemma 8. Hence, we can assume that A(z, 7) 1s an upper triangular matrix.
Let T'(n) be the computing time. We apply a simple divide and conquer method.
We divide the matrix A(z,7) into four n/2 x n/2 submatrices which are upper-
left, upper-right, lower-left, and lower-right with respect to the n/2-th row and
the n/2-th column. All entries in the lower-left submatrix are infinity, hence we
need not compute it. We first compute, in T'(n/2) time, the column minimums of
the upper-left submatrix, which is a triangular matrix of size n/2 x n/2. We next
compute the column minima of the right upper submatrix; this is a rectangular
Monge matrix, and we know the value of D(z) for each row index i of it. Thus, we
can compute in O(nloglogn) time. Then, we search in the lower-right subma-
trix, which is upper triangular, in 7'(n/2) time. Finally, we compare the column
- maxima of the upper-right submatrix and those of the lower-right submatrix in

O(n) time. Hence, T'(n) = 2T'(n/2) + O(nloglogn) = O(nlog nloglogn). O

We can improve the time complexity of the above algorithm by a factor of
O(loglogn); the new algorithm is based on the algorithm of Aggarwal-Klawe [2].
Because of space limitation, we omit 1t in this version.

Theorem 12. The dynamic programmang for a convex problem can be solved in
O(m + nlogn) time.

4 Applications

4.1 Sequential partition of a graph

The optimal partition of a weighted graph is defined as follows: Given a graph
G = (V,E) with n nodes and m edges, an edge-weight function w : £ — R,
a vertex-weight function ¢ : V — R™, and a positive number K. A feasible
partition 1s the partition of V into subsets V},..,Vs such that the sum of weights
of the vertices in each cluster is no more than A. The optimal partition is
the feasible partition that minimizes the total weight of the edges connecting
different subsets.

The problem of computing an optimal partition of a graph occurs in several
areas 1n computer science. Unfortunately, the problem of finding an optimal
partition of a weighted graph is NP hard. Consequently, a popular heuristic
for finding an approximation uses the sequential partition technique [9]. In this

474

technique, there 1s a linear ordering of the vertices, say, labeled from 1 to n.
A sequential partition of G 1s a partition such that each cluster V; consists of
consecutive vertices with respect to this order. An optimal sequential partition
1s a sequential partition which minimizes the total cost of the edges connecting
different clusters. We can consider a vertex of G as an integral point of the
interval I = [1,n|, the edge between i and j a sub-interval of I, and a cluster
of a sequential partition can also be regarded as an interval. Consequently, the

problem becomes that of computing the functions E(z) on U, such that E(0) = 0
and

E(i) = i_;(l}?gjg{E(j) + W(i,j)} (2)

for a positive integer valued function f that is defined to be the smallest integer
such that the summation of vertex weights of {v;_¢(;),.., vi} does not exceed A’.

Kernighan[9] first gave an algorithm for finding an optimal sequential parti-
tion. His algorithm is based on dynamic programming and runs in O(n*) time.

Asanoll| improved the time complexity to O(mlogn) time; we obtain the fol-
lowing:

Theorem 13. The optimal sequential partition of G 1s obtained in O(m+nlogn)
time.

Proof. It 1s easy to see that the function f can be computed in O(m) time. The
rest of the computation can be formulated as a convex dynamic programming on

intervals by replacing each weight by its negative; this can be solved in O(m +
nlogn) time. O

4.2 Partial clique covering of interval graph

Given an interval graph G with m intervals on n terminals. Each interval has
a positive weight. It 1s well-known that its maximal clique can be computed in
O(m) time, and the minimal clique covering can be computed in O(m) time if
the terminals are sorted. Consider the following two problems:

L -large clique problem: Given a number L', find A chiques Cf, .., Ck of
G such that the total weight in U;*,C; is maximized.

Parametric partial clique covering problem: Given a nonpositive pa-
rameter £, find cliques C1, .., Cs such that the sum of ts and the total weight in
>_1C; 1s maximized.
It can be easily seen that the partial parametric clique covering problem is a
concave dynamic programming on intervals. Thus, we have the following:

Theorem 14. The parametric partial cliqgue covering problem can be solved in
O(m + nloglogn) time.

For A'-large clique problem, we can easily give an O(m+ K'n loglog n) time by
applying matrix searching A times. Furthermore, by using a parametric search-
ing algorithm, we can solve the problem by solving parametric partial clique
covering problem on /K log n different parameters (for details, see [4]).

475

Theorem 15. The I -large clique problem can be solved in

O((min{ Ak, /A logn}nloglogn)+ n) time.

5

Concluding remarks

In this paper, we only dealt with the convex case and the concave case of the
dynamic programming problem of intervals although there are several problems
which can be formulated as dynamic programming on intervals but with mixed

weights (i.e., w(e) may have arbitrary real value). It remains open whether the
general case 1s solved in o(mlogn) time.

References

11

12

T. Asano, “Dynamic Programming on Intervals,” Proc. of ISA, LNCS 557, Springer
Verlag (1991), 199-207.

. A. Aggarwal and M. Klawe, “Applications of Generahzed Matrix Searching to

Geometric Algorithms,” Discrete Appl. Math. 27(1990), 2-23

. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, “Geometric Applica-

tions of a Matrix-Searching Algorithm,” Algorithmica 2 (1987), 209-233.

. A. Aggarwal, B. Schieber, and T. Tokuyama, “Finding a Minimum Weight K-Link

Path in Graphs with Monge Property and Applications”, Proc. 9th ACM Symp.
on Computational Geometry (1993), 189-197. '

. B. Chazelle and L. Guibas, “Fractional Cascading: I. A Data Structure Technique,”

Algorithmica 1(1986), 133-162

. R. Cole, “Searching and Storing Similar Lists,” J. of Algorithms 7 (1986), 202-220.
. D. Epstem, Z. Galil; R. Giancarlo, and G. Italiano, “Sparse Dynamic Program-

ming, Proc. of the First ACM-SIAM Symp. on Discrete Algorithms, (1990), 513-
522.

. L. Larmore and B. Schieber, “On-line Dynamic Programming with Applications to

the Prediction of RNA Secondary Structure,” J. of Algorithms 12 (1991), 490-515.

. B. Kernighan, “Optimal Sequential Partitions of Graphs,” J. ACM 18(1971) 34-40.
10.

M. Klawe, “A Simple Linear Time Algorithm for Concave One-Dimensional Dy-
namic Programming,” Technical Report, University of British Columbia, Vancou-
ver, 1989. '

M. Klawe and D. Kleitman, “An Almost Linear Time Algorithm for Generalized
Matrix Searching,” Technical Report, IBM Almaden R.C., 1988.

F. Preparata and M. Shamos, Computational Geometry — An Introduction, 1988
(2nd edition), Springer-Verlag.

	01.gif
	02.gif
	03.gif
	04.gif
	05.gif
	06.gif
	07.gif
	08.gif
	09.gif
	10.gif

