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Abstract

A two-dimensional array A = {a;,;} is called monotone if the
maximum entry in its ¢-th row lies below or to the right of
the maximum entry in its (¢ — 1)-st row. (If a row has several
maxima then we take the leftmost one.) An array A is called
totally monotone if every 2 x 2 subarray (i.e., every 2 X 2 minor)
is monotone. Totally monotone arrays were introduced by Ag-
garwal et al. [AKMSW87], who showed that several problems
in computational geometry could be reduced to the problem of
finding row maxima in totally monotone arrays. In this paper,
we generalize the notion of two-dimensional totally monotone
arrays to multidimensional arrays and exhibit a wide variety
of problems involving computational geometry, dynamic pro-
gramming, VLSI river routing, and finding certain kinds of
shortest paths that can be solved efficiently by finding maxima
in totally monotone arrfys.

1 Introduction

1.1 Motivation

A two-dimensional array A = {a;;} is called mono-
tone if the maximum value in its ¢-th row lies below
or to the right of the maximum value in its (z — 1)-
st row. (If a row has several maxima then we take
the leftmost one.) An array A is called fotally mono-
tone if every 2 x 2 subarray (i.e., every 2 X 2 minor)
is monotone. Now, if an oracle has an n x m totally
monotone array A, then Aggarwal et al. [AKMSW87]
showed that the row maxima of A can be found by
asking for O(n + m) entries from the oracle.
Although the question of finding the row maxima
in a two-dimensional totally monotone array may
seem rather odd at first glance, [AKMSW87] shows
that several problems in computational geometry can
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be reduced to one or more instances of this prob-
lem. The following example illustrates one applica-
tion (borrowed from [AKMSW8T]) of searching in to-
tally monotone arrays.

Suppose we are given a convex polygon and that
we divide it into two convex chains P and @ contain-
ing n and m vertices, respectively, by removing two
edges. Let p1,...,pn be the vertices of P in counter-
clockwise order and g¢1,...,¢m be the vertices of Q
in counterclockwise order. Then for 1 < i< k < n
and 1 < j < I < m, we observe that the sum of the
diagonals of the convex quadrilateral formed by p;,
Pk, qj, and g is greater than the sum of the opposite
sides, i.e.,

(1)

Thus, if we imagine an n X m array A that contains
the Euclidean distance from vertex p; € P to ver-
tex ¢; € @ in a;j, then this array is totally mono-
tone. Also, since any entry of this array can be
computed in constant time (it being the Euclidean
distance between two points), asking for an entry
from the oracle simply corresponds to evaluating the
distance between the corresponding points. Hence,
by using [AKMSW87], we can find the farthest ver-
tex in @ for every vertex in P by evaluating only
O(n + m) distances. In fact, [AKMSW87] showed
that the time required in addition to that for evaluat-
ing these O(n + m) distances is also linear in n+m.
This implies that the farthest neighbor problem for
convex chains can be solved in linear time and solves
an open problem in [To83].

d(pi, ¢;) + d(pe, @) = d(psi, @) + d(px, g5)-

1.2 Previous Results

Since the monotone property of a 2x 2 minor is closely
related to the quadrangle inequality (namely, the sum
of the diagonals is greater than the sum of opposite
sides, in any convex quadrilateral), this combinatorial
formulation turns out to be extremely useful. The



utility of quadrangle inequalities was first observed
by G. Monge in 1781 [Mo81]. Monge remarked that
if unit quantities have to be transported from loca-
tions X and Y in the plane to locations Z and W (not
necessarily respectively) in such a way as to minimize
the total distance travelled, then the paths followed
in transporting these quantities must not intersect.
In 1961, A.J. Hoffman [Ho61] elaborated upon this
idea by calling an n x m array C = {cij} a Monge
array if Cij + Cig1,j41 < Cij+1+ Cit1,j forl1<i<n
and 1 < j < m and by providing a greedy algorithm
for the transportation problem when the cost array
C = {ci,; } is a Monge array. Thus, Monge and Hofi-
man’s observations imply a greedy algorithm for the
transportation problem when the sources lie on a line
parallel to a line on which the sinks are located.

Observation 1 IfC = {c; ;j} is a Monge array, then
forl<i<k<nandl<j<l<m,cj+cr <
il + Ckj-

We follow Hoffman’s terminology and call ¢;; +
¢k, < c¢iy+ck,j the Monge condition and c¢; ; + ck,1 >
¢i, 1 + ck,;j the inverse Monge condition. Also, we will
call an array Monge if it follows either the Monge
condition or the inverse Monge condition.

Observe that every Monge array is totally mono-
tone, but there are totally monotone arrays that are
not Monge. Although the notion of totally monotone
arrays is somewhat weaker than that of Monge arrays,
it turns out that all the applications given in this
paper, as well as those given in [AKMSW87,Wi88],
actually obey the Monge or the inverse Monge condi-
tion. However, we usually use only total monotonicity
and not the Monge condition to obtain our results.

Previous applications of the techniques introduced
by [AKMSWS8T] for searching in totally monotone ar-
rays include the following. [AKMSW87] showed that
some channel routing problems can be solved in lin-
ear time using these techniques, thereby improving
previous O(nlgn) time algorithms. Aggarwal and
Suri [AS87] used array-searching to find the largest
empty rectangle in O(nlg®n) time. Wilber [Wi88]
applied array-searching techniques to an instance of
dynamic programming and showed that the concave
least-weight subsequence problem can be solved in
linear time; this improved the result of Hirschberg
and Larmore [HL85]. Finally, Klawe and Kleitman
[KK88] used array-searching to improve a previous
result of [AK87] in computational geometry.

Observation 2 We defined an array A = {a;;} to
be totally monotone if for alli < k and j </,

()

a;; < a;; implies ar; < ax,
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and we were interested in finding the maxima in each
row. This problem is equivalent to that of finding the
minima n each row of a array whose 2 X 2 minors
satisfy

(3)

In fact, these problems are dual of each other and one
can be transformed into the other by simply negating
all entries of the array. Similarly, the problem of find-
ing minima in each row when (2) holds and that of
finding mazima in each row when (8) holds are dual
of each other.

a;; > ai; implies ax; > ag,.

1.3 Main Results of this Paper

This paper presents a framework that allows us to
solve efficiently a class of problems that obey either
the Monge condition or the inverse Monge condition.
This paper derives its inspiration from [AKMSW87]
and [Ya80]; it generalizes and incorporates several
results provided in these papers. (The relation of
[AKMSW87] to this paper will be observed through-
out, but that of [Ya80] is more implicit. We assume
total familiarity of the reader with [AKMSW87] and
[Ya80].)

Section 2 introduces the notion of multidimensional
monotone arrays and provides sequential algorithms
for searching in such arrays; Section 3 provides par-
allel array-searching algorithms. We use the problem
of finding a maximum perimeter d-gon inscribed in a
given convex n-gon as a prototype example. For this
problem, we achieve the time bound of [AKMSW8T]
in the sequential case and improve bounds given in
[ACGOY88] in the parallel case.”

Section 4 presents the first set of applications of
this paradigm to finding minimum area and minimum
perimeter circumscribing polygons. For the minimum
area circumscribing d-gon problem, we improve the
best previous result of [AKMSW87] by a factor of
O((nlgd)/(d + lgn)) and for the minimum perime-
ter circumscribing triangle problem, we improve the
result of [De87] by an O(n?/lgn) factor.

Section 5 presents efficient algorithms for dynamic
programming problems that use the Monge condition
or the inverse Monge condition. We give an O(n?)
time algorithm for Frances Yao’s [Ya80] dynamic pro-
gramming problem using this paradigm. Although
our algorithm is no better than Yao’s in terms of
asymptotic complexity (and probably worse in prac-
tice), it provides insight into other dynamic program-
ming problems that use Monge conditions. For exam-
ple, Section 5 also shows that the time complexity of a
particular dynamic programming problem related to



biology can be improved from O(n? Ig® n) [EGG88] to
O(n?lgn).

Section 6 presents efficient sequential and paral-
lel algorithms for river routing in VLSI. We point
out that the results of [AKMSW8T] can be used to
solve the offset range problem in linear time under
very weak assumptions regarding the routing rules
for wires. This generalizes a recent result of Siegel
[Si88], who was able to obtain a linear time algorithm
for only a very restricted class of wiring rules. In
the realm of parallel computation, Chang and JaJa
[CJ88] have studied the separation problem and the
optimal offset problem for rectilinear wires. Section 6
shows that the processor bounds for their algorithms
can be improved by an O(lg n) factor. By incorporat-
ing the results of Subsection 3.1, we also generalize
their results so that wires need not be rectilinear and
the assumptions associated with the routing of wires
are weaker.

Section 7 investigates the computation of short-
est paths in certain directed, acyclic planar graphs
in the realm of parallel computation. Such graphs
arise in several contexts, including tomography
and medical therapy [FKU77], optimal surface re-
construction from planar contours [FKU77], string
editing and largest common subsequence problems
[KF80,A AL87,Ma88], and in finding the maximal lay-
ers of n planar points [Ko86]. Subsection 7.1 ob-
tains polylogarithmic time algorithms for the problem
of surface reconstruction from planar contours; our
processor-time product is O(Ig n/1g m) away from the
best known sequential time for this problem [FKU77].
For string editing and the largest common subse-
quence problems, Subsection 7.1 improves either the
time bound or the processor-time product of the al-
gorithms given by [AAL87] and [Ma88]; in particu-
lar, we settle the open problem raised in [AAL87] by
showing that factors of O(lgn) and O(lgn/lglgn)
can be saved in the time complexity without increas-
ing the processor complexity!. Finally, for the maxi-
mal layers problem, Subsection 7.1 improves the time
con;plexity of the known algorithm by a factor of
lgn“®.

1Just before sending this preliminary version to the pub-
lishers, we heard that Apostolico, Atallah, Larmore, and Mc-
Faddin have also settled the open problem raised in [AAL87).

2We are indebted to S. Rao Kosaraju [Ko86)] for bringing
the algorithm mentioned in Subsection 7.1 to our attention.
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2 Multidimensional Arrays

2.1

Ford > 3, let A = {ai, i,,. i} beann; xnyx---xnq
array. Let a;, i,(ziy),...,is(i;) D€ the maximum entry in
the (d — 1)-dimensional subarray corresponding to a
particular value of 7, i.e.,

Basic Definitions and Algorithms

min @i, i,,...iq- =

@iy ia(in),da(i1) = iarooria
e

If the plane contains multiple maxima, we chose the
first of the maxima ordered lexicographically by their
second through d-th coordinates.

We will say that A is monotone if i; > ¢} implies
ix(31) > 1x(3}) for all k between 2 and d. We will say
that A is totally monotone if

1. every 2Xx 2 X --- X 2 d-dimensional subarray of A
is monotone, and

2. every (d—1)-dimensional plane of A, correspond-
ing to a fixed value of its first coordinate, is to-
tally monotone.

Observe that every totally monotone array is mono-
tone and that every lower-dimensional subarray of a
totally monotone array is totally monotone.

Two problems that arise in connection with multi-
dimensional monotone arrays are the plane mazima
problem, in which we wish to compute the array’s
maximum entry for each value of its first index ¢, and
the tube mazima problem, in which we wish to com-
pute the array’s maximum entry for each pair (1, 12)
of first and second indices. Note that the tube max-
ima problem for a d-dimensional array can always be
solved by solving the plane maxima problem for each
of the array’s (d — 1)-dimensional planes (but this is
not always the best approach — see Section 3).

Proposition 3 For d > 2, the plane mazima of an
ny X ng X -+- X ng d-dimensional totally monotone
array A can be computed in O((ng+na—1) [[o=> Igne)
time.

Note that the only place we take advantage of
A’s totally monotonicity is in solving certain two-
dimensional subarrays — we can do almost as well
(i.e., solve for the plane maxima in O(ng4 Hz;; g n)
time) using only monotonicity.

2.2 An Example

To make the notions of monotone and totally mono-
tone multidimensional arrays a little clearer, let us
consider a concrete example. The maximum perime-
ter inscribed triangle problem is defined as follows:



given an n-vertex convex polygon P, find a triangle
Q contained in P with maximum perimeter. It is
easy to show that Q’s vertices must be vertices of P.
Thus, if p1, .. ., pn are the vertices of P and per(i, j, k)
is the perimeter of the triangle corresponding to p;,
pj, and pi, we want to find the i, j, and k maximizing
per(i, j, k).

To this end, we consider the three-dimensional ar-
ray A = {ajx} where

aijk = {

If we can find the maximum entry in A, we can solve
the maximum perimeter inscribed triangle problem
for P. Note that we do not explicitly compute all of
the entries in A. Rather, every time our array algo-
rithm needs a particular eniry, we calculate (in con-
stant time) the perimeter of the corresponding trian-
gle. Also, it is easy to verify:

per(i,j, k) fi<j<k

—00 otherwise.

Observation 4 The array A defined above is totally
monotone.

Since the array A is totally monotone and since
we can compute any entry in constant time, we can
find the array’s largest entry, corresponding to the
maximum perimeter inscribed triangle, in O(nlgn)
time using Proposition 3. This result equals the result
obtained by Boyce et al. in [BDDG85]; moreover,
it represents a simpler solution to the problem, as
Boyce et al. require a number of additional geometric
properties of inscribed triangles that complicate their
proof.

Similarly, it can be readily checked that the max-
imum perimeter inscribed d-gon problem reduces to
finding the maximum entry in a d-dimensional totally
monotone array. Since each entry in this array can be
computed in O(d) time, this yields an O(dnlg?~?n)
time algorithm. It remains open whether one can
do better than O(nlgn) time for the inscribed tri-
angle problem, but the inscribed d-gon problem can
be solved more efficiently if we take advantage of
some additional structure of the corresponding d-
dimensional array; this additional structure is dis-
cussed in the next two subsections.

2.3 Monge-Composite Arrays

An important subclass of multidimensional totally
monotone arrays is that of Monge-composite arrays.
A d-dimensional array A = {a;,, . i, } is Monge-
composite if it can be expressed as a sum of two-
dimensional Monge arrays, all satisfying the Monge
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condition or all satisfying the inverse Monge condi-
tion. More precisely, each of its entries satisfies

- (k1)

- [AR TR

k#l

ail,...,fd

where for all k and I, the n; X n; array Wk =
{w,(f’:,) } is a Monge array.

Proposition 5 Every Monge-composite array A is
totally monotone.

Two special cases of Monge-composite arrays are
path- and cycle-decomposable arrays. An array A =
{ai,,...i.} is path-decomposable if each of its entries
satisfies

(1,2)

1,12

(d_19d)
td—1,id

+ulP 4w

Qiy,da = W i2,i3

where the w’s are entries from two-dimensional
Monge arrays as before. A is cycle-decomposable if
each of its entries satisfies

— (112) (d_l»d) (d 1)
Qiy,.ie = Wiy Tt w50 Hwin)
Theorem 6 The plane mazima of an ny X - -+ X ng

d-dimensionaldpath-decomposable array A can be com-
puted in O(3 ;—, ni) time.

Proof The proof is by induction on d. The base
case of d = 2 is trivial. For d > 2, we assume
by induction that the theorem holds for all lower-
dimensional path-decomposable arrays. Since A =
{ai,,...is} is path-decomposable, we can write

(1,2)

11,42

(2,3)
12,03

(d-1,d)

= w $ .
td—1,%a

+wi) + st w

ai,,...,iq
where the w’s are entries from two-dimensional

Monge arrays. Now consider the ng X --- X ng (d—1)-
dimensional array B = {b;,,;,} where

(d—1,d)
td-1,4a °

w(z’?)+--'+w

13,13

bi'xy---,id

By induction, we can find the plane maxima of B in
O(E:=2 n) time. Since the maximum entry in the
plane of A corresponding to a particular value of the

first index ; is just
2,3
{22 b

min { w3
we need only find the row maxima in the array formed
by adding the vector of B’s plane maxima into W(1:2),
Since this array is just a two-dimensional Monge ar-
ray, we can find its row maxima in an additional
O(n; + n,) time, which yields the desired result. B

(d—l,d_)

+ min id—1,%d

la,...,id

+-- 4w



Theorem 7 The plane mazima of an ny X ---nq d-
dimensional cycle-decomposable array A can be com-
puted in O((E:=2 ne)lgny) time.

Proof It is easily verified that each plane of a cycle-
decomposable array is path-decomposable. This
means we can compute a particular plane’s maximum
entry in O(Xj_,ns) time. Thus, using our stan-
dard divide-and-conquer approach, we can compute
all plane maxima in O((}_;—, nt)lg n1) time. W

2.4 More Examples

Returning to the maximum perimeter inscribed d-
gon problem, note that the d-dimensional array cor-
responding to this problem is cycle-decomposable.
Thus, we can apply Theorem 7 and obtain an
O(dnlgn) time algorithm for the problem. It is pos-
sible to reduce this time bound to O(dn+nlgn) using
one additional trick, which we will present in the final
version of this paper.

As Boyce et al. [BDDG85] note, the same approach
can also be used to solve the maximum area inscribed
d-gon problem in O(dn + nlgn) time. Although the
corresponding d-dimensional array is not quite totally
monotone, it can be easily shown that we only need
to consider certaingsubarrays of this array, and these
subarrays are totally monotone.

Another application of array-searching is to the fol-
lowing problem: given a convex n-gon P and a dis-
tinguished vertex v of P, find the longest d-link non-
intersecting path inside P from v to every other ver-
tex of P. Theorem 6 can be used to obtain such
paths in O(dn) time. (This result is implicit in
[AKMSW8T].)

Note that not all applications involve path- or
cycle-decomposable arrays; consider, for example, the
problem of finding a maximum weight d-clique of ver-
tices from a convex n-gon, where the weight of a
clique is defined as the sum over all pairs of vertices
in the clique of the distances between the two ver-
tices. An instance of this problem corresponds to a
d-dimensional Monge-composite array, each of whose
entries may be computed in O(d?) time, and thus
may be solved in O(d?nlg? ?n) time. And, the d-
dimensional array we consider in Subsection 4.2 in
connection with the minimum perimeter circumscrib-
ing triangle problem is not even Monge-composite.

3 Array-Searching in Parallel

In this section, we provide resource bounds for array-
searching in three models of parallel computation:
the CREW-PRAM model, the CRCW-PRAM model,
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and Valiant’s comparison model [LLMPW87]. For
the sake of brevity, we ignore the issue of processor
allocation in our discussion of PRAM algorithms; de-
tails regarding processor allocation will be provided
in the final version of this paper. Also, in this version
we consider only square arrays; we will give results
for n x m arrays, n # m, in the final version.

3.1 Two-Dimensional Arrays

Suppose we are given an n X n totally monotone array

A.

Proposition 8 Given the mazimum eniry in every
r-th row of A, 1 < r < n, we can compute the
remaining row mazima in O(r + lg(n/r)) time on
a CREW-PRAM or in O(r + l1glg(n/r)) time on a
CRCW-PRAM using n/r processors.

Sketch of Proof The row maxima provided to us
partition the array into r regions (containing a total
of O(rn) entries) in which the remaining row maxima
must lie. These regions can be further partitioned
into n/r r x O(r) subarrays. Since each of these
subarrays is totally monotone, we can assign a sin-
gle processor to each subarray and apply the sequen-
tial array-searching algorithm given in [AKMSW87]
to obtain all their row maxima in O(r) time. We
can then do all the necessary combining of subar-
ray maxima from the same region in O(lg(n/r)) time
on a CREW-PRAM and in O(lglg(n/r)) time on a
CRCW-PRAM. R

By applying Proposition 8 repeatedly, we obtain
the following:

Corollary 9 For1 <r <n we can compute the row
mazima of A in O((Ign/lgr)(r + lg(n/r))) time on
a CREW-PRAM or in O((lgn/lgr)(r + 1glg(n/r)))
time on a CRCW-PRAM using n/r processors.

For r = n¢, where € > 0 is a constant, this yields
an optimal processor-time product for both CREW-
and CRCW-PRAMs. For r = lgn, we obtain
an O(lg? n/lglgn) time, n/lgn processor CREW-
PRAM algorithm for computing A’s row maxima.
For r = lglgn, we obtain an O(lgnlglgn/lglglgn)
time, n/lgnlgn processor CRCW-PRAM algorithm.

We can obtain even better time bounds (but
worse processor-time complexities) using a divide-
and-conquer approach; for such an approach we need
the following:

Observation 10 Given an n x k totally monotone
array B, k < n, suppose we know the mazimum in
every |n/k]-th row of B. Then O(n + k) operations



suffice for computing the remaining row mazima of
B. Furthermore, these O(n + k) operations can be
performed in O(1g(n+k)) time using (n+k)/lg(n+k)
processors on a CREW-PRAM or in O(lglg(n + k))
time using (n+k)/lglg(n+k) processors on a CRCW-
PRAM.

Proposition 11 The row mazima of A can be com-
puted in O(lgnlglgn) time using n/lglg n processors
on a CREW-PRAM.

Proof Consider a v/n x n array B formed by tak-
ing every 1/n-th row of A. Partition this array into
\/n subarrays such that the i-th subarray S; contains
columns numbered i\/n+1 through (i+1)+/n. In Step
1, recursively compute the row maxima in each S; (in
parallel). This yields v/n candidates for the maxi-
mum value of the i-th row of B. In Step 2, assign
enough processors to each row of B to compute the
maximum of the row’s \/n candidates in O(lg n) time.
This yields the maximum value in every /n-th row
of A. For 0 < i < +/n, let k; denote the index of the
column in which the maximum value of row i\/n lies.
Then the maximum values in rows i\/n + 1 through
(i+ 1)+/n — 1 lie in columns k; through kiy;. Let
k\/— = n and for 0 < i < /7, let a; be the maximum
integer such that k;y; —k; = aiv/n+b;, 0 < b; < +/n.
For 0 < j < a;, let S; ; be the subarray of A that con-
tains rows iy/n+1 through (i+1)y/n—1 and columns
ki + jv/n + 1 through k; + (j + 1)/n. Let R; be the
subarray formed by rows i,/n+1 through (i+1)/n—1
and columns k; + a;/n + 1 through k; + a;/n + b;
and let R} be the b; x b; subarray formed by taking
every b;-th row of R;. In Step 3, recursively solve (in
parallel) the row maxima problem for S;j; and R for
0<j<a;and 0 <i< /n In Step 4, use Obser-
vation 10 to solve the row maxima problem in T} for
0<i<+nin O(lg(\/_+ b)) = O(Ign) time. In
Step 5, compute the maximum value in each of rows
iy/n + 1 through (i + 1)4/n — 1 by taking the max-
imum of the values obtained for the row by solving
So,i, S1,iy -+ -y Sa;—1,i, and R; and the row’s k;-th col-
umn entry. As the total number of entries that are
candidates for the maximum value in any row of A is
bounded from above by n, Step 5 takes O(lgn) time
and solves the row maxima problem for A.

To analyze the processor and time bounds, note
that steps 2, 4, and 5 take O(lgn) time, whereas
steps 1 and 3 take at most T'(1/n) time, where T'(n)
denotes the time complexity of solving A. Conse-
quently, T'(n) < 2T(y/n) + O(lg n), which, together
with T(1) = O(1), yields the required time bound.
Also, it can be easily verified that if OP(n) denotes
the number of operations required by this algorithm,
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then
OP(n) = O(n)++/nOP(v/n)+
Vn-1
>~ {ai OP(v/n) + OP(b:)},
i=0 -

which, together with OP(1) = O(1), yields OP(n) =
O(nlgn). Consequently, by Brent’s theorem [Br74],
the number of processors required is O(n/lglgn). B

Using a proof similar to that given for Proposi-
tion 11, we can show:

Proposition 12 In the CRCW-PRAM model, n
processors suffice to compute the row mazrima of A

in O(Ign) time.

We can achieve the same result in Valiant’s com-
parison model, using a relatively simple divide-and-
conquer approach:

Observation 13 lgn rounds of n comparisons
apiece suffice to compute A’s row mazima.

A superlinear number of processors allows us to
obtain optimal time algorithms.

Proposition 14 In the CREW-PRAM model, we
can compute the row mazima of A in O(lgn) time
using nlgn processors.

Sketch of Proof The proof is obtained by mod-
ifying Observation 13 so that it can be applied to
CREW-PRAMs and by using pipelining suitably. The
pipelining technique used here igfreminiscent of Cole’s
merge sort [Co86). H

Observation 15 In the CRCW-PRAM model, we
can compute the row mazima of A in O((1/€)1g(1/¢))
time using n'*¢ processors for any € > 1/1gn.

Our results for computing row maxima in two-
dimensional totally monotone arrays are summarized
in Table 1.

Returning to our prototype example of the maxi-
mum perimeter inscribed triangle problem, it can be
easily seen that Boyce et al.’s [BDDGB85] technique
can be modified to solve this problem in O(lg®n)
time using n processors on a CREW-PRAM. How-
ever, by using Proposition 11, we can solve this prob-
lem in O(lg? nlglgn) time on an n/lglgn processor
CREW-PRAM and in O(lg? n) time on an n pro-
cessor CRCW-PRAM. In a similar vein, Boyce et
al.’s technique can be modified to solve the maximum



Eodcl | time | processors |
Valiant’s O(lgn) n
CREW O(lgnlglgn) n/lglgn
O(lg’n/1glgn) nflgn
O(lgn) nlgn
CRCW O(lgn) n
O(lgnlglgn/lglglgn) | n/lglgn
O((1/¢) 1g(1/¢)) nite

Table 1: Row Maxima Results

perimeter d-gon problem in O(d 1g% n+1g3 n) time us-
ing n processors on a CREW-PRAM. Using Propo-
sition 11, we can solve it in O((d + Ilgn)lgnlglgn)
time on an n/lglgn processor CREW-PRAM and
in O((d + lgn)lgn) time on an n processor CRCW-
PRAM. However, for larger values of d (for example,
for d = n¢, € > 0), this algorithm no longer takes
polylogarithmic time, i.e., it is not an NC* algo-
rithm [ACGOY88]. Consequently, we next consider
the plane and tube maxima problems in a parallel
context in order to obtain an NC* algorithm.

3.2 Multidimensional Arrays

For multidimensional totally monotone arrays, we
consider both the plane maxima and tube maxima
problems. We will restrict our attention to three-
dimensional arrays for the sake of brevity; our results
generalize in a natural manner.

Let A be an n x n x n totally monotone three-
dimensional array. We can obtain a naive solution
to the plane maxima problem by applying our ba-
sic divide-and-conquer technique (given in Proposi-
tion 3):

Observation 16 If we can compute the row mazrima
of an n x n totally monotone two-dimensional array
in t time using p processors in either the CREW-
PRAM or the CRCW-PRAM model, we can compute
the plane mazima of A in O(tlgn) time using p pro-
cessors in the same model.

It remains open whether the time complexity given
by Observation 16 can be improved. For the tube
maxima problem, we improve upon the naive algo-
rithm and obtain optimal processor-time products in
both the CREW- and CRCW-PRAM models. Propo-
sition 11 can be readily used to obtain:

Observation 17 In the CREW-PRAM model, we
can compute the tube mazima of A in O(lgnlglgn)
time using n%/lgnlglgn processors.
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We can reduce the time bounds even further as
follows:

Proposition 18 In the CREW-PRAM model, we
can compute the tube mazima of A in O(lgn) time
using n?/lgn processors.

Proof This proof can be obtained using either
Proposition 14 or using a proof technique given in
the proof of Proposition 11. Although the proof that
uses ideas from Proposition 11 can be used to prove
Propositions 19 and 20, in this version we provide the
proof using Proposition 14 because it is easier. First
we show that using m? processors, we can compute
the tube maxima of an m x m X m totally mono-
tone array B in O(lgm) time. Then we improve the
processor bound to obtain the required result.

Consider every (lg m)-th plane corresponding to a
fixed value of B’s first index. Using Proposition 14,
compute in O(lg m) time the tube maxima in these
m/lg m planes using m lg m processors per plane (i.e.,
m? total processors). Then, in each plane correspond-
ing to a fixed value of B’s second index, we fill in the
rest of the plane’s column maxima, corresponding to
the remaining tube maxima. By Proposition 8, this
can be done in O(lg m) time using m/ lg m processors
per plane (i.e., a total of m2/1gm processors).

Now consider an n X n X n array A = {agjk}. For
0 < £ < lgn, let A, be the (n/lgn) x (n/lgn) x
(n/1gn) subarray of A containing entries a,,-,, Where
p = ilgn, ¢ = jlgn, and r, = ¢(n/lgn) + k for
1<4j<nf/lgnand 1l < k < lgn. By assigning
n2/1g? n processors to each Ay, i.e., by assigning a
total of n?/lgn processors, we can compute the tube
maxima for A, in O(lgn) time. Now the maximum
corresponding to the (ilgn, j lgn)-th tube of A is sim-
ply the maximum of the corresponding tube max-
ima in Ao, ..., Ajgn-1 and since 1 < 4,5 < n/lgn,
we can compute these maxima in O(lgn) additional
time. Then, in every (Ign)-th plane corresponding to
a fixed value of A’s second index, we fill in the rest
of the plane’s column maxima. This can be done in
O(lgn) time using n/lgn processors per plane (i.e.,
n?/1g® n total processors) using Proposition 8. Fi-
nally, in each plane corresponding to a fixed value of
A’s first index, we fill in the rest of the plane’s column
maxima, corresponding to the remaining tube max-
ima. This can be done in O(lgn) time using n/lgn
processors per plane (i.e., n2/lgn total processors).

Proposition 19 In the CRCW-PRAM model, we
can compute the tube mazima of A in O((Iglgn)?)
time using n?/(lglgn)? processors.



[ model | time | processors |
CREW O(lgn) n’/lgn
CRCW 0((lgnlgn)’) | n?/(1glgn)*

restricted CRCW O(lglgn) n?/lglgn

Table 2: Tube Maxima Results

Using the results of [FRW88], we can show:

Proposition 20 If all of A’s entries are integers
from {1,...,n°}, where c is some constant, then a
CRCW-PRAM can compute the tube mazima of A in
O(lglgn) time using n?/lglgn processors.

Our tube maxima results for three-dimensional to-
tally monotone arrays are summarized in Table 2.

The results regarding tube maxima improve upon
the time bounds of [AKLMT88] and [AAL87] by fac-
tors of O(lgn) and O(lgn/lglgn) without any dete-
rioration in the processor time-product.

We now return to our prototype example and show
how to obtain fast parallel algorithms for the maxi-
mum perimeter inscribed d-gon problem for any value
of d. Frances Yao [Ya80] has given a procedure that,
for 1 < i < j < n, computes the longest (d — 1)-
link non-intersecting path in a given n-gon that starts
from vertex i and ends at vertex j. This procedure
can be easily parallelized and it essentially requires
O(lgd) stages where each stage solves a tube max-
ima problem for an n x n x n array. Furthermore, if
we are given the largest (d — 1)-link path from vertex
i to vertex j, for all i« < j, then we can compute the
maximum perimeter d-gon by simply adding the edge
(¢,7) to the path from 7 to j, for all ¢ < j, and then
taking the largest perimeter d-gon among the O(n?)
d-gons so obtained. Consequently, it is easy to verify:

Proposition 21 The mazimum perimeter inscribed
d-gon problem can be solved in O(lgklgn) time us-
ing n?/lgn processors on a CREW-PRAM and in
O(lg k(lglg n)?) time using n2/(Iglg n)® processors on
a CRCW-PRAM.

Note that the processor-time product required by
our algorithms is O(n?lgk), which is a factor of
O((nlgk)/(k + 1gn)) worse than the best sequential
bound given in Section 2.4 or [AKMSW87].

4 Circumscribing Polygons

The first set of applications of the array-searching
paradigm is to finding minimum area and minimum
perimeter circumscribing polygons. Given an n-
vertex convex polygon P and an integer d between
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3 and n, we want to find a minimum area or mini-
mum perimeter d-gon @ containing P.

In [BDDG85], Boyce et al. were not able to solve
the problem of circumscribing a convex n-gon (or a
set of n planar points) with a minimum area d-gon.
Aggarwal, Chang, and Yap [ACY85] showed that a
minimum area circumscribing d-gon can be found in
O(n?lgdlgn) time, and this is further improved to
O(n?lgd) in [AKMSW87]. We extend the techniques
of Boyce et al. [BDDG85] in a non-trivial manner to
obtain an O(nd + nlgn) time algorithm for the area
minimization problem. We present this algorithm in
Subsection 4.1.

As for the perimeter minimization problem, the
only known results are for d = 3. DePano [De87]
shows that the minimum perimeter circumscribing
triangle can be computed in O(n3) time. In Sub-
section 4.2, we improve this to O(nlgn) time using
a straightforward application of our techniques for
searching in three-dimensional totally monotone ar-
rays.

4.1 Area Minimization

In finding a minimum area circumscribing d-gon, we
first use the techniques of [BDDG85] to obtain a min-
imum area flush circumscribing d-gon. (A circum-
scribing polygon is flush with P if all its edges are
flush with P, i.e., all of its edges contain edges of P.)
We then use this flush d-gon to obtain an arbitrary
circumscribing d-gon with optimal area, with the help
of a lemma due to DePano [De87).

The techniques given by Boyce et al. [BDDGS85)
can be extended in a straightforward manner to find-
ing a flush minimum area circymscribing d-gon in
O(dnlgn + nlg®n) time. (This was pointed out in
the concluding section of [BDDG85].) Furthermore,
the techniques of [AKMSW87] reduce the complexity
of this problem to O(dn + nlgn) time. In [De87),
DePano provides the following geometric characteri-
zation of a minimum area circumscribing d-gon:

Lemma 22 ([De87]) Let P be any conver n-gon.
For 3 < d < n, there ezrists a minimum area d-gon
Q circumscribing P that has a least d — 1 edges flush
with P. Furthermore, if some edge e of Q is not flush
with P, then:

1. e is balanced, i.e., its midpoint lies on P, and

2. e’s two neighboring edges (those edges of Q shar-
ing an endpoint with e) intersect on the same
side of e as P lies.

This allows us to relate minimum area flush cir-
cumscribing d-gons and minimum area arbitrary cir-
cumscribing d-gons:



Observation 23 Some minimum area circumscrib-
ing d-gon interleaves every minimum area flush cir-
cumscribing d-gon, i.e., the contact points (edges and
vertices of P) of the optimal arbitrary circumscribing
d-gon must alternate with contact points (edges only)
of the optimal flush circumscribing d-gon.

Thus, once we have computed an optimal flush cir-
cumscribing d-gon, we have d intervals of edges, over-
lapping only at their endpoints, such that some opti-
mal circumscribing d-gon has a contact point in each
of these intervals. Furthermore, DePano’s lemma tells
us that there exists an optimal circumscribing d-gon
@ with at most one non-flush edge, and if this non-
flush edge exists, then its neighbors intersect on the
same side of the non-flush edge as P. Because of this,
it is easy to verify:

Observation 24 There are at most three intervals
in which the non-flush edge can lie.

Let the d intervals of edges be denoted by
I, 1I,,...,I;in counterclockwise order around P. Let
v1, ...,V be the vertices of P in counterclockwise or-
der and let e;, 1 < i < n, be the edge of P connect-
ing v; and Y(;11)modn- We define an optimal flush
(d = 1)-chain V; ; to, be the convex polygonal chain
satisfying the following conditions: (i) the chain lies
entirely outside P, (ii) its first edge is flush with e;,
its (d — 1)-st edge is flush with e;, and successive
edges are flush with edges of P in clockwise order,
and (iii) among all possible chains satisfying (i) and
(ii), the area enclosed between this chain and P is
minimum. Finally, if e; € Ix—, and ej41,...,€j4¢
denote the edges in I;,,, define an optimal 3-chain
Vi j+s to be the convex polygonal chain satisfying the
following conditions: (i) the chain lies entirely out-
side P, (ii) its first and third edges are flush with e;
and ej4,, respectively, and its second edge touches
some vertex (or is flush with an edge) of I, and (iii)
among all possible chains satisfying (i) and (ii), the
area enclosed between this chain and P is minimum.

Now, we can check the possibility of the nonflush
edge lying in interval I; as follows. Let e; be the
middle edge in Ix_;. We need to (a) find the optimal
flush (d — 1)-chain V; j4, for 1 < s < ¢, and (b) find
the optimal 3-chain Vi!i4s for 1 < s < £. Again, by
suitably modifying the technique given by Boyce et
al. (and improved by [AKMSW87]), we have:

Lemma 25 V; j41,..., Vi,j+¢ can all be computed in
O(n) time.

This allows us to accomplish (a); for (b), we need
the following lemma.:
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Lemma 26 V/;.,,...,V/;,, can all be computed in
O(n) time.

Sketch of Proof For 1 < s </, if the second edge
of V;; 4, only touches some vertex in I, then because
of Lemma 22, this edge must be balanced. This bal-
ancing condition provides some additional properties
that help us in obtaining ,-’,j_,_l,...,V,:’,jH in O(n)
time. Similar properties have been used in [OAMBS6]
and [ACY85]; we will provide the details in the final

version of this paper. H

At this point, Boyce et al.’s basic divide-and-
conquer approach can be used to yield:

Theorem 27 Given a conver m-gon, a minimum
area circumscribing d-gon can be computed in O(nd+
nlgn) time.

4.2 Perimeter Minimization

In obtaining his O(n3) time algorithm for the mini-
mum perimeter circumscribing triangle problem, De-
Pano [De87] shows that every convex n-gon has a
minimum perimeter circumscribing triangle with at
least one edge flush. He also proved the following
lemma:

Proposition 28 ([De87]) For any triple (i,j,k),
let T; jx be the minimum perimeter circumscribing
triangle with its first edge é; flush with edge e; of P,
its second edge éz containing vertez v; of P, and its
third edge é3 containing vertex vy of P. Then there
ezists a point p; on é; and P and a point p3 on é3 and
P, such that the length of éo between ps and the end-
point it shares with é, equals the length of é3 between
p3 and the endpoint it shares with €.

Clearly, this proposition allow us to compute T; ; &
(and its perimeter) in constant time. Thus, by consid-
ering all n3 triples (i, j, k), DePano finds a minimum
perimeter circumscribing triangle in O(n3) time.

Another way of looking at this problem is in terms
of an n x (2n —2) x (2n — 1) array A = {a;;z } defined
as follows. For 1<i<nandi< j<k<i+n,we
let a;jx be the perimeter of T; jmodn,kmodn, Provided
this triangle exists. If this triangle does not exist, we
let a;jx be oo. For all other values of ¢, j, and k,
we also define a;j; to be co. Using Proposition 28,
each entry of A can be computed in constant time.
And, since the perimeter of the minimum perimeter
circumscribing triangle is simply the minimum entry
in A, the following proposition provides the basis of
an O(nlgn) time algorithm:

Proposition 29 A is totally monotone.



It is unclear whether A is Monge-composite, since
fixing any two indices of A does not fix the both the
edges of the circumscribing triangle corresponding to
these indices. Nevertheless, Proposition 29 allows
us to apply the array-searching algorithm given in
Proposition 3 and obtain:

Theorem 30 Given a convez n-gon P, a minimum
perimeter triangle Q circumscribing P can be com-
puted in O(nlgn) time.

It remains open whether a minimum perimeter cir-
cumscribing triangle can be found in o(nlgn) time
and whether there exist efficient algorithms for com-
puting minimum circumscribing d-gons.

5 Dynamic Programming

5.1 Frances Yao’s Paper Revisited

In [Ya80], Yao considered the following dynamic pro-
gramming problem. Let W = {w(i,j)} be a Monge
array satisfying the Monge condition and the follow-
ing additional monotonicity constraint: w(i',j’) <
w(i,j) for i < ¢ < j < j. Let C = {c(%,5)} be
defined so that ¢(i,i7) = 0 for 1 <7 < n and

c(i,5) = w(i, j)+ ir(l’}cigj{c(i, k—1)+c(k,j)}

for 1 < ¢ < j < n. In [Ya80], Yao showed that all of
the entries of C can be computed in O(n?) time. She
used this result to provide a simple alternate solution
to Knuth’s problem regarding optimal binary trees
[Kn73]; she also extended this to the computation
of optimal t-ary trees. In obtaining her O(n2) time
bound, Yao showed the following:

Lemma 31 ([Ya80]) C is a Monge array satisfying
the Monge condition, i.e., c(i,7)+c(?,j') < c(3,7')+
o(i,5) fori <i' <5 < j.

Thus, C is clearly a totally monotone array. Unfor-
tunately, the entries of C are not directly available,
so the result of [AKMSW87] seems inapplicable, at
least in a straightforward manner.

Now consider the three-dimensional array D =
{d(4, k,5)}, where we define d(i, k,j) = c(i,k — 1) +
c(k,7) + w(i,j) when i < k < j and oo otherwise.
Since we now have c(i,j) = minj<i<n d(i, k,5), we
have transformed the problem of computing C to the
problem of computing the tube maxima of D. D
is clearly Monge-composite (and thus totally mono-
tone), but again the array’s entries are not directly

available. At this point, however, we can apply the
results of Wilber [Wi88).
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Each plane of D, corresponding to a particular
value of the first index 1, is totally monotone, since D
is totally monotone. Moreover, the problem of com-
puting the column maxima in the plane correspond-
ing to ¢ is equivalent to the concave least-weight sub-
sequence problem considered in [HL85] and [Wi88]:

find f(q) = mm g(p, q) for1<g<m

where f(O)
and g¢(p,q) = f(p)+v(p,q) for 0<p<g<m

In. our context, m n—1, fig) = c(i,qg + z)
9(p,q) = d(i,p+1+1,¢+1), and v(p,q) = c(p+1+
1, q+z)+w(z g+1). Note that the array V = {v(p,q)}
is Monge since C is Monge. Provided ¢(%, j) is known
for i > 1 (so that v(p,q) can always be computed in
constant time), we can solve this problem in O(m)
time using the algorithm given by Wilber in [Wi88].
Thus, to compute the tube maxima of D, we need
only apply Wilber’s algorithm n times, first to the
plane corresponding to i = n, then to the plane cor-
responding to i =n—1, and so on down to the plane
corresponding to 7 = 1. This gives us all of C’s entries
in O(n?) time.

Now suppose the array C is defined in terms of
a weight array W that satisfies the inverse Monge
condition and, in addition, w(#,j') > w(i,j) for ¢ <
i’ < j' < j. By adopting the procedure given above,
we can show:

Proposition 32 The array C can be computed in
O(n?a(n)) time, where a(n) denotes the inverse Ack-
ermann’s function.

Proof This proof is identical %o that given above
except that now each plane of the three-dimensional
array D, corresponding to a particular value of the
first index 7, is no longer totally monotone or Monge.
Instead, the plane is a staircase monotone array as de-
fined by Aggarwal and Klawe [AK87]. The problem
of computing the column maxima in the plane corre-
sponding to 7 is thus equivalent to the convez least-
weight subsequence problem, and Klawe and Kleit-
man [KK88] have shown that this problem can be
solved in O(na(n)) time. W

It remains open whether the time complexity given
in Proposition 32 can be improved from O(n%a(n)) to

O(n?).

5.2 Waterman’s Problem

The sequence of ribonucleotides of an RNA is called
its primary structure. When the primary structure
of a single-stranded RNA is known, the question of



which bases form pairs becomes important and this is
referred to as the secondary structure of RNA. It turns
out that primary structure of RNA is easy to evaluate
and in [Wa78], Waterman argued that understanding
the secondary structure of RNA is closely related to
solving some dynamic programming problems. One
of the dynamic programming problems involves com-
puting the entries of an array E = {e(i,7)}, where

e(i,d) = min {c(i', ) +w(i +3,i + )}

1</ <5

such that for k < p <1 <yq,

w(k,!) + w(p, q) < w(k! q) + w(p,!) (4)

and ¢(,j) can be computed from e(i, j) in constant
time. Waterman and Smith [WS86] provided an
O(n®) time algorithm for computing the entries of
E. Recently, Eppstein, Galil, and Giancarlo [EGG88]
have obtained an O(n?1g? n) time algorithm for this
problem. (They also obtained an O(n?lgnlglgn)
time algorithm for the special case of w being a log-
arithmic function or other simple function.) Using
array-searching, we show:

Theorem 33 All e(4,j) can be computed in (n?lgn)
time if the w(i,j)vobey the Monge condition (4) or
the inverse Monge condition.

Sketch of Proof We only prove the theorem for
the case when ¢(%, j) = e(3, j); this proof can be easily
generalized to any ¢(4,j) that can be computed from
e(%, j) in constant time.

We begin with some definitions and observations.
The entry e(%, j) strictly dominates the entry e(¢', j')
if ¢ >4 and j > j'. An entry depends only on those
entries it strictly dominates. The diagonal d of E
contains those entries e(i’, j*) such that ¢/ + j' = k.

Observation 34 The only entry on a particular di-
agonal dy of E that we need to consider in computing
e(i,j) is the minimum entry e(¢,j') on di that is
strictly dominated by e(i,j). (We will refer to this
entry as ¢ diagonal minimum.)

With this is mind, we define

de(i,7) = min e(7,j').

i'<i,il<;
it =k

(i) = , min {d(i,d)+w(k,i+3)}

Now we can describe our algorithm for comput-
ing the entries of E. We use a divide-and-conquer
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approach, reminiscent of an algorithm given by Ag-
garwal and Suri [AS87] for finding the largest empty
corner rectangle. We begin by partitioning E into
four n/2 x n/2 subarrays A, B, C, and D, as shown
in Figure 1, and recursively computing the entries of
A in T(n/2) time. We then compute the effect of A
on B, i.e., for each entry of B, we obtain a upper
bound on its value based on the entries of A. (Each
entry in B is the minimum of a number of terms;
some of these terms depend only on the entries of B;
the rest depend only on the entries of A; we compute
the minimum of those terms dependent on the entries
of A.) We will explain later how this may be accom-
plished in O(n?) time. Next, we recursively compute
the entries of B in T(n/2) time, taking into account
the effect of A on B, i.e., in assigning an entry of B
its value, we always take the minimum of the value
we have recursively computed for this entry based on
the entries of B, and the value we have computed
for this entry based on the entries of A. We repeat
this process for C, computing the effect of A on C
in O(n?) time and then recursively computing C in
T(n/2) time. Finally, we compute the effect of A on
D, the effect of B on D, and the effect of C on D, all
in O(n?) time, and then recursively computed D in
T(n/2) time.

This yields the recurrence T'(n) < 4T(n/2)+O(n?)
for the time to compute all entries of an n x n array.
Since T(1) = O(1), T(n) = O(n2%1gn).

We can compute the effect of A on B as follows
(computing the effect of A on C, A on D, B on
D, and C on D may be done in an analogous man-
ner). For 1 < i < n/2, each entry e(é,j + n/2) in
row i of B strictly dominates the same set of entries
in A and thus depends on the same diagonal min-
ima. Consequently, consider the two-dimensional ar-
ray X; = {zi(k,j)} where z;(k,j) = de (3,1 + n/2) +
w(k,i4+ j+n/2). e(i,j +n/2) can then be expressed
as the minimum of two quantities

min zi(k,j
k<i+j+n/2-1 i(k,7)



and

min {e(#,§' +n/2) + (i +5' +n/2i++n/2)}.
1<5'<3

As the first of these quantities depends only on entries
in A and the second depends only on entries in B,
computing the effect of A on B reduces to computing
the row minima in all n of the X;.

Observation 35 For 1 < i < n/2, X; is a Monge
array (satisfying either the Monge or inverse Monge
condition, depending on the condition that the w’s

satisfy).

Lemma 36 The effect of A on B, specifically the row
minima of X; for 1 < i < n/2 can be computed in
O(n?) time.

Proof of Lemma The di(i,n/2) for 1 < i < n/2
and 2 < k < n can be computed in O(n?) time, since
dr(1,n/2) = e(1,k — 1) and di(i,n/2) can be com-
puted from di(i — 1,n/2) and e(%,k — 7) in constant
time. Once this has been done, each entry in each of
the X; can be computed in constant time, so we can
just apply the algorithm of [AKMSW87] n times and
obtain all the desired row minima in an additional
O(n?) time. W

This completes our proof of Theorem 33. B

Note that this divide-and-conquer approach can be
used to obtain an O(nlgn) time solution to the one-
dimensional version of Waterman’s problem, namely,
the concave or convex least-weight subsequence prob-
lem considered by [HL85,KK88,Wi88]. Wilber [Wi88]
solves the concave least-weight subsequence prob-
lem in O(n) time by an elegant modification of
[AKMSWS8T]; this suggests that perhaps an o(n?1gn)
solution to the concave version of Waterman’s prob-
lem [EGG88,Wa78] might be obtainable.

6 VLSI River Routing

Let p; < p2 < --+ < p,, be points on a line segment P
that is horizontally imbedded in the plane. (We iden-
tify a point p; with its offset relative to the leftmost
point of P.) Let z; be the z-coordinate of p; in the
plane. We call z; the offset of P and the y-coordinate
of p; the separation of P. Let ¢; < g2 < -+- < g, be
points on a line segment @ imbedded horizontally in
the plane so that ¢; is at the origin. (We identify
a point ¢; with its z-coordinate.) A routing is a set
of n nonintersecting continuous curves (wires), with
the i-th curve going from p; to g¢;, that satisfy a set

of design rules. The design rules are determined by
circuit technology. At a minimum, there is a require-
ment that the distance between any two wires be at
least some fixed constant, which we may take to be
1. We are concerned with three problems:

1. Minimum Separation Problem. Given a fixed off-
set for P, find the minimum separation that al-
lows a valid routing.

2. Offset Range Problem. Given a wiring rule and
a separation, find all offsets permitting a legal
wiring for that separation.

3. Optimal Offset Problem. Find the offset for P for
which the minimum separation for P that allows
a valid routing is minimized.

We say that the points are monotone if z; < ¢; for
all 7 or if z; > ¢; for all . We may assume that the
points are monotone, for if they are not they may be
partitioned into maximal monotone blocks and the
routing for each block may be done independently.
Without loss of generality, assume z; < ¢; for all 7.
Since the points are monotone, we can assume that
the wires are monotone, i.e., the y-coordinate of a
wire is nonincreasing as the z-coordinate increases.
Forl1 <i<mnandl < j < n—i,the j-th barrier about
g; is defined to be the set of points that delimit the
closest possible approach to ¢; of the monotone wire
going from p;,; to g;;;. The barriers are determined
by the design rules.

Let H,(x) denote a family of barrier curves (with p
denoting the index) such that for z < p, 0 < H, < p
and H,(z) is concave, and for z > p, H,(z) = 0. A
family of similar curves that is concentric with respect
to the origin can be denoted by B, = ph(z/p). (See
[SD81] for details.) For 1 < ¢,j < n, Siegel and Dolev
defined the concept of a left-offset function L(z, j) and
a right-offset function R(Z,j) such that the relative
offset interval for P is

o
5,169 i, R

Siegel and Dolev also showed:

Theorem 37 ([SD81]) Suppose r > 0, s > 0, and
j2i+r. Then if L(i,j) < L(i+r,j), L(4,j +s) <
L(i+r,j+s). Similarly, if R(i,5) > R(i+r,j), then
R(i,j+s)> R(i+r,j+s).

Using this theorem, it is readily seen that:

Observation 38 The nxn arrays L = {L(¢,5)} and
R = {R(i,j)} are totally monotone. Furthermore, if
L(i,j) and R(i,j) can be computed in constant time,
then the offset range problem can be solved in linear
time by finding the row mazima in L and R.
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This observation generalizes the results of Siegel
[Si88], who shows an O(n) time algorithm for the off-
set range problem when barriers are polygonal in na-
ture.

In [SD81], Siegel and Dolev show that the opti-
mal offset problem can be solved for a particular
set of wiring rules in O(¥(n)lgn) time if the sepa-
ration problem for these wiring rules can be solved
in O(¥(n)) time. Consequently, using [AKMSW87],
we can obtain an O(nlgn) time algorithm for the
optimal offset problem for most wiring rules used in
practice. It remains open whether an o(nlgn) time
algorithm can be provided for this problem. Indeed,
Mirazaian [Mi87] has a provided an elegant ©(n) time
algorithm for this problem for rectilinear wiring; how-
ever, his algorithm exploits the properties associated
with such a wiring, and it is unlikely that his tech-
niques can be extended to other wiring models.

In [CJ88], Chang and JaJa provide parallel algo-
rithms for the minimum separation problem and the
optimal offset problem for the river routing of recti-
linear wires. They provide an n processor, O(lgn)
time CREW-PRAM algorithm for the minimum sep-
aration problem and an n processor, O(lg?n) time
CREW-PRAM algorithm for the optimal offset prob-
lem. In this subsection, we improve the processor
bounds and then exfend these results for routing rules
with weaker assumptions.

Proposition 39, The minimum separation problem
for n rectilinear wires can be solved in O(lgn) time
using n/lgn processors on a CREW-PRAM and
in O(lglgn) time using n/lglgn processors on a
CRCW-PRAM.

Proposition 40 The offset range problem for n rec-
tilinear wires can be solved in O(lgn) time us-
ing n/lgn processors on a CREW-PRAM and
in O(lglgn) time using n/lglgn processors on a

CRCW-PRAM.

At this point, we observe that the simple divide-
and-conquer technique given by Mirazaian yields an
n/lgn processor, O(lg? n) time CREW-PRAM algo-
rithm and an n/lglg n processor, O(lgnlglgn) time
CRCW-PRAM algorithm solving the optimal offset
problem. This improves the corresponding processor
bounds for these problems given in [CJ88] by a factor
of O(lgn).

If the routing rules for wires obey the assumptions
given in [SD81], then we have the following:

Corollary 41 The minimum separation and offset
range problems for n wires that obey the wiring
rules given by Siegel and Dolev can be solved in
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O(lgnlglgn) time using n/lglgn processors on a
CREW-PRAM and in O(lgn) time using n pro-
cessors on a CRCW-PRAM. Furthermore, the opt-
mial offset problem for these wires can be solved in
O(lg? nlglgn) time using n/lglgn processors on a
CREW-PRAM and in O(lg2 n) time using n proces-
sors on a CRCW-PRAM.

It remains open whether the optimal offset problem
can be solved in ©(lgn) time on an n/lgn processor
CREW-PRAM, even for rectilinear wires. Also, it
remains open whether any of our techniques can be
used to improve the processor and/or time bounds
given by Chang and JaJa [CJ88] for routability test-
ing within a rectilinear polygon. Finally, obtain-
ing better processor-time bounds than those given in
Corollary 41 also remains open.

7 Finding Shortest Paths in
Certain Planar Graphs

Given a directed, acyclic (2m + 1) x (n + 1) grid
graph G (as shown in Figure 2), with a non-
negative cost ¢((z, §), (k,1)) associated with each of its
arcs (v j, vg,1), Fuchs, Kedem, and Uselton [FKU77]
showed that the problem of optimal surface recon-
struction from planar contours can be reduced to find-
ing the minimum cost paths in G that start from
v;,0 and end at vpm4in for i = 0,1,...,m — 1, m.
[FKU77] also presents an O(nmlgm) time sequen-
tial algorithm for computing all these paths. (To be
precise, the costs on all diagonal edges of G are infi-
nite for the problem discussed in [FKU77]. However,
by considering the diagonal edges also, our algorithms
can be extended to incorporate [KF80].)

In a separate paper, Kedem and Fuchs [KF80]
showed that finding the minimum cost path which
begins at vg,g and ends at vam n can be used to solve
the string editing problem considered in [WF74] (see
Subsection 7.1 also) and that finding minimum cost
paths which begin at v; o and end at vm4in can be
used to solve the circular string-to-string correction
problem. Consequently, the sequential algorithm of
[FKU77] can be employed to solve both these prob-
lems in O(nmlgm) time.

Recently, Apostolico et al. [AAL87] and Math-
ies [Ma88] have independently provided parallel algo-
rithms that find the minimum cost path in G start-
ing from vg o and ending at vam n. (These two papers
discuss the problem in the context of string editing
and largest common subsequences only; see Subsec-
tion 7.1.) Both algorithms can be easily extended
to find minimum cost paths that begin at v; o and



end at viym, for i = 0,...,m. Below, we briefly
discuss a divide-and-conquer algorithm; a variant of
this algorithm appears in [AAL87]. Our algorithm
incorporates the results of Subsection 3.2 to improve
the time bounds given in [AAL87] without affecting
the processor-time product by more than a constant
factor. Later, in Subsection 7.1, we apply these ideas
to several different problems and compare our results
with those given in the literature.

In this section, we will refer to nodes in G with
in-degree zero as sources and those with out-degree
zero as sinks. We will also refer to the problem of
finding the shortest paths from all sources to all sinks
as the all minimum cost paths problem. Note that the
output of this problem is a (2m+n) X (2m + n) array
whose (7, j)-th element contains the cost of minimum
cost path from the i-th source to the j-th sink.

For the sake of simplicity, we assume n = 2m, i.e.,
G is an m x m grid DAG. Let DISTg be an n X
n array containing the lengths of all minimum cost
paths that begin at the top or left boundary of G and
end at its right or bottom boundary. Then divide the
n x n grid into four n/2 x n/2 grids A, B, C, and
D as shown in Figure 1. In parallel, recursively solve
the all shorest paths problem for A, B, C, and D,
thereby obtaining the four distance arrays DIST4,
DISTpg, DIST¢, and DISTp. Then (i) use DIST,4
and DISTp to obtain DIST 4y B, (ii) use DIST¢ and
DISTp to obtain DISTcyup, and (iii) use DIST 4uB
and DIST¢yup to obtain DISTg.

Until now, our algorithm is identical to that given
in [AAL8T); however, it differs form this point on-
wards, since Apostolico et al. obtain their time and
processor bounds by describing an efficient procedure
for executing steps (i), (ii), and (iii), whereas we show
below how each of these steps can be executed by
finding the tube maxima in a ©(n) x ©(n) x O(n)
three-dimensional totally monotone array. Since the
tube maxima problem can be solved very efficiently
using the results of Subsection 3.2, we will improve
upon the results given in [AAL87].

Let vy,...,vm (w1, ..., wn, respectively) be the m
points on the left and top boundaries of A (B, respec-
tively) in clockwise order. Similarly, let z;,...,zm
(1, .-, Ym, respectively) be the m points on the bot-
tom and right boundaries of A (B, respectively) in
counterclockwise order. Then we claim:

Observation 42 DIST 4
Monge arrays.

and DISTp are both

Now let A" = da'(4,5) and B’ = ¥/(i,j) denote
the n x n/2 and n/2 x n arrays obtained by delet-
ing the first n/2 columns of A and the last n/2
rows of B, respectively. Consider the n x n/2 x n
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three-dimensional array whose (i, j, k)-th entry con-
tains a’(¢,7) + b'(4, k). Clearly, this array is Monge-
composite and hence totally monotone. Furthermore,
DIST oup is a 3n/2 x 3n/2 array and its (i, k)-th en-
try is either an entry of DIST,4 (this happens when
k < n/2), or an entry of DISTg (when k > n/2 ‘and
n < i < 3n/2), or the minimum entry in the (z, j)-th
tube of this three-dimensional array.

Theorem 43 The all minimum cost paths problem
for an nx n grid DAG can be solved in O(lg? n) time
using n%/lgn processors on a CREW-PRAM.

Sketch of Proof From Observation 42 and algo-
rithm given above, it follows that T'(n) < T'(n/2) +
T'(n) and OP(n) < 4 OP(n) + OP'(n), where T(1)
and OP(1) are constants and 7”(n) and OP’(n) de-
note the time and number of operations, respectively,
required to find the tube maxima of a ©(n) x ©(n) x
O(n) totally monotone array. Now from Proposi-
tion 18, we have T'(n) = O(lgn) and OP'(n) =
O(n?) for a CREW-PRAM. Consequently, T(n) =
O(lg* n) and OP(n) = O(n?lgn). Using Brent’s the-
orem [Br74], it can be readily checked that the num-
ber of processors used in O(n?/lgn). W

Similarly, by incorporating Propositions 19 and 20,
we have:

Theorem 44 The all minimum cost paths prob-
lem for an n x n grid DAG can be solved in
O(lgn(lglg n)?) time using n?/(lglgn)?® processors
on a CRCW-PRAM.

Theorem 45 The all minimum co’t paths problem
for an n x n grid DAG can be solved in O(lgnlglgn)
time using n?/lglgn processors on a CRCW-PRAM
if all arc costs are integers from {1,2,...,n°} for
some constant c.

Above, we showed how to solve the all minimum
cost paths problem for n = 2m; below we state the
results for general n and m; these results can be read-
ily derived along the lines of Theorems 43, 44, and 45.

Corollary 46 Suppose m < n. Then the all shor-
est paths problem for a 2m x n DAG can be solved
(i) in O(lg mlgn) time using mn/lgm processors on
a CREW-PRAM, (ii) in O(lgn(lglg m)?) time using
mn/(lglgm)2 processors on a CRCW-PRAM, and
(i1i) in O(lgnlglgm) time using mn/lglgm proces-
sors on a CRCW-PRAM if the costs on edges are
non-negative integers from {1,...,n°} for some con-
stant c.



The following two questions remain unresolved re-
garding the all minimum cost paths problem. First,
the best sequential algorithm for this problem for a
2m x n grid DAG takes O(mnlgm) time, whereas
the only known lower bound is Q(mn). It seems that
the array-searching framework should be useful in im-
proving the upper bound. Second, the processor-time
product of our algorithm is O(nmlgn), which is a fac-
tor of O(lg n/lgm) away from the sequential bound.

7.1 Applications

In biological research, tomography and medical diag-
nosis, manufacturing design, and architecture, it is
often useful to reconstruct a three-dimensional solid
from a set of cross-sectional contours; this recon-
struction often helps in comprehending the object’s
structure and it facilitates it automatic manipulation.
Fuchs, Kedem, and Uselton [FKU77] propose a proce-
dure that reduces this problem to a special case of the
all minimum cost paths problem for a grid DAG. Con-
sequently, the bounds given in Corollary 46(i) and (ii)
also hold for the problems considered in [FKU7T].
Wagner and Fischer [WF74] have given a sequential
O(nm) time algorithm for solving the string-editing
problem. Kedem angd Fuchs [KF80] have provided an
O(nmlg m) time sequential algorithm for the circular
string-editing problem. Since the all minimum cost
paths problem for an (n+1) x (m+1) grid DAG solves
both these problems, Corollary 46(i) and (ii) also ap-
ply to these problems. Also, because the largest com-
mon subsequence problem [AAL87,Ma88] is a special
case of the string editing problem where all costs are
small integers, the largest common subsequence prob-
lem can be solved in parallel in the time and proces-
sor bounds given by Corollary 46(iii). This improves
the time bounds given in [AAL87,Ma88] by a factor
of O(Igm) for the CREW-PRAM and by a factor of
O(lgm/1glgm) for the CRCW-PRAM. Also, our re-
sult has the same processor-time product as [AAL87]
and it improves upon [Ma88] by a factor of O(lgm).
In the conclusion of [AAL87], Apostolico et al. re-
mark that if they increase the number of processors
by a factor of O(m), then they could improve their
time bounds on the string editing problem by a fac-
tor of O(lg m) using trivialized versions of their algo-
rithms. They also left as an interesting open ques-
tion whether any improvement in time complexity
can be achieved at the expense of only a polyloga-
rithmic factor in processor complexity. Our Corol-
lary 46, when applied to string editing, shows that a
factor of O(Igm) (O(lgm/lglgm), respectively) im-
provement in time complexity for a CREW-PRAM
(CRCW-PRAM, respectively) is achievable without
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any deterioration in processor complezity; this settles
the open problem raised in [AAL8T].

Given n distinct points p;,...,pn, in the plane,
point p; = (z;,y;) dominates p; = (zj,y;) if z; > z;
and y; > y;. A point is called maximal (and is said to
lie in the first maximal layer) if it is not dominated
by any other point. If we remove all the points in
the maximal layers indexed 1,2,...,5 — 1, then the
j-th maximal layer is composed of all maximal points
in the remaining set. The problem of computing the
maximal layers arises frequently in computational ge-
ometry and statistics, and a ©(nlgn) time sequential
algorithm for the problem is known.

In 1986, Rao Kosaraju [Ko86] communicated to
us a simple but elegant procedure for finding max-
imal layers in parallel. This procedure reduces this
problem to that of finding maximum cost paths
from n specially marked nodes to node (n,n) in an
(n+1) x (n+ 1) grid DAG. Consequently, a simple
extension of the techniques given at the beginning of
this section can be used to solve the problem of find-
ing these maximum cost paths. Moreover, since only
binary costs are assigned to arcs, Theorems 43 and
45 can be used to compute the maximal layers of n
planar points.

The processor-time complexity of our solution to
the maximal layers problem is O(n?lgn), whereas
the sequential algorithm takes ©(nlg n) time. Conse-
quently, it remains open whether the processor-time
complexity can be improved.
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