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Aggarwal et al. [A. Aggarwal, M.M. Klawe, S. Moran, P. Shor and R, Wilber, Geometric applications of a matrix-searching
algorithm, Algorithmica 2 (1987) 209~233] showed how to compute in O(n} time one farthest neighbor for every vertex of a
convex n-gon. In this note we extend this result to obtain a linear time algorithm for finding all farthest neighbors for every
vertex of a convex polygon. Our algorithm vields a linear time solution to the symmetric all-farthest neighbors problem for
simple polygons, thereby settling an open question raised by Toussaint in 1983 [G.T. Toussaint, The symmetric all-farthest

neighbor problem, Comp. Marh, Appl 9 (6) (1983) 747-753.)
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1. Introduction

A two-dimensional matrix M = {m,,}is called
monotone if the maximum value in the /th row lies
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Fig. 1. Bvery 2 X2 minor, given by a, b, ¢ and 4, of a totally
monotone matrix is monotone, i.e. it is not possible that a < b
and ¢>d.
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below or to the right of the maximum value in the
(i — D)st row. If a row has several maxima then we
will take the leftmost one. A matrix M is called
totally monotone if every 2 X 2 submatrix (ie.,
every 2 X 2 minor) is monotone (See Fig. 1).
Although the question of finding the row max-
ima in a two-dimensional totally monotone matrix
may seem rather odd at first glance, [1] and 2]
show that a wide variety of problems can be
reduced to one or more instances of this problem.
For example, the totally monotone property arises
in problems that deal with polygons whose vertices
obey the quadrangle inequality. Suppose a convex
polygon has n vertices numbered 0,1,...,n—1.

0020-0190,/89,/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland) 17




Volume 31, Number 1

i0 il L Iy ln+l X2n—2 L1

] -infinity [
"~ |-infinity 18 | B

.n-2
n-1

Fig. 3.

Let the distance between two vertices, / and J, be
denoted by d(i, j). If we take any 4 distinct
vertices, iy, /5, J;, and j,, such that 0 <7, <i, <
<j, <n-—1, and form a quadrangle /i, j; j,; then
by the quadrangle inequality, the sum of the di-
agonals d(iy, j,) +d(iy, j,)is strictly greater than
the sum of the sides d(i;, j,) +d(i5, j;) (see Fig.
2). We define a matrix M = {m, ;} corresponding
to this convex polygon as follows (see Fig. 3): Vi,
m; ;=d(i, j mod n) for i<j<i+n,and m; ;=
— oo for all other j.

Claim 1. Matrix M is a totally monotone matrix.

Proof. Take any 2 X 2 minor (see Fig. 1). If none
of the entries in the minor are — oo and i; <i, <,
< J,, then it is not possible that a <b and ¢>d
because of the quadrangle inequality. /; <1, and
J1 <J, have to hold simply from the way we have
drawn the minor. If i, > j;, then ¢ = —oco. Simi-
larly, if any other inequality among i; <i, <j; <j,
does not hold, then at least one of the entries in
the minor is — oo, which is the case we consider

next.

If b= —0o0 or ¢= —oo, then either a< b or
¢#d. If a= —o0, then by the way we have de-
fined M, either b= —o0 or ¢= —co and the
previous case applies. Similarly, if d = —¢o, then
either ¢= —o0 or b= —oo. Thus, M is mono-
tone. O

Aggarwal et al. [1] showed how to find the
leftmost maximum in each row of an »n X m ma-
trix M in O(n+ m) time on a sequential RAM.
Note that the algorithm of [1] does not explicitly
create the entire matrix M (that would take O(nm)
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time); rather, it only computes O(n + m) entries
of M. Thus, using [1]’s algorithm, we can find the
leftmost farthest neighbor of every vertex on a
convex n-gon in O(n) time. In this note we show
how to find all farthest neighbors of every vertex
of a convex n-gon in O(n) time. The note is
organized as follows. In Section 2 we describe an
algorithm to find all farthest neighbors of a con-
vex polygon. In Section 3 we prove that the al-
gorithm takes O(») time. In Section 4 we describe
briefly how our algorithm can be used to find all
symmetric farthest neighbors of:a simple polygon,
and in Section 5 we give some open problems.

2. Algorithm to find all farthest neighbors of a
convex polygon

Let M be a totally monotone matrix corre-
sponding to a convex polygon, i.e, Vi, m; ;=
d(i, jmod n) for i<j<i+n, and m; ;= —o0
for all other ;.

Algorithm Compute-all-farthest-neighbors(M )

Step 1. We use the algorithm of [1] to find the
leftmost maximum in each row of M, Let
/; be the colummn in which the leftmost
maximum in row [ appears.

Step 2. Consider a different totally monotone ma-
trix M’ such that Vi, m;;=d((n~1-1i)
mod n, 2n—1~-7) mod n) for i<j<
i+n and m; ;= — oo for all other ;. Note
that the matrix M’ is simply M rotated
upside down, or equivalently, M flipped
horizontally and wvertically (see Fig. 4).
Such a rotation preserves the totally
monotone property: it is not possible to
have d <c¢ and b> a (which is the same

Fig. 4. The matrix from Fig. 1 {lipped horizontally and verti-
cally.
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as saying that it is not possible to have
a<b and ¢>d). Again, we use the al-
gorithm of [1] to find the leftmost maxi-
mum in each row of M’. But, the way we
have defined M’, the leftmost maximum
in row i of M’ is the rightmost maximum
mrown—1-—i of M. Therefore, we now
have the rightmost maximum in each row
of M. Let r; be the column in which the
rightmost maximum in row ; appears.

Step 3.For each row i, check all the entries
between m;, for other maxima in that
row.

3. Time complexity of the algorithm

Steps 1 and 2 take time O(n + 2n) =0(n) [1].
Clearly, all the row maxima have to be between
the leftmost and the rightmost maxima in that
row. Moreover, m, 1, = m;, . So, all that remains to
be proven is that Step 3 of the algorithm takes
O(n) time.

From the quadrangle inequality we know that
a+d>b+c (see Fig. 2). From this we derive the
following observations:

a < b implies c < d,
¢>d implies a > b,

Lemma 1. 7, < min{2n — 1, Ligq1)

Proof. Suppose r>min{2n—-1,/,,,}. Let x=
My =M, y=m =M and w=
M1, (see Fig. 5).

Since x is the maximum value for row i, 1t must
be true that y < x. Then by our first observation
Z<w, which contradicts the fact that z is the
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maximum for row i + 1. Thus, it must be true that
n<min{2n-1,/,,,}. O

Theorem 1. Step 3 of the Algorithm Compute-all-
farthest-neighbors takes O(n) time.

Proof. Let %, be the region between m;, and
m,,. By Lemma 1, Vi, j, i #j, %; and 2, cannot
overlap horizontally. Thus, each x-coordinate of
matrix M will be checked in at most one such
region during Step 3. Since the horizontal dimen-
sion of M is 2n—1, we need to check at most
2n—~1=0(n) entries of M. O

Before concluding this section, we note that
Lemma 1 also shows that if /f; denotes the number
of farthest neighbors of the /th vertex, then o
Ji<2n. Observe that there are convex polygons
for which ¥/Z¢ f,=2n. For example, put n -1
vertices on an arc such that there are vertices at
both endpoints of the arc and the size of the arc is
# of a circle. Let the center of the circle be the nth
vertex. The center has n — 1 farthest neighbors,
each endpoint of the arc has 2 farthest neighbors,
and each of the other n — 3 points on the arc has
1 farthest neighbor. The sum is (n=1+2x2+
(n—=3)x1=2n. In general, since £/} f <2n,
there are at most n symmetric farthest neighbor
pairs. The polygon described above again achieves
the upper bound of 7.

4. An application: all symmetric farthest neighbors
of a simple polygon

It is well known that the farthest neighbor of
any point inside a convex region is one of the
vertices on the convex hull. Also, the convex hull
of a simple polygon can be found in O(n) time [3].
So, to find all symmetric farthest neighbors of a
simple polygon we first find the convex hull of the
simple polygon. Then, using the algorithm in Sec-
tion 2, we find all farthest neighbors of the convex
hull, and finally scan the list of vertices of the
convex hull to find which ones are Ssymmetric
farthest neighbors. Thus, all symmetric farthest
neighbors of a simple polygon can be found in
O(n) time. This settles a problem raised in [4].
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5. Open problems

The best known algorithm for finding all
farthest neighbors of a simple n-gon takes O(n
log(n)) time. It remains open whether this is an
optimal bound. In fact, the best known algorithm
for finding all farthest neighbors even of a simple
unimodal n-gon requires O(n log(n)) time.
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