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Abstract. We show that optimal alphabetic binary trees can be con-
structed in O(n) time if the elements of the initial sequence are drawn
from a domain that can be sorted in linear time. We describe a
hybrid algorithm that combines the bottom-up approach of the original
Hu-Tucker algorithm with the top-down approach of Larmore and Przy-
tycka’s Cartesian tree algorithms. The hybrid algorithm demonstrates
the computational equivalence of sorting and level tree construction.

1 Introduction

Binary trees and binary codes are fundamental concepts in computer science,
and have been intensively studied for over 50 years. In his 1952 paper, Huffman
described an algorithm for finding an optimal code that minimizes the average
codeword length [1]. Huffman coding is a classic, well known example of binary
tree or binary code optimization, and has led to an extensive literature [2]. The
problem of computing an optimal Huffman code has Θ(n log n) time complexity,
but requires only O(n) time if the input is already sorted.

The problem of finding an optimal search tree where all data are in the leaves,
also called an optimal alphabetic binary tree (OABT), was originally proposed
by Gilbert and Moore [3], who give an O(n3) time algorithm based on dynamic
programming, later refined by Knuth to O(n2) [4]. The first of several related
O(n log n) time algorithms, the Hu-Tucker algorithm (HT), was discovered in
1971 [5]. Similar algorithms with better performance in special cases, though all
O(n log n) time in the general case, are given in [6–9]. Different proofs of the
correctness of these algorithms appear in [10–13].

We give a new algorithm for the OABT problem that takes advantage of
additional structure of the input to allow construction of an OABT in O(n)
time if weights can be sorted in linear time, e.g., if the weights are all integers in
a small range. Our algorithm combines the bottom-up approach of the original
� Research supported by NSF grant CCR-0312093.
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Hu-Tucker algorithm [5] with the top-down approach of Larmore and Przytycka’s
Cartesian tree algorithms [9].

Klawe and Mumey reduced sorting to Hu-Tucker based algorithms, resulting
in a Ω(n log n) lower bound for such level tree based solutions [8]. Larmore and
Przytycka related the complexity of the OABT problem to the complexity of
sorting, and gave an O(n

√
log n ) time algorithm for the integer case when sorting

requires only O(n) time [9]. Their Cartesian tree based algorithm provided new
insight into the structure of the OABT problem, which we elaborate here. Our
new algorithm requires sorting O(n) items, which together with the reduction
given by Klawe and Mumey [8], shows the computational equivalence of sorting
and level tree construction.

2 Problem Definition and Earlier Results

Recall the definitions used in the Hu-Tucker algorithm [11]. We wish to construct
an optimal alphabetic tree T from an initial ordered sequence of weights S =
{s1, . . . , sn}, given as n square nodes. The square nodes will be the leaves of T ,
and retain their linear ordering. An optimal tree has minimal cost subject to
that condition, defining the cost of tree T as:

cost(T ) =
n∑

i=1

sili

where li is the distance from si to the root.
The first phase of the Hu-Tucker algorithm combines the squares to form

internal nodes of a level tree. The second and third phases use the level tree
to create an OABT in O(n) time. The internal nodes created during the first
(combination) phase are called circular nodes, or circles, to differentiate them
from the square nodes of the original sequence. The weight of a square node
is defined to be its original weight in the initial sequence, while the weight of
a circular node is defined to be the sum of the weights of its children. The
level tree is unique if there are no ties, or if a consistent tie-breaking scheme
(such as the one given in [12]) is adopted. Algorithms that use the level tree
method produce the same level tree, although the circular nodes are computed in
different orders. The (non-deterministic) level tree algorithm (LTA) given below
generalizes those algorithms. As an example, the Hu-Tucker algorithm is an LTA
where the circular nodes are constructed in order of increasing weight.

We remark that circular nodes have also been called packages [9], crossable
nodes [8], and transparent nodes [12].

The index of each square node is its index in the initial sequence, and the
index of any node of the level tree is the smallest index any leaf descendant. We
will refer to square nodes as si, circular nodes as ci and nodes in general as vi,
where i is the index of the node. By an abuse of notation, we also let vi denote
the weight of the node vi. If two weights are equal, we use indices as tie-breakers.
See [12] for the detailed description of this tie-breaking scheme.
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Initially, we are given the sequence of items which are all square nodes. As
the algorithm progresses, nodes are deleted and circular nodes are inserted into
the node sequence.

Definition 1. Two nodes in a node sequence are called a compatible pair if all
nodes between them are circular nodes. We write (va, vb) to represent the pair
itself, and also, by an abuse of notation, the combined weight of the pair, va +vb.

Definition 2. A compatible pair of nodes (vb, vc) is a locally minimum compat-
ible pair, written lmcp(vb, vc), when the following is true: va > vc for all other
nodes va compatible with vb and vb < vd for all other nodes vd compatible with
vc. By an abuse of notation, we will use lmcp(vb, vc) to refer to the pair of nodes
and also to their combined weight.

2.1 The Hu-Tucker Algorithm and LTA

We now describe the Hu-Tucker Algorithm [5]. Define Combine(va, vb) to be
the operation that deletes va and vb from S and returns the new circular node
ca = (va, vb). (Note that if va is a circular node, then the new node will have the
same name as its left child, but that will not cause confusion in the algorithm
since the child will be deleted from the node sequence.)

Hu-Tucker Algorithm returns the OABT for S = {s1, . . . , sn}.
1. While S contains more than one node:

1.1. Let (va, vb) be the least weight compatible pair in S.
1.2. Insert ca = Combine(va, vb) into S at the same position as va.

2. Let c∗ be the single circular node remaining in S.
3. For each 1 ≤ i ≤ n, let di be the depth of si in the tree rooted at c∗.
4. Let T be the unique alphabetic tree whose leaves are s1, . . . sn such that, for

each i, the depth of si in T is di.
5. Return T.

The tree rooted at c∗ is the level tree of the original sequence. The level tree
can be constructed by combining locally minimal compatible pairs in any order.
Thus, we generalize HT to the level tree algorithm (LTA) as follows:

Level Tree Algorithm(LTA) returns the OABT for S = {s1, . . . , sn}.
1. While S contains more than one node:

1.1. Let (va, vb) be any lmcp in S.
1.2. Insert ca = Combine(va, vb) into S.

2. Let c∗ be the single node remaining in S.
3. For each 1 ≤ i ≤ n, let di be the depth of si in the tree rooted at c∗.
4. Let T be the unique alphabetic tree whose leaves are s1, . . . sn such that, for

each i, the depth of si in T is di.
5. Return T .

In the insertion step of LTA, namely step 1.2 above, the new circular node ca

is placed in the position vacated by its left child. However, LTA gives the correct
level tree if ca is placed anywhere between leftWall(ca) and rightWall(ca), where
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leftWall(ca) is the nearest square node to the left of ca whose weight is greater
than ca, and rightWall(ca) is the nearest square node to the right of ca whose
weight is greater than ca. We will place fictitious infinite squares s0 and s∞ at
either end of the initial sequence, as described in Section 2.2, so leftWall(ca) and
rightWall(ca) are always defined. The choices in LTA do not alter the level tree,
but may change the order in which the circular nodes are computed [6–8].

LTA consists of n − 1 iterations of the main loop. Its time complexity is
dominated by the amortized time to execute one iteration of this loop. The Hu-
Tucker algorithm takes O(n log n) to construct the level tree, because it requires
O(log n) time to find the minimum compatible pair and update the structure.

Since the number of possible level trees on a list of length n is 2Θ(n log n),
the time complexity of LTA, in the decision tree model of computation, must be
Ω(n log n) in general. Our algorithm, also a deterministic version of LTA, makes
use of O(n)-time sorting for integers in a restricted range, and takes O(n) time
to construct the OABT, provided all weights are integers in the range 0 . . . nO(1).

In our algorithm, we do not necessarily actually insert a circular node into
the node sequence. Instead, we make use of data structures which are associated
with certain parts of the sequence, which we call mountains and valleys (see
Section 2.2). Each circular node is virtually in the correct position, and our data
structures ensure that we can always find a pair of nodes which would have been
a locally minimal compatible pair if the nodes had actually been inserted.

During the course of the algorithm, nodes can be moved from one data struc-
ture to another before being combined, and nodes are also sorted within data
structures. We achieve overall linear time by making sure that the combined time
of all such steps amortizes to O(1) per node, and that the next locally minimal
compatible pair can always be found in O(1) time.

The contribution of this paper is that by restricting the Cartesian tree (see
Section 2.3) to mountains we reduce the complexity of the integer algorithm
given in [9] from O(n

√
log n) to linear.

2.2 Mountains and Valleys

Any input sequence contains an alternating series of pairwise local minima (the
lmcps) and local maxima, which we call mountains. It is the mountains and their
structure that enable us to relocate each new circle in constant amortized time.

“Dual” to the definition of locally minimal compatible pair, we define:

Definition 3. A compatible pair of square nodes (sd, se) is a locally maximum
adjacent pair if its weight is greater than all other compatible pairs containing
either element.

Definition 4. A mountain is the larger of a locally maximum adjacent pair of
nodes in the initial weight sequence. If node si is a mountain, we also label it Mi.

We extend the initial sequence S by adding two “virtual” mountains s0 = M0

and s∞ = M∞ of infinite weight to the ends. Write S+ for the resulting extended
weight sequence. The virtual mountains are never combined, but are only for
notational convenience, giving us a uniform definition of “valley” in S+.
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Definition 5. A valley is a subsequence of the initial weights between and in-
cluding two adjacent mountains in the extended weight sequence S+. We label
the valley formed by mountains Mi and Mj as V (Mi, Mj). The top of valley
V (Mi, Mj) is its minimum mountain min{Mi, Mj}, while the bottom is its lmcp.

Valleys (or the equivalent easy tree [9]) are a basic unit of the combination
phase. All nodes within a single valley can be combined in linear time (see Sec-
tion 3). During the combination phase of our algorithm, we repeatedly compute
the minimum compatible pair in each valley; As nodes combine, this pair may
not be an lmcp. To handle this situation, we first generalize locally minimum
compatible pair to apply to any subsequence.

Definition 6. Let Sp
i = (vi, vj , . . . , vp) be a subsequence of nodes. Then the

minimum compatible pair of Sp
i , written mcp(i, p), is the compatible pair of

minimum weight: mcp(i, p) = min
{
(va, vd)| i ≤ a < d ≤ p

}

Note that if mcp(i, p) does not contain either vi or vp, it must be an lmcp.
That is, the local minimum in the subsequence is also a local minimum in the
full sequence because we must see a full ‘window’ of four nodes in order to apply
the definition of lmcp. If mcp(i, p) includes either end, we cannot do so. This
fact motivates the use of valleys in our algorithm, and the need to distinguish
mountains for special handling.

2.3 Cartesian Trees

The Cartesian tree data structure is originally described in [14]. Larmore and
Przytycka base their OABT algorithms on Cartesian trees over the entire input
sequence [9], but here we will limit the tree to contain only mountains. We
recursively define the Cartesian tree of any sequence of weights:

Definition 7. The Cartesian tree for an empty sequence is empty. The root of a
Cartesian tree for a non-empty sequence is the maximum weight, and its children
are the Cartesian trees for the subsequences to the right and left of the root.

We construct the Cartesian tree of the sequence of mountains. We label mountain
Mi’s parent in the Cartesian tree as p(Mi).

2.4 Algorithm Overview

At each phase of our algorithm, nodes in every valley are combined independently
as much as possible. Any new circular node which is greater than the top of its
valley is stored in a global set U for later distribution.

When no more combinations are possible, we remove all mountains which
have fewer than two children in the Cartesian tree (that is always more than
half the mountains) and move the contents of the global set of circles U to sets
associated with the remaining mountains. As mountains are removed, their asso-
ciated sets are combined and sorted to facilitate the next round of combinations.
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3 Single Valley LTA

This section gives an LTA for a single valley containing only one lmcp, to improve
the reader’s intuition. We use a queue of circles in each valley to help find each
new lmcp in turn. We label this queue Qf,g for valley V (Mf , Mg). Rather than
adding the circles back into the sequence, we put them into the queue instead.
For purposes of operation Combine, we consider the queue to be a part of the
sequence, located at the index of its initial circle.

Single Valley LTA computes an optimal level tree in linear time since
constant work is performed for each iteration. Only the main loop differs from
the general LTA given above, so we omit steps 2–5.

Single Valley LTA for S+ containing single valley V (M0, M∞).
1. While the sequence S contains more than one node:

1.1. Let lmcp(va, vb) be the result of Valley MCP for valley V (M0, M∞).
1.2. Add ca = Combine(va, vb) to the end of Q0,∞.

A little bookkeeping helps us determine each lmcp in constant time. We only
need to consider the six nodes at the bottom of the valley in order to find the
next lmcp. These six nodes are the valley’s active nodes. Let the bottom two
nodes on Qi,j be cx and cy, if they exist, where cx < cy. Any nodes that do not
exist (e.g. the queue contains only one node) are ignored.

Subroutine Valley MCP returns mcp(i, j) for valley V (Mi, Mj).
1. Let sa be the square left adjacent to Qi,j.
2. Let sf be the square right adjacent to Qi,j .
3. Return min

{
(sa, sa−1), (sa, cx), (cx, cy), (cx, sf ), (sf , sf+1), (sa, sf)

}
, ignor-

ing any pairs with missing nodes. In addition, we require a > i (otherwise
ignore sa−1), and f < j (otherwise ignore sf+1).1

Single Valley LTA relies on the fact that each lmcp must be larger than
the last within a valley. It also solves the Huffman coding problem in linear time
if the input is first sorted [11].

4 Multiple Valleys

Consider the operation of Single Valley LTA for an input sequence containing
more than one valley. We can independently combine nodes in each valley only
to a certain point. When the weight of a new circle is greater than one of the
adjacent mountains, that circle no longer belongs in the current valley’s queue,
and must be exported, to use the terminology of [9]. But the valley into which
the circle must be imported does not yet exist. Eventually, when the mountain
between them combines, two (or more) valleys will merge into a new valley. If
its adjacent mountains both weigh more than the new circle, this valley will
import the circle. Mountains separate valleys in a hierarchical fashion, concisely
represented by a Cartesian tree.
1 The additional restrictions ensure that we stay within the valley.
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4.1 Cartesian Tree Properties

For the k initial valleys separated by the nodes of this Cartesian tree, we have
k − 1 latent valleys that will emerge as mountains combine. Adding the initial
valleys as leaves to the Cartesian tree of mountains yields a full binary tree of
nested valleys with root V (M0, M∞). The internal nodes of this valley tree (the
mountains) precisely correspond to the merged valleys created as our algorithm
progresses. A mountain node branches in the Cartesian tree if its children are
both mountains. Our algorithm takes advantage of the following property of
Cartesian trees:

Property 1. Between each pair of adjacent leaf nodes in a Cartesian tree, there
is exactly one branching node. Proof is by construction.

This property implies that for k leaves, there are k − 1 branching nodes in a
Cartesian tree. A tree may have any number of additional internal nodes with a
single child, which we call non-branching nodes. Our algorithm handles each of
these three types of mountains differently, so we will take a closer look at their
local structure.

Consider three adjacent mountain Mh, Mi, and Mj, where h < i < j. We
can determine the type of mountain Mi in the Cartesian tree by comparing its
weight to the weights of its two neighbors. There are three cases:

– If Mh > Mi < Mj , then Mi is a leaf in the Cartesian tree.
– If Mh < Mi > Mj , then Mi is a branching node separating two active regions.
– If Mh < Mi < Mj , or Mh > Mi > Mj, then Mi is a non-branching node

and the top of the valley separating Mi and its larger neighbor.

An active region is the set of all the valleys between two adjacent branching
nodes. During execution of our algorithm, the active regions of each iteration
will form single valleys in the next iteration. To bound the number of iterations
our algorithm must execute, we need one additional Cartesian tree property. Let
|C| be the number of nodes in tree C. As every non-empty binary tree C contains
between 1 and �|C|/2� leaves, with the help of Property 1 we have:

Property 2. Cartesian tree C contains fewer than |C|/2 branching nodes.

4.2 Filling a Valley

The structure of the mountains and valleys creates two transition points during
the combination phase in each valley. The first is the export of the first circle.
Before that point, all nodes stay within a valley and new circles are added to
its queue. After the first transition point, all new circles are exported until the
valley is eliminated. The removal of an adjacent mountain is the second transition
point, which merges the current valley with one or more of its neighbors. After
each combination, we maintain the following valley invariants needed by Valley
MCP. Each valley V (Mi, Mj) must contain:

– Two adjacent mountains.
– A possibly empty sorted queue of circles Qi,j , with all circles < min{Mi, Mj}.
– A cursor pointing into Qi,j , initialized to point to the front of the queue.
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– A possibly empty pairwise monotonic decreasing subsequence of squares to
the right of Mi.

– A possibly empty pairwise monotonic increasing subsequence of squares to
the left of Mj.

First, we note that while mcp(i, j) < min{Mi, Mj}, a valley is isolated and
we define the following subroutine Initial Fill to reach the first transition
point. We call this subroutine the first time we handle a new valley, whether
that valley appears in the initial sequence or after merging.

As new valleys are created, they will be prepopulated with a sorted queue
containing imported circles. We will use the cursor to help us insert newly created
circles into this queue in case it contains circles larger than the next lmcp.

Subroutine Initial Fill for valley V (Mi, Mj).
1. Find the initial lmcp(va, vb) in V (Mi, Mj).
2. While lmcp(va, vb) < min{Mi, Mj}:

2.1. Insert ca = Combine(va, vb) into Qi,j , advancing the cursor as needed.
2.2. Let lmcp(va, vb) be the result of Valley MCP for valley V (Mi, Mj).

Notice that Initial Fill is nearly the same as Single Valley LTA. We
have added a stronger condition on the while loop, and we need to use the cursor
to merge new circles into the queue. We now show how to fill a valley:

Subroutine Fill Valley returns queue of circles Q for valley V (Mi, Mj).
1. Call Initial Fill for V (Mi, Mj).
2. Create empty queue Q.
3. While min{Mi, Mj} �∈ {

Valley MCP for V (Mi, Mj)
}
:

3.1. Add ca = Combine(Valley MCP for V (Mi, Mj)) to end of Q.
4. Return Q.

After Fill Valley returns, the top of the valley, min{Mi, Mj}, is an element
of mcp(i, j), and we say that valley V (Mi, Mj) is full. Combining or otherwise
removing the minimum mountain requires merging valleys and reestablishing
the necessary valley invariants, and also handling the exported queue of circles.
For each mountain Mi, we will store the circles imported by its corresponding
latent valley in an unsorted set Ui, where cs ∈ Ui =⇒ Mi < cs < p(Mi). When
a new valley is created, this set will become its imported queue Q.

4.3 Merging Valleys

For valley V (Mi, Mj), mcp(i, j) is an lmcp if it does not contain Mi or Mj, since
nodes inside a valley, i.e., between the mountains, cannot be compatible with any
outside the valley (lemma 5 in [11]). However, the mountains themselves each
participate in two valleys, thus these nodes are compatible with other nodes
outside the single valley subsequence {Mi, . . . , Mj}.

First, consider a mountain Mi smaller than its neighbors Mh and Mj . Mi

must be a leaf in the Cartesian tree of mountains, and after adjacent valleys
V (Mh, Mi) and V (Mi, Mj) are full, Mi ∈ mcp(h, i) and Mi ∈ mcp(i, j). We are
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ready to merge these two valleys into V (Mh, Mj) by combining the mountain.
Note that mcp(h, j) = min

{
mcp(h, i), mcp(i, j)

}
, which will form an lmcp if it

does not contain Mh or Mj . To explain the combination of valleys, we start with
this leaf mountain case where Mh �∈ mcp(h, j) and Mj �∈ mcp(h, j).

Two Valley Case. When both valleys adjacent to leaf mountain Mi are full,
we merge them into a single new valley and establish the valley invariants needed
by Valley MCP. Subroutine Merge Two Valleys provides the bookkeeping
for the merge. The result is new valley V (Mh, Mj), ready to be filled. Merge
Two Valleys requires that both valleys are full, and so each contain at most
one node (square or circle) smaller than and compatible with Mi. In addition,
the lmcp may not contain two mountains; this omitted three valley case is in
fact even simpler.

Subroutine Merge Two Valleys returns set of circles W for mountain Mi.
1. Create empty set W.
2. Let V (Mh, Mi) and V (Mi, Mj) be the valleys to the left and right of Mi.
3. Merge queues Qh,i and Qi,j , each of which contains at most one circle, to

create Qh,j. Initialize a new cursor to point to the front of Qh,j.
4. Sort Ui, the imported circles for the new valley, and add to the end of Qh,j .
5. Find the smallest node vmin compatible with Mi from among the only three

possible: the front of Qh,j, or the squares left or right adjacent to Mi.
6. Let circle cm = Combine(vmin, Mi), assuming vmin is to the left of Mi.
7. Create new valley V (Mh, Mj) with Qh,j, removing Mi, Ui, V (Mh, Mi) and

V (Mi, Mj) from further consideration.
8. If circle cm < min{Mh, Mj} then:

8.1. Insert cm into Qh,j , advancing the cursor as needed.
else:

8.2. Add cm to W.
9. Return W.

4.4 Removing Non-branching Mountains

In this section we explain the removal of non-branching mountains. These moun-
tains are adjacent to one larger and one smaller neighbor, and lie between a
branching mountain and a leaf mountain, or at either end of the sequence.

For example, consider valley V (Mi, Mj), where Mi < Mj . Once V (Mi, Mj)
is full, we remove mountain Mi by either combining it or turning it into a
normal square. When Mi no longer separates its adjacent valleys, we merge
them into one. This process continues repeatedly until a single valley separates
each adjacent branching and leaf mountain.

Since a full valley contains at most one node smaller than the minimum
mountain Mi, we need to consider three cases. Let Mh < Mi < Mj, and let sa

and sd be the squares left and right adjacent to Mi, respectively.

1. The filled valley has an empty queue and no square smaller than Mj . Then
Mi is no longer a mountain, as sa < Mi < sd. We make Mi into a normal
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square si by removing the mountain label. Square si becomes part of the
pairwise monotonic increasing sequence of squares to the left of Mj.

2. The filled valley contains a single square sd smaller than Mi. So sd < Mi <
vb for all vb compatible with sd. If sa > sd, then Mi and sd must form
lmcp(Mi, sd). Combining lmcp(Mi, sd) lets us connect the pairwise mono-
tonic increasing subsequence of squares to the left of Mi with the subse-
quence to the left of Mj , forming a single pairwise increasing subsequence.
Otherwise, we can convert Mi into a normal square node as in the case above.

3. The filled valley contains a single circle cd. This is case is similar to the
previous case, but may require that we convert cd into a pseudo-square. We
can treat this circle as though it were square because it is smaller than either
neighbor and must combine before its transparency has any effect.

Subroutine Remove Mountain removes non-branching, internal nodes from
the Cartesian tree. Without loss of generality, assume that the left adjacent
mountain Mh < Mi, while the right adjacent mountain Mj > Mi.

Subroutine Remove Mountain returns set of circles W for mountain Mi.
1. Create empty set W.
2. Let (Mi, va) = mcp(i, j).
3. If (Mi, va) is an lmcp then:2

3.1. Add ci = Combine(Mi, va) to W.
else:

3.2. Rename Mi to si and remove Mi from other data structures.
3.3. If Qi,j is not empty, convert remaining circle into a pseudo-square.

4. Add Ui to Uh.
5. Create new valley V (Mh, Mj), removing Ui, V (Mh, Mi) and V (Mi, Mj).
6. Return W.

When Remove Mountain completes, mountain Mi has been removed from
the sequence and many valley invariants established for the newly created valley.
The missing invariants involve Qh,j, which we will postpone creating until we
have merged all the valleys between adjacent branching mountains. All that is
needed is to sort Uh, which occurs in subroutine Merge Two Valleys.

5 K Valley LTA

Let Ĉ be the Cartesian tree formed from the mountains in the original sequence.
Each node of Ĉ separates two valleys in that sequence. As mentioned earlier,
we call a non-leaf node in Ĉ with a single child a non-branching node. Our final
algorithm shrinks Ĉ by removing at least half of the nodes at each iteration.
When all the nodes of Ĉ have been combined, we compute the level tree using
Initial Fill. The input sequence S+ is the extended sequence created by adding
two nodes of infinite weight to either end of the original sequence S.

K Valley LTA computes level tree for S+.

1. Compute the Cartesian tree Ĉ from the k − 1 mountains in the original S.
2. Create a global empty set U, and an empty set Ui for each mountain Mi.
2 (Mi, va) is an lmcp if and only if sb > va for the square node sb to the left of Mi.
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3. While Ĉ contains more nodes:
3.1. For each valley V (Mi, Mj) in the current sequence:

3.1.1. Add Q = Fill Valley for V (Mi, Mj) to U.
3.2. For each non-branching mountain Mi in Ĉ:

3.2.1. Add W = Remove Mountain for Mi to U.
3.2.2. Delete all the mountains combined in the previous step from Ĉ.

3.3. Use Static Tree Set Union (see below) to place U ’s circles into the Ui.
3.4. For each leaf mountain Mj in Ĉ:

3.4.1. Add W = Merge Two Valleys for Mj to U.
4. Use the sorted set from the final step 3.3 to create Q0,∞ and call Initial

Fill for V (M0, M∞). The final circle remaining between M0 and M∞ is the
root of the level tree.

Static Tree Set Union (STSU) is a specialized version of the Union-Find prob-
lem that applies to a tree, and computes a sequence of link and find operations
in linear time [15]. We can use this algorithm to find the set Ui in which each
circle in global set U belongs in linear time if we first sort U together with the
mountains remaining in Ĉ.

We apply the approach described in [9], first initializing the family of named
sets with a singleton set for each node of Ĉ. We attach each circle of U to Ĉ as
a child of its exporter, the argument of the call to Remove Mountain where it
was created. Next, we sort all the nodes of this extended tree by weight to create
sorted list L′. Processing nodes of L′ in increasing weight order, we execute a
sequence of link and find operations in O(n) time as follows:

– If the current node is Mj, perform link(Mj), which adds the contents of
the set containing Mj to the set containing p(Mj), then deletes the old set
containing Mj.

– If the current node is circle cm, perform find(cm), obtaining the set containing
mountain p(cm). That set is named with the minimum ancestor mountain
Mj in Ĉ that dominates cm. Determine whether cm is to the right or left of
Mj . Add cm to the Ui of the mountain child on that side of Mj .

6 Complexity

The algorithm is dominated by sorting, which occurs in steps 3.3 and 3.4.1 We
now show that the algorithm sorts only O(n) nodes.

Lemma 1. The STSU in step 3.3 sorts O(n) nodes altogether.

Proof. Initially |Ĉ| = k < n
2 . By Property 2, we remove at least half the moun-

tains at each iteration of step 3. Thus, over all iterations, at most 2k < n
mountains are sorted. No circle is sorted more than once by step 3.3, since set
U contains only newly created circles. The total of all circles sorted by step 3.3
is therefore less than n. Over all steps 3.3, we sort a total of less than 2n items.

Lemma 2. Step 3.4.1 sorts O(n) nodes altogether.

Proof. Each Ui is sorted at most once. Each circle appears in only one Ui being
sorted, as it is moved to some Qa,b after sorting.
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Theorem 1. K Valley LTA sorts O(n) weights.

Proof. No other sorting is performed; apply lemmas 1 and 2.

Theorem 2. For weights taken from an input domain that can be sorted in
linear time, an optimal alphabetic binary tree can be constructed in O(n) time.

Proof. All other operations are linear in the size of the input. Proof follows from
Theorem 1 and the linear creation of the OABT from the level tree.

7 Conclusion

We have given an algorithm to construct optimal alphabetic binary trees in time
bounded by sorting. This algorithm shows that sorting and level tree construc-
tion are equivalent problems, and leads to an O(n) time solution to the integer
alphabetic binary tree problem for integers in the range 0 . . . nO(1).
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