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Abstract. Convex and submodular functions play an important role in many applications,
and in particular in combinatorial optimization. Here we study two special cases: convexity in one
dimension and submodularity in two dimensions. The latter type of functions are equivalent to the
well-known Monge matrices. A matrix V = {vi,j}i=n1,j=n2

i,j=0 is called a Monge matrix if for every

0 ≤ i < i′ ≤ n1 and 0 ≤ j < j′ ≤ n2 we have vi,j + vi′,j′ ≤ vi,j′ + vi′,j . If inequality holds in the
opposite direction, then V is an inverse Monge matrix (supermodular function). Many problems,
such as the traveling salesperson problem and various transportation problems, can be solved more
efficiently if the input is a Monge matrix.

In this work we present testing algorithms for the above properties. A testing algorithm for a
predetermined property P is given query access to an unknown function f and a distance parameter
ε. The algorithm should accept f with high probability if it has the property P and reject it with
high probability if more than an ε-fraction of the function values should be modified so that f
obtains the property. Our algorithm for testing whether a 1-dimensional function f : [n] → R is
convex (concave) has query complexity and running time of O ((logn)/ε). Our algorithm for testing
whether an n1 ×n2 matrix V is a Monge (inverse Monge) matrix has query complexity and running
time of O ((logn1 · logn2)/ε).
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1. Introduction. Convex functions and their combinatorial analogues, submod-
ular functions, play an important role in many disciplines and applications, including
combinatorial optimization, game theory, probability theory, and electronic trade.
Such functions exhibit a rich mathematical structure (see Lovász [Lov83]), which of-
ten makes it possible to efficiently find their minimum [GLS81, IFF01, Sch00] and
thus leads to efficient algorithms for many important optimization problems. Convex
functions over discrete domains are defined as follows.

Definition 1 (convex and concave). Let f be a function defined over a discrete
domain X. The function f is convex if for all x, y ∈ X and for all 0 ≤ α ≤ 1 such that
αx+(1−α)y ∈ X, it holds that f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y). The function
f is concave if for all x, y ∈ X and for all 0 ≤ α ≤ 1 such that αx+ (1− α)y ∈ X, it
holds that f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y).

Submodular functions are defined as follows: Let I = I1× I2× · · ·× Id, d ≥ 2, be
a product space where Iq ⊆ R. In particular, we are interested in discrete domains
Iq = {0, . . . , nq}. The join and meet operations are defined for every x, y ∈ I as
follows:

(x1, . . . , xd) ∨ (y1, . . . , yd)
def
= (max{x1, y1}, . . . ,max{xd, yd})
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and

(x1, . . . , xd) ∧ (y1, . . . , yd)
def
= (min{x1, y1}, . . . ,min{xd, yd}) ,

respectively.

Definition 2 (submodularity and supermodularity). A function f : I → R is
submodular if for every x, y ∈ I, f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y). The function f
is supermodular if for every x, y ∈ I, f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y).

Certain subclasses of submodular functions are of particular interest. One such
subclass is that of submodular set functions, which are defined over binary domains.
That is, Iq = {0, 1} for every 1 ≤ q ≤ d, and so each x ∈ I corresponds to a subset
of {1, . . . , d}. Such functions are used, for example, in the scenario of combinatorial
auctions on the Internet (e.g., [dVV00, LLN01]).

Another important subclass is the class of Monge functions, which are obtained
when the domain is large but the dimension is d = 2. Since such functions are 2-
dimensional, it is convenient to represent them as 2-dimensional matrices, which are
referred to as Monge matrices. When the function is a 2-dimensional supermodular
function the corresponding matrix is called an inverse Monge matrix .

The first problem that was shown to be solvable more efficiently if the underly-
ing cost matrix is a Monge matrix is the classical Hitchcock transportation problem
(see Hoffman [Hof63]). Since then it has been shown that many other combinatorial
optimization problems can be solved more efficiently in this case (e.g., weighted bi-
partite matching and NP-hard problems such as the traveling salesperson problem).
See [BKR96] for a comprehensive survey on Monge matrices and their applications.

1.1. Testing convexity and submodularity. In this paper we approach the
questions of convexity and submodularity from within the framework of property
testing [RS96, GGR98]. (For surveys on property testing see [Ron01, Fis01].) Let f
be a fixed but unknown function, and let P be a fixed property of functions (such as
the convexity or submodularity of a function). A testing algorithm for the property
P should determine, by querying f , whether f has the property P or whether it is
ε-far from having the property for a given distance parameter ε. By ε-far we mean
that more than an ε-fraction of the values of f should be modified so that f obtains
the desired property P.

Our results. We present efficient testing algorithms for discrete convexity in one
dimension and for Monge matrices. Specifically, we do the following:

• We describe and analyze an algorithm that tests whether a function f : [n]→ R

is convex (concave). The running time of this algorithm is O (log n/ε).

• We describe and analyze a testing algorithm for Monge and inverse Monge ma-
trices whose running time is O ((log n1 · log n2)/ε) when given an n1×n2 matrix.

Furthermore, the testing algorithm for inverse Monge matrices can be used to
derive a testing algorithm, with the same complexity, for an important subfamily
of Monge matrices called distribution matrices. A matrix V = {vi,j} is said to be
a distribution matrix if there exists a nonnegative density matrix D = {di,j} such
that every entry vi,j in V is of the form vi,j =

∑
k≤i

∑
�≤j dk,�. In other words,

the entry vi,j corresponds to the cumulative density of all entries dk,� such that
k ≤ i and � ≤ j.

In both cases the complexity of the algorithms is linear in 1/ε and polylogarithmic in
the size of the domain.
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1.2. Techniques.

Convexity in one dimension. We start with the following basic observation: A
function f : [n]→ R is convex if and only if for every 1 ≤ i ≤ n−1, (f(i+1)−f(i))−
(f(i) − f(i − 1)) ≥ 0. Given this characterization, consider the difference function
f ′, which is defined as f ′(i) = f(i)− f(i− 1). The function f ′ can be viewed as the
discrete analogue of the first derivative of f . By the above observation we have that f
is convex if an only if f ′ is monotone nondecreasing. Hence, a tempting approach for
testing whether f is convex would be to test whether f ′ is monotone nondecreasing,
where this can be done in time O(log n/ε) [EKK+00, BRW99, DGL+99].

Unfortunately, this approach does not work. There are functions f that are very
far from convex, but their difference function f ′ is very close to monotone.1 Therefore,
instead of considering only consecutive points i, i+1, we consider pairs of points i, j ∈
[n] that are not necessarily consecutive. More precisely, we select intervals {i, . . . , j}
of varying lengths and check that for each interval selected, certain constraints are
satisfied. If f is convex, then these constraints are satisfied for every interval. On
the other hand, we show that if f is ε-far from convex, then the probability that we
observe a violation of some constraint is sufficiently large.

Monge matrices. As stated above, it is convenient to represent 2-dimensional sub-
modular functions as 2-dimensional Monge matrices. Thus a function f : {0, . . . , n1}×
{0, . . . , n2} → R can be represented as the matrix V = {vi,j}i=n1,j=n2

i,j=0 , where vi,j =
f(i, j). Observe that for every pair of indices (i, j′), (i′, j) such that i < i′ and j < j′

we have that (i, j′) ∨ (i′, j) = (i′, j′) and (i, j′) ∧ (i′, j) = (i, j). It follows from Defi-
nition 2 that V is a Monge matrix (f is a 2-dimensional submodular function) if and
only if

∀i, j, i′, j′ s.t. i < i′, j < j′ : vi,j + vi′,j′ ≤ vi,j′ + vi′,j

and V is an inverse Monge matrix (f is a 2-dimensional supermodular function) if
and only if

∀i, j, i′, j′ s.t. i < i′, j < j′ : vi,j + vi′,j′ ≥ vi,j′ + vi′,j .

That is, in both cases we have a constraint for every quadruple vi,j , vi′,j′ , vi,j′ , vi′,j
such that i < i′ and j < j′.2 Our algorithm selects such quadruples according to
a particular (nonuniform) distribution and verifies that the constraint is satisfied for
every quadruple selected. Clearly, the algorithm always accepts Monge matrices. The
main thrust of the analysis is in showing that if the matrix V is far from being Monge,
then the probability of obtaining a “bad” quadruple is sufficiently large.

A central building block in proving the above is the following combinatorial prob-
lem, which may be of independent interest. Let C be a given matrix, possibly con-
taining negative values, and let R be a subset of positions in C. We are interested
in refilling the entries of C that reside in R with nonnegative values such that the
following constraint is satisfied: for every position (i, j) that does not belong to R,
the sum of the modified values in C that are below3 (i, j) is the same as in the original

1In particular, consider the function f such that for every i ≤ n/2, f(i) = i, and for i > n/2,
f(i) = i− 1. In other words, f ′(i) = 1 for every i except i = n/2, where f ′(i) = 0. Then f ′ is very
close to monotone, but it is not hard to verify that f is far from convex.

2It is easy to verify that for all other i, j, i′, j′ (with the exception of the symmetric case where
i′ < i and j′ < j), the constraint holds trivially (with equality).

3We denote the lower left position of the matrix C by (0, 0).
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matrix C. That is, the sum of the modified values in entries (k, �) such that k ≤ i
and j ≤ � remains as it was.

We provide sufficient conditions on C and R under which the above is possible
and describe the corresponding procedure that refills the entries of C that reside in
R. Our starting point is a simple special case in which R corresponds to a submatrix
of C. In such a case it suffices that for each row and each column in R, the sum
of the corresponding entries in the original matrix C is nonnegative. Under these
conditions a simple greedy algorithm can modify C as required. Our procedure for
general subsets R is more involved but uses the submatrix case as a subroutine.

1.3. Further research. We suggest the following open problems. First, it re-
mains open to determine the complexity of testing discrete convexity (concavity)
when the dimension d of the input domain is greater than 1 and for testing submod-
ular (supermodular) functions when the dimension d is greater than 2. Note that
though submodular functions can be viewed as a certain interpretation of convexity
in dimensions d ≥ 2, they do not necessarily satisfy Definition 1.

It seems that our algorithm for testing Monge matrices and its analysis can be
extended to work for testing the special case of distribution matrices of dimension d >
2, where the complexity of the resulting algorithm is O((

∏d
q=1 log nq)/ε). However,

as opposed to the d = 2 case, where Monge matrices are only slightly more general
than distribution matrices, for d > 2 Monge matrices are more expressive. Hence it
is not immediately clear how to adapt our algorithm to testing Monge matrices in
higher dimensions.

It would also be interesting to find an efficient testing algorithm for the subclass
of submodular set functions, which are defined over binary domains.

Finally, in many optimization problems it is enough that the underlying cost
matrix is a permutation of a Monge matrix. In such cases it may be useful to test
whether a given matrix is a permutation of some Monge matrix or far from any
permuted Monge matrix.

Organization. The testing algorithm for convexity is described in section 2. The
remainder of the paper is dedicated to testing Monge matrices. In section 3 we describe
several building blocks that will be used by our testing algorithm for Monge matrices.
In section 4 we describe a testing algorithm for Monge matrices whose complexity is
O(n/ε), where we assume for simplicity that the matrix is n × n. Building on this
algorithm and its analysis, in section 5 we present a significantly faster algorithm
whose complexity is O

(
(log2 n)/ε

)
. We conclude this section with a short discussion

concerning distribution matrices.

2. Testing convexity in one dimension. As noted in the introduction, in the
case that the domain is X = [n] = {0, . . . , n}, we get the following characterization
for convexity, whose proof is included for completeness.

Claim 1. A function f : [n] → R is convex if and only if for all 1 ≤ i ≤ n − 1,
f(i)− f(i− 1) ≤ f(i+ 1)− f(i).

Proof. If f is convex, then in particular for x = i− 1, y = i+ 1, and α = 1/2 we
have αx + (1 − α)y = i−1

2 + i+1
2 = i. By Definition 1, f(i) ≤ 1

2f(i − 1) + 1
2f(i + 1),

or, equivalently, f(i)− f(i− 1) ≤ f(i+ 1)− f(i).
In the other direction, suppose that f(i) − f(i − 1) ≤ f(i + 1) − f(i) for every

1 ≤ i ≤ n− 1. Consider any x, y ∈ [n] and 0 < α < 1 such that z = α · x+ (1− α) · y
is an integer. Assume without loss of generality that x < y. Now we have that

f(y)−f(y−1) ≥ f(y−1)−f(y−2) ≥ · · · ≥ f(z+1)−f(z) ≥ f(z)−f(z−1) ≥ · · · ≥ f(x+1)−f(x).
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Then, since the differences are monotone nonincreasing, the average of the first
α(y− x) differences is greater than or equal to the average of the next (1−α)(y− x)
differences. Since z = y − α(y − x) = x+ (1− α)(y − x), we have that

(f(y)− f(y − 1)) + (f(y − 1)− f(y − 2)) + · · ·+ (f(z + 1)− f(z))

α(y − x)
(1)

≥ (f(z)− f(z − 1)) + (f(z − 1)− f(z − 2)) + · · ·+ (f(x+ 1)− f(x))

(1− α)(y − x)
.(2)

This is equivalent to (1− α)(f(y)− f(z)) ≥ α(f(z)− f(x)); that is, f(z) ≤ αf(x) +
(1− α)f(y) as required.

Denote by Ii,j the interval {i, i + 1, . . . , j} of points. Let mid = �(i+ j)/2� be
the midpoint of Ii,j .

Definition 3. For every 0 ≤ i < j ≤ n such that j − i > 7, we say that the
interval Ii,j is good with respect to f if the following holds:

f(i + 1) − f(i) ≤ f(mid− 1) − f(i + 1)

(mid− 1) − (i + 1)
≤ f(mid) − f(mid− 1) ≤ f(mid + 1) − f(mid)

≤ f(mid + 2) − f(mid + 1) ≤ f(j − 1) − f(mid + 2)

(j − 1) − (mid + 2)
≤ f(j) − f(j − 1).

Otherwise, we say that the interval is bad with respect to f . If j − i ≤ 7, then Ii,j
is good with respect to f if and only if the function f is convex over Ii,j.

In order to test if f is convex we test recursively if subintervals of I0,n are good.
Algorithm 1 (Test-Convex).
1. Repeat 2/ε times: Test-Interval(I0,n).
2. If all of the tests in step 1 accepted, then accept; otherwise, reject.
Procedure 1 (Test-Interval(Ii,j)).
1. Check that Ii,j is good with respect to f . If not, reject.
2. If j − i > 7, then: Uniformly at random call either Test-Interval(Ii,mid) or

Test-Interval(Imid+1,j), where mid = �(i+ j)/2�.
3. If the test in step 2 accepted, then accept; otherwise, reject.
Theorem 1. If f is convex, then Algorithm 1 always accepts, and if f is ε-far

from convex, then the algorithm rejects with a probability of at least 2/3.
Proof. For the sake of brevity, unless stated otherwise, when we say that an

interval is good, then we mean with respect to f . If f is convex, then all intervals
Ii,j are good, and hence Algorithm 1 accepts with probability 1. In order to prove
that if f is ε-far from convex, then the algorithm rejects with probability of at least
2/3, we prove the contrapositive statement. Assume that the algorithm accepts with
a probability greater than 1/3. We will show that f is ε-close to a convex function.

To this end we define a tree whose vertices correspond to all possible intervals Ii,j
that may be tested recursively in calls to Test-Interval(Ii,j). Specifically, the root of
the tree corresponds to I0,n. The children of the internal vertex corresponding to Ii,j
are the vertices corresponding to Ii,mid and Imid+1,j , where mid = �(i+ j)/2�. The
leaves of the tree correspond to the smallest intervals tested, that is, intervals Ii,j for
which j − i ≤ 7.

We say that an internal vertex in the tree is good if the corresponding interval is
good. We say that a leaf is good if its corresponding interval and all its ancestors are
good. Otherwise, the vertex (leaf) is bad. We say that a path from the root to a leaf
is good if all vertices along it are good. Otherwise, the path is bad. For each level
� in the tree, � = 0, . . . , log n, let B� be the subset of vertices in the �th level of the
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tree that are bad but whose ancestors are all good. Let B =
⋃

� B�, and let ε� be the
fraction of vertices in level � of the tree that belong to B�.

Subclaim 1. If Algorithm 1 accepts f with a probability greater than 1/3, then∑
� ε� ≤ ε.
Proof. Assume by contradiction that

∑
� ε� > ε. Observe that by the definition of

B, all leaves which are descendents of a vertex in B are bad, and every bad leaf either
belongs to B or has a single ancestor in B. Therefore, if

∑
� ε� > ε, then the fraction

of bad leaves is greater than ε. But in such a case, the probability that the algorithm
does not follow a bad path to a bad leaf (passing through a vertex in B) in any one of
its 2/ε iterations is at most (1− ε)2/ε < e−2 < 1/3. This contradicts our assumption
that the algorithm accepts with a probability greater than 1/3.

Hence we assume from now on that
∑

� ε� ≤ ε. Note also that in this case I0,n /∈ B.
We show how to modify f in at most ε·n places so that the resulting function, denoted
g, is convex. In particular, we shall modify the value of f on every bad interval Ii,j
whose corresponding vertex in the tree belongs to B. The value of g is defined to be
the same as the value of f on all points outside of these intervals. Since

∑
� ε� ≤ ε,

the total fraction of points modified is at most ε as required. Observe that by the
definition of the tree and B, for every two intervals whose corresponding vertices
belong to B, the intersection of the intervals is empty. Hence we can modify each one
of these intervals independently.

Let Ii,j be a bad interval corresponding to a vertex in B. We modify f on points
in Ii,j as follows:

• f(i), f(i+ 1), f(j − 1), and f(j) remain unchanged. That is, set g(i) = f(i),
g(i+ 1) = f(i+ 1), g(j − 1) = f(j − 1), and g(j) = f(j).

• For every t, i+1 < t < j− 1, set g(t) = f(i+1)+ f(j−1)−f(i+1)
(j−1)−(i+1) · (t− (i+1)).

Subclaim 2. Let Ii,j be a bad interval corresponding to a vertex in B. Then for
every i < t < j, g(t)− g(t− 1) ≤ g(t+ 1)− g(t).

Proof. By definition of B, the parent of Ii,j is good (the parent exists by our
assumption that I0,n �∈ B). Hence

f(i+ 1)− f(i) ≤ f(j − 1)− f(i+ 1)

(j − 1)− (i+ 1)
≤ f(j)− f(j − 1).(3)

By definition of g(·), g(i+1)−g(i) = f(i+1)−f(i), g(j)−g(j−1) = f(j)−f(j−1),

and for every i+ 1 < t ≤ j − 1, g(t)− g(t− 1) = f(j−1)−f(i+1)
(j−1)−(i+1) . Therefore, for every

i+1 < t < j− 1, g(t)− g(t− 1) = g(t+1)− g(t), and for both t = i+1 and t = j− 1,
we have g(t)− g(t− 1) ≤ g(t+ 1)− g(t) as required.

Subclaim 3. The function g is convex.
Proof. We shall first show that all intervals Ii,j corresponding to vertices in the

tree are good with respect to g, and from this we derive the convexity of g.
We start with the first part. Consider any such interval Ii,j whose corresponding

vertex in the tree is v. Let Anchor = {i, i+1,mid− 1,mid,mid+1,mid+2, j− 1, j}
be the set of points which participate in the definition of a good interval Ii,j . We will
show that the value of g on points p ∈ Anchor is such that the interval Ii,j is good
with respect to g. There are two cases:

1. The interval Ii,j is good with respect to f , and v does not have any ancestors
in B. If v also has no descendents in B, then it clearly remains good with
respect to g, since no modification is performed on any point in the interval,
and so g(t) = f(t) for every i ≤ t ≤ j. Otherwise, v has a descendent in B.
In this case, let p ∈ Anchor, let v′ be a descendent of v, and let Ii′,j′ denote
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the interval corresponding to v′. If i′ ≤ p ≤ j′, then by definition of the tree,
either p = i′ or p = i′ + 1 or p = j′ − 1 or p = j′. Therefore, even if v′ ∈ B
and the interval Ii′,j′ is modified, then by the definition of g we have that
g(p) = f(p) for every p ∈ Anchor. Thus Ii,j remains good with respect to g.

2. Either v ∈ B or v has an ancestor in B. In the former case, let v′ = v,
and in the latter case let v′ be the ancestor that v has in B. Let Ii′,j′ be
the corresponding interval of v′. By definition, Ii,j ⊆ Ii′,j′ . By Subclaim 2,
g(t) − g(t − 1) ≤ g(t + 1) − g(t) for every i′ < t < j′, and in particular for
every i < t < j. It follows that Ii,j is good with respect to g.

Hence all intervals corresponding to vertices in the tree are good with respect to g.
We now prove that for every 0 < t < n it holds that g(t)− g(t− 1) ≤ g(t+ 1)− g(t),
and thus g is convex. Let Ii,j be the smallest interval in the tree such that i < t < j.
If j − i ≤ 7, then we are done, since the goodness of Ii,j in this case means that
g is convex over the whole interval. Otherwise, either t = mid or t = mid + 1,
where mid = �(i+ j)/2�. To verify this, note that if this were not the case, then
either i < t < mid or mid + 1 < t < j. Hence t is contained in a smaller interval
in the tree, contradicting the minimality of Ii,j . But since Ii,j is good with respect
to g, g(mid) − g(mid − 1) ≤ g(mid + 1) − g(mid), and g(mid + 1) − g(mid) ≤
g(mid + 2) − g(mid + 1). Thus we are done with the proof of Subclaim 3, and
Theorem 1 follows.

3. Building blocks for our algorithms for testing inverse monge. From
this point on we focus on inverse Monge matrices. Analogous claims hold for Monge
matrices. We also assume for simplicity that the dimensions of the matrices are
n1 = n2 = n. In what follows we provide a characterization of inverse Monge matrices
that is exploited by our algorithms. Given any real valued matrix V = {vi,j}i,j=n

i,j=0 we

define an (n+ 1)× (n+ 1) matrix C ′
V = {ci,j}i,j=n

i,j=0 as follows:

• c0,0 = v0,0.
• For i > 0: ci,0 = vi,0 − vi−1,0.
• For j > 0: c0,j = v0,j − v0,j−1.
• And for every i, j > 0,

ci,j = (vi,j − vi−1,j)− (vi,j−1 − vi−1,j−1)

= (vi,j − vi,j−1)− (vi−1,j − vi−1,j−1).(4)

Let CV = {ci,j}i,j=n
i,j=1 be the submatrix of C ′

V that includes all but the first (0th)
row and column of C ′

V . The following two claims are well known and easy to verify.
We include their proofs for completeness.

Claim 2. For every 0 ≤ i, j ≤ n, vi,j =
∑i

k=0

∑j
�=0 ck,�.

Proof. The claim is proved by induction on i and j.

The base case i, j = 0 holds by definition of c0,0.

Consider any i > 0 and assume that the claim holds for every k < i, j = 0. We
prove it for i and for j = 0. By definition of ci,0 we have vi,0 = vi−1,0 + ci,0. By the

induction hypothesis, vi−1,0 =
∑i−1

k=0 ck,0, and the induction step follows. The claim
is similarly proved for every j > 0 and i = 0.

Finally, consider any i, j > 0 and assume that the claim holds for every k < i
and � ≤ j, and for every k ≤ i and � < j. We prove it for i, j. By definition of ci,j ,
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vi,j = vi−1,j + (vi,j−1 − vi−1,j−1) + ci,j . By the induction hypothesis,

vi−1,j + (vi,j−1 − vi−1,j−1) =

i−1∑
k=0

j∑
�=0

ck,� +

j−1∑
�=0

ci,�,

and the induction step follows.
Claim 3. A matrix V is an inverse Monge matrix if and only if CV is a nonneg-

ative matrix.
Proof. If V is an inverse Monge matrix, then, in particular, for every i, j ≥ 1 we

have that vi,j+vi−1,j−1 ≥ vi,j−1+vi−1,j , which is equivalent to the condition ci,j ≥ 0.
In the other direction, consider any two points (i, j) and (i′, j′) such that 0 ≤ i <

i′ ≤ n, 0 ≤ j < j′ ≤ n. Using Claim 2 we obtain

vi′,j′ − vi′,j − vi,j′ + vi,j

=

i′∑
k=0

j′∑
�=0

ck,� −
i′∑

k=0

j∑
�=0

ck,� −
i∑

k=0

j′∑
�=0

ck,� +

i∑
k=0

j∑
�=0

ck,�

=

i′∑
k=i+1

j′∑
�=j+1

ck,�.(5)

But CV is nonnegative, and therefore vi′,j′ − vi′,j − vi,j′ + vi,j ≥ 0 as required.
It follows from Claim 3 that if we find some entry of CV that is negative, then we

have evidence that V is not an inverse Monge matrix. However, it is not necessarily
true that if V is far from being an inverse Monge matrix, then CV contains many
negative entries. For example, suppose that CV is 1 in all entries except the entry
cn/2,n/2 which is −n2. Then it can be verified that V is very far from being an inverse
Monge matrix (this can be proved by showing that there are Θ(n2) disjoint quadruples
vi,j , vi′,j′ , vi,j′ , vi′,j in V such that from any such quadruple at least one value should
be changed in order to transform V into an inverse Monge matrix). However, as our
analysis will show, in such a case there are many submatrices in CV whose sum of
elements is negative. Thus our testing algorithms will sample certain submatrices of
CV and check that the sum of elements in each submatrix sampled is nonnegative.
We first observe that it is possible to check this efficiently.

Claim 4. Given access to V it is possible to check in time O(1) if the sum of
elements in a given submatrix A of CV is nonnegative. In particular, if the lower-left
entry of A is (i, j) and its upper-right entry is (i′, j′), then the sum of elements of A
is vi′,j′ − vi′,j−1 − vi−1,j′ + vi−1,j−1.

Proof. Assume that A = (ck,�)
k=i′,�=j′
k=i,�=j is a submatrix of CV . Recall that for any

q, p, we have vq,p =
∑q

k=0

∑p
�=0 ck,�. Thus the sum of elements of A is

i′∑
k=i

j′∑
�=j

ck,� =

i′∑
k=0

j′∑
�=j

ck,� −
i−1∑
k=0

j′∑
�=j

ck,�

=


 i′∑

k=0

j′∑
�=0

ck,� −
i′∑

k=0

j−1∑
�=0

ck,�


−


i−1∑

k=0

j′∑
�=0

ck,� −
i−1∑
k=0

j−1∑
�=0

ck,�




= (vi′,j′ − vi′,j−1)− (vi−1,j′ − vi−1,j−1) .

Therefore computing the sum of elements of any submatrix A of CV can be done by
checking only four entries in the matrix V .
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3.1. Filling submatrices. An important building block for the analysis of our
algorithms is a procedure for “filling in” a submatrix. That is, given constraints on
the sum of elements in each row and column of a given submatrix, we are interested
in assigning values to the entries of the submatrix so that these constraints are met.

Specifically, let a1, . . . , as and b1, . . . , bt be nonnegative real numbers such that∑s
i=1 ai ≥

∑t
j=1 bj . Then it is possible to construct an s× t nonnegative real matrix

T such that the sum of elements in column j is exactly bj and the sum of elements in

row i is at most ai. In the special case that
∑s

i=1 ai =
∑t

j=1 bj , the sum of elements
in row i will equal ai. In particular, this can be done by applying the following
procedure, which is the same as the one applied to obtain an initial feasible solution
for the linear-programming formulation of the transportation problem.

Procedure 2 (fill matrix T = (ti,j)
i=s,j=t
i,j=1 ).

Initialize āi = ai for i = 1, . . . , s and b̄j = bj for j = 1, . . . , t.
(In each of the following iterations, āi is an upper bound on what remains to be
filled in row i, and b̄j is what remains to be filled in column j.)
For j = 1,. . . ,t:

For i = 1,. . . ,s:
Assign to entry (i, j) the value x = min{āi, b̄j}.
Update āi = āi − x, b̄j = b̄j − x.

Claim 5. Procedure 2 fills the matrix T with nonnegative values ti,j such that

at the end of the procedure,
∑s

i=1 ti,j = bj for every j = 1, . . . , t, and
∑t

j=1 ti,j ≤ ai

for every i = 1, . . . , s. If initially
∑t

j=1 bj =
∑s

i=1 ai, then
∑t

j=1 ti,j = ai for every
i = 1, . . . , s.

Proof. Notice that initially āi = ai ≥ 0 and b̄j = bj ≥ 0. Thus when we update
āi = āi − x = āi −min{āi, b̄j} ≥ 0 and similarly b̄j = b̄j − x = b̄j −min{āi, b̄j} ≥ 0.
Therefore the āi’s and b̄j ’s are always nonnegative. Hence all values x filled in T are
nonnegative, since x = min{āi, b̄j} ≥ 0. Furthermore, after each such update the new
sum over the āi’s equals the old sum over the āi’s minus x, and a similar statement
holds for the sum over the b̄j ’s. Thus at all stages of the procedure,

∑s
i=1 āi ≥∑t

j=1 b̄j , and if initially
∑s

i=1 ai =
∑t

j=1 bj , then
∑s

i=1 āi =
∑t

j=1 b̄j .

We now show that the sum of elements in each column is as required. Observe
that the procedure fills the columns one by one. Therefore when we start to fill
column j we have b̄j = bj . Since

∑s
i=1 āi ≥

∑t
j=1 b̄j at this stage, and all āi’s are

nonnegative, necessarily,
∑s

i=1 āi ≥ b̄j = bj . Let 1 ≤ k ≤ s be the minimum integer

such that
∑k

i=1 āi ≥ bj . Then by definition of the procedure, for every i < k, the
entry (i, j) is filled with the value āi, and the entry (k + 1, j) is filled with the value

bj −
∑k

i=1 āi. The total is hence bj as required.

As for the rows, at all stages āi equals ai minus the sum of all elements filled so
far in row i. Therefore since āi ≥ 0, then the sum of elements in row i is at most
ai. Furthermore, if initially

∑s
i=1 ai =

∑t
j=1 bj , then the sum of elements in row i

will be exactly ai. To show this note that at the end of the procedure,
∑t

j=1 b̄j = 0,

since each b̄j equals bj minus the sum of all elements in column j, and we have shown

that the sum of elements in column j is bj . But
∑s

i=1 āi =
∑t

j=1 b̄j , and therefore

also
∑s

i=1 āi = 0 at the end. Since āi ≥ 0, this means that āi = 0. Hence the sum of
elements in row i must be ai.

4. A testing algorithm for inverse monge matrices. We first present a
simple algorithm for testing if a matrix V is an inverse Monge matrix whose running
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time is O(n/ε). In the next section we show a significantly faster algorithm that is
partly based on the ideas presented here. We may assume without loss of generality
that n is a power of 2. This is true since our algorithms probe the coefficients matrix
CV , and we may simply “pad” it by 0’s to obtain rows and columns that have lengths
which are powers of 2 and run the algorithm with ε← ε/4. We shall need the following
two definitions for both algorithms.

Definition 4 (subrows, subcolumns, and submatrices). A subrow in an n × n
matrix is a consecutive sequence of entries that belong to the same row. The subrow
((i, j), (i, j+1), . . . , (i, j+t−1)) is denoted by [ ]1,ti,j . A subcolumn is defined analogously

and is denoted by [ ]s,1i,j = ((i, j), (i+ 1, j), . . . , (i+ s− 1, j)). More generally, an s× t

submatrix whose bottom-left entry is (i, j) is denoted [ ]s,ti,j .

Definition 5 (legal submatrices). A subrow in an n×n matrix is a legal subrow
if it can result from bisecting the row of length n that contains it in a recursive manner.

That is, a complete (length n) row is legal, and if [ ]1,ti,j is legal, then so are [ ]
1,t/2
i,j and

[ ]
1,t/2
i,j+t/2. A legal subcolumn is defined analogously. A submatrix is legal if both its

rows and its columns are legal.

Note that the legality of a subrow [ ]1,ti,j is not dependent on the actual row i it
belongs to, but rather it depends on its starting position j and ending position j+t−1
within its row. An analogous statement holds for legal subcolumns. See also Figure 1
for an illustration of the concept of legal submatrices.
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2

1

1615141312111098765432 1

Fig. 1. An illustration of three legal submatrices. One of the legal submatrices is a square
(4 × 4) submatrix, and the other two are rectangular (but legal) submatrices. The 8 × 1 submatrix
on the top-right is a legal subcolumn.

Although a submatrix is just a collection of positions (entries) in an n×n matrix,
we talk throughout the paper about sums of elements in certain submatrices A of CV .
In this we mean the sum of elements of CV determined by the set of positions in A.

Definition 6 (good and bad submatrices). We say that a submatrix A of CV is
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good if the sum of elements in each row of A is nonnegative and the sum of elements
in each column of A is nonnegative. Otherwise, A is bad.

Definition 7 (good and bad points). We say that point (i, j) is good if all legal
square submatrices A of CV which contain (i, j) are good. Otherwise, the point is
bad.

Algorithm 2 (Test-Monge I).

1. Choose 8/ε points in the matrix CV and check that they are good.
2. If all points are good, then accept; otherwise, reject.

By Claim 4, it is possible to check in constant time that the sum of elements in
a subrow (subcolumn) of CV is nonnegative. Therefore, it is possible to test that an
s× s square submatrix A of CV is good in time Θ(s). Notice that every point in an
n× n matrix is contained in logn legal square submatrices. Hence the time required
to check whether a point is good is O(n)+O(n/2)+ · · ·+O(n/2i)+ · · ·+O(1) = O(n),
and the complexity of the algorithm is O(n/ε).

Theorem 2. If V is an inverse Monge matrix, then Algorithm 2 always accepts,
and if V is ε-far from being an inverse Monge matrix, then Algorithm 2 rejects with
probability at least 2/3.

Proof. The first part of the theorem follows directly from Claim 3. In order to
prove the second part of the theorem, we show that if V is ε-far from being inverse
Monge, then CV contains more than (ε/4)n2 bad points. The second part of the
theorem directly follows because the probability in such a case that no bad point is
selected by the algorithm is at most (1− ε/4)(8/ε) < e−2 < 1/3.

Assume contrary to the claim that CV contains at most (ε/4)n2 bad points. We
shall show that by modifying at most εn2 entries in V we obtain an inverse Monge
matrix (in contradiction to our assumption concerning V ). Let us look at the set of
bad points in CV , and for each such bad point look at the largest bad legal square
submatrix in CV that contains this bad point. By our assumption on the number of
bad points, it must be the case that the area of all these maximal bad submatrices is
at most (ε/4)n2, because all the points in a bad submatrix are bad.

For each maximal bad legal square submatrix B of CV we will look at the legal
square submatrix A that contains B. By definition of legal square submatrices, the
matrix A is uniquely defined. By the maximality of B, the submatrix A must be
good. Indeed, since B is maximal, if it is of size s × s, where s < n, then the legal
square submatrix of size 2s × 2s that contains it must be good. But if s = n, then
B = CV , implying that all n2 points in CV are bad, contradicting our assumption on
the number of bad points.

Next observe that every two different maximal bad legal square submatrices B
and B′ are disjoint. This is true since every two different legal square submatrices are
either disjoint or one is contained in the other. Combining this with the fact that for
each maximal bad legal square submatrix we take the good square legal submatrix
that is four times its size, the area of the union of all these good submatrices is at
most 4 · (ε/4)n2 = εn2.

Turning to the collection of resulting good submatrices, note that every two of
these submatrices are either disjoint, or are exactly the same, or one is contained in
the other. If a good submatrix is strictly contained in another one, then we ignore it
and deal only with the larger good submatrix containing it. Thus we have a set of
disjoint good submatrices that contain all negative entries in the matrix. For each of
these good submatrices A, we modify A so that it contains only nonnegative elements,
and the sum of elements in each row and column of A remains as it was. This can
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be done by applying Procedure 2 to A as described in section 3.1 (using the actual
(nonnegative) sums of rows and columns of A as the input to the procedure).

Note that after modifying all these good submatrices of CV , the new matrix CV

is nonnegative, and thus the corresponding new matrix V must be an inverse Monge
matrix. It remains to show that at most εn2 values were changed in V following the
changes to CV . Notice that we made sure that the sum of elements in each row and
column of each modified submatrix A remains as it was. Therefore the values of all
points vk,� in V that are outside A are not affected by the change to A, since by

Claim 2 we have that vk,� =
∑k

i=0

∑�
j=0 ci,j .

5. A faster algorithm for inverse monge matrices. Algorithm 2 described
above has running time linear in n, which is already sublinear in the size of the matrix,
n2. In this section we show how to significantly improve the dependence on n. We
present a variant of the algorithm whose running time is O(ε−1 log2 n). The new
algorithm will be based on a similar principle as that of Algorithm 2. That is, it
will uniformly select points and verify that certain submatrices that contain them are
good. However, there will be two main differences which we now describe briefly.

Algorithm 2 suffers from a relatively slow running time, since for each submatrix
that the algorithm checks, it verifies that the sum of elements in every row and
column is nonnegative. Therefore, we first relax the concept of a good submatrix and
demand only that the sum of all its elements be nonnegative (instead of the sum of
every row and column). This change, however, requires us to check for each point
selected by the algorithm, not only that the legal square submatrices which contain
it are good, but rather to verify that all legal submatrices that contain the point are
good. Actually, we check something slightly stronger: The algorithm will verify for
each legal submatrix T that it examines that the four legal equal-size submatrices
that reside within T and are half of T ’s length in each dimension are good as well. In
order to formalize the above, we first redefine the concepts of good (bad) submatrices
and good (bad) points, and introduce the notion of tainted submatrices and tainted
points.

Definition 8 (good and bad submatrices and points). A (legal) submatrix T of
CV is good if the sum of all its elements is nonnegative. Otherwise, T is bad.

A point is good if every legal submatrix of CV that contains it is good. Otherwise,
the point is bad.

Definition 9 (tainted submatrices and points). A good legal submatrix T of CV

is tainted if any one of the four legal submatrices that it contains and that are half
its height and half its width is bad. A point is tainted if some legal submatrix that
contains it is tainted.

Note that every bad point is tainted, but good points may be tainted as well.
For the sake of the presentation, we shall assume that every row and every column

in CV (that is, every subrow and subcolumn of length n) have nonnegative sums. In
subsection 5.2 we explain how to remove this assumption. Note that this assumption
implies that every s × n submatrix is good, and similarly every n × s submatrix is
good (but of course it has no implications on smaller submatrices).

Algorithm 3 (Test-Monge II).
1. Uniformly select 2/ε points in the matrix CV and check for each of them

whether it is tainted.
2. If no point selected is tainted, then accept; otherwise, reject.

Note that by Definition 5, each point in an n×n matrix is contained in O(log2 n)
legal submatrices. Thus by Claim 4, checking whether a point is tainted takes time
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O(log2 n). Therefore the running time of the algorithm is O((log2 n)/ε).

Theorem 3. If V is an inverse Monge matrix, then Algorithm 3 always accepts,
and if V is ε-far from being an inverse Monge matrix, then Algorithm 3 rejects with
probability at least 2/3.

5.1. Outline of the proof of Theorem 3. If V is an inverse Monge matrix,
then by Claim 3 all elements in CV are nonnegative. This directly implies that all
(legal) submatrices are good, and so all points are good and are not tainted. Hence
in this case the algorithm always accepts. Suppose that V is ε-far from being inverse
Monge. We claim that in such a case CV must contain more than εn2 tainted points,
causing the algorithm to reject with probability at least

1− (1− ε)(2/ε) > 1− e−2 > 2/3.

Assume contrary to the claim that CV contains at most εn2 tainted points. Our goal
from this point on is to show that in such a case V is ε-close to being an inverse Monge
matrix.

The proof of this part will follow along similar lines to those used in the proof of
Theorem 2. That is, we consider all maximal bad legal submatrices of CV , and for each
such bad submatrix we consider the legal good submatrix that is four times its area
and contains it. Once again, this submatrix is unique. By Definition 9, this submatrix
is tainted. We then take the union of all these good but tainted submatrices. By our
assumption on the number of tainted points, the area of this union is at most εn2

since all points in the union are tainted.

Finally, we show how to modify the values in this union so that the resulting
matrix is an inverse Monge matrix. This time, however, since the maximal bad
submatrices may intersect (which was not the case in the slower algorithm), the
good tainted submatrices that contain them may intersect in nontrivial ways (that
is, not only by coinciding or by strict containment). As a result, the union of the
good submatrices has a possibly complex structure (and in particular it is no longer
a simple union of disjoint submatrices), and the process of properly modifying this
union is much more involved. We now describe precisely the necessary definitions and
proceed with a detailed proof.

Definition 10 (maximal bad legal submatrix). A bad legal submatrix T of CV

is a maximal bad legal submatrix of CV if it is not contained in any larger bad legal
submatrix of CV .

Now consider all maximal bad legal submatrices of CV . Note that every negative
entry in CV is contained in the union of these bad submatrices. For each such subma-
trix B let us take the (unique) legal submatrix T that contains it and has twice the
number of rows and twice the number of columns of B (by our assumption that all
full rows and columns have a nonnegative sum it is indeed possible to double the rows
and columns of B). Then by the maximality of B, the resulting submatrix is good.
We now take the union of all these good (but tainted) legal submatrices. Recall that
the area of the union of all tainted (legal) submatrices of CV is at most εn2. Denote
the union of all these good tainted submatrices by R. See, for example, Figure 2.

In subsections 5.3 and 5.4 we show that it is possible to change the (at most εn2)
entries of CV within R to nonnegative values so that the following property holds.

Property 1 (sum property for R). For every point (i, j) outside of R, the sum
of the elements in the modified entries (i′, j′) within R such that i′ ≤ i and j′ ≤ j is
the same as in the original matrix CV .
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Fig. 2. An example of the structure of a subset R, where R is the union of all gray cells in
the matrix (both dark and light gray). All values in cells outside of R are nonnegative and are not
displayed for the sake of simplicity. The bad legal submatrices determining R are the dark gray
submatrices. Each is contained inside a good but tainted legal submatrix that has twice the number
of rows and twice the number of columns (good tainted submatrices are marked both by light and
dark gray). For example, there is a bad submatrix in column 1, rows 13 and 14, and the good legal
submatrix containing it is the submatrix over columns 1 and 2 and rows 13 through 16. Observe
that maximal bad legal submatrices may intersect. For example, the bad submatrix containing the
two cells in row 9 and columns 5 and 6 intersects with the bad submatrix containing the two cells in
column 5 and rows 9 and 10. Their corresponding good submatrices also intersect.

Let C̃V be the matrix obtained from CV by modifying R so that Property 1 holds,
and let Ṽ be the matrix which corresponds to C̃V . Then it follows from Claim 2 that Ṽ
is at most ε-far from the original matrix V , and this completes the proof of Theorem 3.
Before we continue with showing how to obtain Property 1, we explain shortly how
to remove the assumption that all (full) rows and columns in CV have a nonnegative
sum.

5.2. Dealing with rows/columns having a negative sum. Suppose first
that ε ≤ 4/n. Then we may directly check in time O(1/ε) that in fact all rows and
columns of the matrix CV have nonnegative sums (using Claim 4) and reject if some
row or column has a negative sum. Hence in this case our assumption is valid. Thus
assume that ε > 4/n.

First we slightly modify Algorithm 3 so that it uniformly selects 4/ε points in CV

(instead of 2/ε). In such a case, if CV contains more than (ε/2)n2 tainted points, then
the algorithm rejects with probability at least 2/3. We thus assume that CV contains
at most (ε/2)n2 tainted points and strive to show that in such a case V is ε-close to
being an inverse Monge matrix. Since we do not assume that every row and column
in CV has a nonnegative sum, we first modify CV so that it has this property.

Consider each row i in CV whose sum of elements in negative. Suppose that
we modify the last entry in the row, ci,n, so that the new sum of all elements is 0.
Similarly, we modify the last entry cn,j in each column j that has a negative sum.
Let C̄V be the resulting matrix, and let V̄ be the matrix corresponding to C̄V . Then
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all rows and columns in C̄V have a nonnegative sum, and by Claim 2 V̄ and V differ
on at most 2n− 1 < (ε/2)n2 entries (at most all elements in the last column and last
row).

Now we may define the region R as we did in the previous subsection. Note that
in this case the area of the region R is at most (ε/2)n2. We can therefore continue in
proving that it is possible to modify only the elements within R so that they are all
nonnegative and Property 1 holds. This will imply that the total number of entries
that should be modified (first to obtain nonnegative rows and columns, and then to
refill R) is at most εn2, as desired.

5.3. Refilling R to obtain Property 1. Let R be as defined in section 5.1.
Recall that R consists of a union of good legal submatrices. (The fact that they are
tainted is no longer relevant.) In the following discussion, when we talk about elements
in submatrices of R we mean the elements in CV determined by the corresponding
set of positions in R.

We are interested in refilling the entries in R with nonnegative values so that
Property 1 will hold. Note that if R is just a submatrix (block) of CV , then we can
use Procedure 2 to refill R as desired. However, in general the structure of R is more
complex. We show that there is a way to partition R into disjoint blocks and refill
each block using Procedure 2. In subsection 5.3.1 we define precisely what blocks
are and present several other notions that are needed for the refilling procedure. The
refilling procedure for R is described in subsection 5.3.2, and its correctness is proved
in subsection 5.4.

5.3.1. Preliminaries for the refilling procedure. As stated above, the re-
filling procedure will partition R into disjoint blocks (submatrices) and fill each block
separately with nonnegative values so that Property 1 is maintained. We start with
defining the following term that will be needed to define blocks.

Definition 11 (maximal (legal) subrow/column). Given a subset R of entries
in an n × n matrix, a subrow T is a maximal (legal) subrow with respect to R if T
is contained in R and there is no larger (legal) subrow T ′ such that T ⊂ T ′ ⊆ R. A
maximal (legal) subcolumn with respect to R is defined analogously.

For the sake of succinctness, whenever it is clear what R is, we shall just say
maximal (legal) subrow and drop the suffix “with respect to R.” Note that a maximal
subrow is simply a maximal consecutive sequence of entries in R that belong to the
same row, while a maximal legal subrow is a more constrained notion. In particular,
a maximal subrow may be a concatenation of several maximal legal subrows. We can
now define blocks as follows.

Definition 12 (maximal block). A maximal block B = [ ]s,ti,j in R is a submatrix
contained in R which has the following property: It consists of a maximal consecutive
sequence of maximal legal subcolumns of the same height. The maximality of each
subcolumn is as in Definition 11. That is, for every j ≤ r ≤ j + t − 1, the column
[ ]s,1i,r is a maximal legal subcolumn (with respect to R).

The height of a maximal block B is the height of the columns in B (equivalently,
the number of rows in B).

The maximality of the sequence of subcolumns in a block B = [ ]s,ti,j means that
we can extend the sequence of columns neither to the left nor to the right. That is,
neither [ ]s,1i,j−1 nor [ ]s,1i,j+t is a maximal legal subcolumn in R. (Specifically, each either
is not fully contained in R or R contains a larger legal subcolumn that contains it.)

We shall sometimes refer to maximal blocks simply as blocks. Observe that by
this definition, R is indeed partitioned in a unique way into maximal disjoint blocks.
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Fig. 3. An example of the partition of R shown in Figure 2 into maximal blocks (numbered
B1–B7). Note that the ratio between the heights of any two blocks is always a power of 2.
Furthermore, the blocks are aligned in the following way. Suppose a block B has height s, and
a block B′ has height s′ ≤ s and some of their subrows belong to the same row of the matrix
(e.g., B3 and B4, or B4 and B5). Then the shorter block B′ must be aligned with either the
first or second half of B, or with one of the quarters of B, or with one of its eighths, etc.

See Figure 3 for an illustration to how the subset R from Figure 2 is partitioned into
maximal blocks.

Three additional notions that will be needed for the refilling procedure are defined
below. The first two are illustrated in Figure 4.

Definition 13 (covers). We say that a submatrix A covers a given block B with
respect to R if B ⊆ A ⊆ R and the number of rows in A equals the height of B.

We say that A is a maximal row-cover with respect to R if A consists of maximal
subrows with respect to R.

Definition 14 (borders). We say that a submatrix T = [ ]s,ti,j borders another

submatrix T ′ = [ ]s
′,t′

i′,j′ if i′ ≤ i + s − 1 and i ≤ i′ + s′ − 1, and either j′ = j + t (so
that T is to the left of T ′) or j′ + t′ = j (so that T is to the right of T ′).

Definition 15 (sums). For a given submatrix T , we denote the sum of the
elements in T by sum(T ).

5.3.2. The procedure for refilling R. We now describe the procedure that
refills the entries of R with nonnegative values so as to obtain Property 1. Recall
that R is a disjoint union of maximal blocks. Hence if we remove a maximal block
from R, then the maximal blocks of the remaining structure are simply the remaining
maximal blocks of R. For simplicity of this introductory discussion, after removing
a block from R, we refer to the remaining structure as R. The procedure described
below will remove the blocks of R one by one, in order of increasing (nondecreasing)
height, and refill each block separately using Procedure 2.

Recall that when (re)filling an s× t submatrix, Procedure 2 is provided with non-
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Fig. 4. An illustration of the notions of covers and borders. Here the submatrix A (extending
from row 9 to 12 and from column 5 to 12) covers the block B3 (but is not a maximal row-cover
with respect to R). The submatrix A borders block B1 (from the left of A) and block B4 (from the
right of A).

negative values a1, . . . , as and b1, . . . , bt such that
∑s

i=1 ai ≥
∑t

j=1 bj . It then fills the
submatrix with nonnegative values so that the sum of elements in column j is exactly
bj and the sum of elements in row i is at most ai. Whenever we apply Procedure 2 to
a block B, the column sums b1, . . . , bt are simply set to be the sums of the elements in
the corresponding subcolumns of B in CV . By definition of (maximal) blocks, these
subcolumns are maximal legal subcolumns, and as we show in subsection 5.4.1, this
ensures that their sums are nonnegative.

The setting of the upper bounds a1, . . . , as for the row sums is a little more
involved. At any point in the algorithm, each maximal subrow L is associated with
a designated sum, denoted sum(L). This is the sum we intend it to have when the
refilling procedure terminates. Initially, for every maximal subrow L in R, we set
sum(L) = sum(L). That is, sum(L) is equal to the original sum of subrow L in CV .
In subsection 5.4.1 we show that these sums are all nonnegative. When refilling a block
B, we first find the row-cover A of B that is a maximal row-cover with respect to (the
current) R. Since the blocks are filled by order of height and blocks are removed after
they are filled, such a maximal row-cover must exist when B is covered and is unique.
We then use the designated sums of the (maximal) rows of A as the upper bounds
a1, . . . , as for the sums of rows of B. As we prove subsequently, it always holds that∑s

i=1 ai ≥
∑t

j=1 bj as required by Procedure 2. After removing a block B from R, we
obtain new, shorter, maximal subrows in the remaining structure R \B, and we must
associate with these shorter subrows new designated sums. Procedure 2 is used here
as well to determine how to set these designated row sums, in a manner explained in
detail in step 3 below. For an illustration, see Figure 5.
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Fig. 5. An illustration of one iteration of step 3 in Procedure 3, where we apply the procedure
to the matrix illustrated in Figures 2 and 3. The first block filled may be either B2, B4, or B6 (all
three have height 2, which is the minimum among all blocks). Here we have selected to refill B4 first.
On the left we see the maximal row-cover A that covers B4, where the designated sums of the two
rows of A are 8 and 7 (in accordance with the values appearing in Figure 2). On the right we see
the values that the Procedure 2 has entered in the cells of B4. We also see the two submatrices, A′
and A′′, that remain of A after B4 is removed from R and the designated sums of the new maximal
rows in A′ and A′′.

Procedure 3 (refill R).

1. We assign each maximal subrow L in R a designated sum of elements for that
row, which is denoted by sum(L). Initially, we set sum(L) to be sum(L).

2. Let m be the number of maximal blocks in R, and let R1 = R.
3. For p = 1, . . . ,m we do the following:

(a) Let Bp be a maximal block in Rp whose height is minimum among all
maximal blocks of Rp, and assume that Bp is an s × t submatrix. Let
Ap be a maximal row-cover of Bp with respect to Rp. For 1 ≤ � ≤ s, let
L� denote the subrow of Ap that covers the �th subrow of Bp.

(b) Refill Bp by applying Procedure 2 (see section 3.1), where the sum filled
in the kth subcolumn of Bp, 1 ≤ k ≤ t, should be the original sum of this
subcolumn in CV , and the sum filled in the �th subrow of Bp, 1 ≤ � ≤ s,
is at most sum(L�).
For each 1 ≤ � ≤ s, let x� denote the sum of elements filled by Proce-
dure 2 in the �th subrow of Bp.

(c) Let Rp+1 = Rp \ Bp. We next assign designated sums to the rows of
Rp+1 that have been either shortened or broken into two parts by the
removal of Bp from Rp. This is done as follows:
The set Ap \Bp is the union of two nonconsecutive submatrices, A′ and
A′′, so that A′ borders Bp from the left of Bp and A′′ borders Bp from the
right of Bp (where it is possible that one or both of these submatrices does
not exist). Let L′

� and L′′
� be the subrows in A′ and A′′, respectively, that

are contained in subrow L� of Ap. We assign to L′
� and L′′

� nonnegative
designated sums, sum(L′

�) and sum(L′′
� ), that satisfy the following:

sum(L′
�) + sum(L′′

� ) = sum(L�)− x�
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and, furthermore,

∑
row L∈A′

sum(L) = sum(A′),
∑

row L∈A′′
sum(L) = sum(A′′).

This is done by applying Procedure 2 to a 2 × s matrix whose sums of
columns are sum(A′) and sum(A′′) and sums of rows are sum(L�)−x�,
where 1 ≤ � ≤ s.
(Note that one or both of A′ and A′′ may not exist. This can happen if
Bp bordered Ap \Bp on one side and its boundary coincided with Rp or
if Ap = Bp. In this case, if, for example, A′ does not exist, then we view
it as a submatrix of height 0, where sum(A′) = 0.)

5.4. Proving that Procedure 3 is correct. In order to prove that Procedure 3
is correct we have to prove two claims. First, we have to show that the procedure
does not “get stuck,” namely, that all iterations of the procedure can be completed.
Second, we have to prove that at the end of the procedure, the refilled structure R
has Property 1. Before we prove these two claims we first prove some properties
relating to the sum of elements in maximal blocks and other submatrices of R. These
properties will be used to show that the procedure does not get stuck.

5.4.1. Sums of blocks and other submatrices. We first prove the following
simple lemma regarding the sum of elements in maximal legal subrows and subcolumns
of R.

Lemma 6. The sum of elements in every maximal legal subrow and every maximal
legal subcolumn in R is nonnegative.

Proof. We prove the lemma for maximal legal subrows. The claim for maximal
legal subcolumns is analogous. Assume, contrary to the claim, that R contains some
maximal legal subrow L = [ ]1,ti,j whose sum of elements is negative. Let T be the
maximal bad legal submatrix in CV that contains L. By the maximality of L, neces-
sarily T = [ ]s,ti′,j for some i′ ≤ i and s ≥ 1. That is, the rows of T (one of which is
L) are of length t. By the construction of R, R must contain a good legal submatrix
T ′ that contains T and is twice as large in each dimension. But this contradicts the
maximality of L.

It directly follows from Lemma 6 that every maximal row in R has a nonnega-
tive sum and that every maximal block has a nonnegative sum. We would like to
characterize other submatrices of R whose sum is necessarily nonnegative.

Lemma 7. Consider any two maximal blocks B = [ ]s,ti,j and B′ = [ ]s
′,t′

i′,j′ , where
i ≤ i′ ≤ i+s−1, i′+s′ ≤ i+s. That is, B has height s and B′ has height s′ ≤ s, and
B′ starts at row i′ ≥ i and ends at row i′ + s′− 1 ≤ i+ s− 1. Consider the submatrix

T of height s “between them.” That is, T = [ ]
s,j′−(j+t)
i,j+t or T = [ ]

s,j−(j′+t′)
i,j′+t′ . Suppose

that T ⊂ R. Then sum(T ) ≥ 0.
See Figure 6 for a illustration of the lemma and its proof.
Proof. Assume without loss of generality that B′ is to the right of B (that is,

j′ ≥ j + t and T = [ ]
s,j′−(j+t)
i,j+t ). If T is empty, then the claim follows trivially since

sum(T ) = 0. Hence we may assume from now on that T is not empty, and we separate
the proof into two cases.

Case 1. T is a legal submatrix. Assume, contrary to the claim, that sum(T ) < 0.
That is, T is a bad legal submatrix. Let T ′ be the maximal bad legal submatrix
containing T (where T ′ may equal T ). By construction of R, R should contain a good
legal submatrix T ′′ that contains T ′ and has twice the number of rows and twice the
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Fig. 6. An illustration for Lemma 7. The figure on the top illustrates the case in the proof
of Lemma 7, where T is a legal submatrix (for simplicity, we assume T ′ = T ). The figure on the
bottom illustrates the second case in the proof when T is a union of legal submatrices (all having the
height of B).

number of columns. But this would contradict the maximality of the subcolumns of B
or of B′. To see why this is true, assume without loss of generality that for any legal
subcolumn [ ]s,1i,r , the legal column that is twice its height is [ ]2s,1i,r (the case in which it

is [ ]2s,1i−s,r, is treated analogously). Then T ′′ must contain either the subcolumn [ ]2s,1i,j′

or the subcolumn [ ]2s,1i,j+t−1 (depending on the identity of the legal subrows that are
twice the length of the rows of T ). In the first case we would get a contradiction to the
fact that B′ is a maximal block, and in the second case we would get a contradiction
to the fact that B is a maximal block.

Case 2. T is not a legal submatrix. Observe that its columns are necessarily legal
subcolumns (given that the columns of B are legal). Hence, only its rows are not legal
subrows. Therefore, T can be partitioned into submatrices T1, . . . , Tk such that each
is of height s and is a maximal legal submatrix with respect to T . We claim that for
every T�, sum(T�) ≥ 0. Consider any fixed T�. By its maximality with respect to T ,
we know that the legal subrows that contain the rows of T� and are twice their length
are not strictly contained in T , but rather they extend either to the right or to the left
of T . Hence these rows (or some of them in case the height of B′ is strictly smaller
than the height of T�) must intersect either B or B′. Assume, contrary to what we
claim, that sum(T�) < 0. Let T ′

� be the maximal bad legal submatrix with respect
to R that contains T�, and let T ′′

� be the good legal submatrix that contains T ′
� and

has twice its height and twice its width. Then T ′′
� intersects either B or B′, and in

this intersection, the (legal) subcolumns of T ′′
� strictly contain the subcolumns of B

or B′ (as in the case considered in the previous paragraph). But this contradicts the
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D1
B2 B3T0 T1 T2 T3

A

B1
D2

Fig. 7. An illustration for Corollary 8. Here A covers the blocks B1, B2, and B3 and borders
the blocks D1 and D2. The submatrices T0–T4 are parts of larger blocks (that extend above and/or
below A).

maximality of B or B′.
By Lemma 7, we get the following corollary whose proof is illustrated in Figure 7.
Corollary 8. Let A be a submatrix of R that covers a given block B. If on

each of its sides A either borders a block with height smaller than the height of B or
its border coincides with the border of R, then sum(A) ≥ sum(B).

Proof. Let B1, . . . , Bk be the set of maximal blocks that are covered by A (where
B = Bi for some 1 ≤ i ≤ k). Note that by definition of maximal blocks and covers,
they are all of the same height, which is the height of A. Let D1 and D2 be two
shorter blocks that border A on the left side and the right side of A, respectively. (If
there is no such block on one of the sides, then we think of the corresponding Di as
having height 0.) Let T0, . . . , Tk be the submatrices between these blocks (that have
the same height as the blocks). That is, T0 is between D1 and B1, Tk is between Bk

and D2, and for 1 ≤ i ≤ k − 1, Ti is between Bi and Bi+1. Then, by Lemma 7 and
the fact that every block has a nonnegative sum we get that

sum(A) =
k∑

i=1

sum(Bi) +

k∑
i=0

sum(Ti) ≥ sum(B).(6)

5.4.2. Proving that Procedure 3 does not get stuck. Recall that for each
1 ≤ p ≤ m, Rp is what remains of R at the start of the pth iteration of Procedure 3. In
particular, R1 = R. In this section we show that the procedure does not “get stuck.”
That is, for each iteration p, Procedure 2 can be applied to the block Bp selected
in this iteration, and it is possible to update the designated sums of the rows that
have been shortened by the removal of Bp. Note that since the blocks are selected
according to increasing (nondecreasing) height, then in each iteration there indeed
exists a unique cover Ap of Bp that is a maximal row-cover with respect to Rp.

For every 1 ≤ p ≤ m, let sp be the minimum height of the maximal blocks of Rp,
and let s0 = 1. Observe that whenever sp increases, it does so by a factor of 2k for
some k. This is true because the columns of maximal blocks are legal subcolumns.

Lemma 9. For every 1 ≤ p ≤ m, Procedure 2 can be applied to the block
Bp selected in Rp, and the updating process of the designated sum of rows can be
applied. Moreover, if A is a submatrix of Rp with height of at least sp−1 whose
columns are legal subcolumns and whose rows are maximal rows with respect to Rp,
then

∑
row L∈A sum(L) = sum(A).

Proof. Let Bp be the block selected in iteration p, where Bp is an s × t subma-
trix, and let Ap be the maximal row-cover of Bp with respect to Rp. As noted in
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subsection 3.1, all that is required for Procedure 2 to work is the following:
(1) For every column K in Bp, sum(K) ≥ 0.
(2) For every row L in Ap, sum(L) ≥ 0.
(3)

∑
row L∈Ap

sum(L) ≥∑
column K∈Bp

sum(K).
In order for the updating process to succeed in step 3 of Procedure 3, we must have
the following:

(4) For each 1 ≤ � ≤ s, let x� be the sum of elements filled in the �th subrow
of Bp, and let L� be the subrow of Ap that covers this subrow of Bp. Then
sum(L�)− x� ≥ 0.

(5) If Ap \Bp consists of the two submatrices A′ and A′′ (between which resided
B), then sum(A′) ≥ 0, sum(A′′) ≥ 0, and

∑
row L�∈Ap

(sum(L�)− x�) = sum(A′) + sum(A′′).

By Lemma 6, item (1) holds at the start of every iteration. In order to prove the
other items for every p, we first extend and generalize item (2):

(2’) Let A be any submatrix in Rp having height at least sp−1 whose columns are
legal subcolumns and whose rows are maximal rows with respect to Rp. Then
for every row L of A we have sum(L) ≥ 0, and

∑
row L∈A sum(L) = sum(A).

Observe that if item (2’) holds at the start of iteration p, then in particular it holds
for Ap. Hence by Corollary 8

∑
row L∈Ap

sum(L) = sum(Ap) ≥ sum(Bp)(7)

and so item (3) holds as well.
Furthermore, if items (1)–(3) hold at the start of iteration p, then Procedure 2 can

be applied successfully. Thus item (4) necessarily holds by definition of Procedure 2.
The first part of item (5), concerning the nonnegativity of A′ and A′′, follows from
Lemma 7 very similarly to the way Corollary 8 follows from this lemma. The second
part of item (5) follows from item (2’) holding for Ap and the fact that

∑s
�=1 x� =

sum(Bp) (since Procedure 2 completed successfully). Hence,

∑
row L�∈Ap

(sum(L�)− x�) = sum(Ap)− sum(Bp) = sum(A′) + sum(A′′)(8)

as required.
Hence, it remains to prove that item (2’) holds at the start of every iteration p. We

do so by induction on p. Consider the base case, p = 1, so that Rp = R1 = R. By the
initialization of Procedure 3, for every maximal subrow L of R, sum(L) = sum(L).
By Lemma 6 (applied to the maximal legal subrows that partition L), we know that
sum(L) ≥ 0. Furthermore, for every submatrix A of R having height of at least
sp−1 = s0 = 1 and whose rows are maximal subrows of R,

∑
row L∈A

sum(L) =
∑

row L∈A

sum(L) = sum(A)(9)

as required.
Assuming that the induction claim holds for p − 1, we prove it for p. Consider

any submatrix A having height at least sp−1 whose columns are legal subcolumns and
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whose rows are maximal subrows with respect to Rp. If A also consisted of maximal
subrows with respect to Rp−1, then we are done by the induction hypothesis.

Otherwise, the block Bp−1 of height sp−1 that was removed from Rp−1 bordered
A on one of its sides. Let A1, . . . , Aq be the disjoint submatrices of height sp−1 such
that A = ∪qh=1A

h. That is, A1, . . . , Aq are located one on top of the other (for an
illustration, see Figure 8). In this case, all but at most one of these submatrices, say
Aq, consisted of maximal subrows with respect to Rp−1, and Bp−1 bordered Aq.

For each of the submatrices A1, . . . , Aq−1 we can apply the induction hypothesis
(item (2’)). We get the following for each such Ah: (a) for every row L in Ah,
sum(L) ≥ 0; and (b)

∑
row L∈Ah sum(L) = sum(Ah).

As for Aq, assume without loss of generality that Bp−1 bordered Aq from the
right of Aq. Let A′ be the submatrix that bordered Bp−1 from the right of Bp−1

(A′ may be empty). This means that Ap−1 is of the form Ap−1 = Aq ∪ Bp−1 ∪ A′

(see Figure 8). But then, by definition of the updating rule and since it succeeded
by the induction hypothesis (items (4) and (5)), we have that for every row L in Aq,
sum(L) ≥ 0 and

∑
row L∈Aq sum(L) = sum(Aq).

It follows that for every row L in A we have sum(L) ≥ 0 and

∑
row L∈A

sum(L) =

q∑
h=1

∑
rowL∈Ah

sum(L) =

q∑
h=1

sum(Ah) = sum(A) .(10)

The induction step is proven.

p-1

B p-1

B 

A

Ap-1 (= )

(=

A4 U U A’

A1

A UUU )

A4

A3

A2

A A A1 2 3 4

A’

Fig. 8. An illustration for the induction step in the proof of Lemma 9 (where q = 4).

5.4.3. Proving that Property 1 holds at the end of Procedure 3. Finally,
we have to show that when Procedure 3 terminates and R is refilled with nonnegative
values, then Property 1 holds. This will complete the proof of Theorem 3.

Let C̃V = {c̃i,j} be the matrix resulting from the application of Procedure 3 to
the matrix CV = {ci,j}. For any submatrix T of CV (and in particular of R), we

let s̃um(T ) denote the sum of elements of T in C̃V . By definition of the procedure,
s̃um(K) = sum(K) for every maximal legal subcolumn K of R. Hence this holds also
for every maximal subcolumn of R. We next prove a related claim concerning rows.

Lemma 10. For every subrow L in R such that L is assigned sum(L) as a
designated sum at some iteration of Procedure 3, we have that s̃um(L) = sum(L).
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Observe that by combining Lemma 10 with Lemma 6 we get that for every max-
imal subrow L of R, s̃um(L) = sum(L) = sum(L).

Proof. Let L be the set of subrows L of R such that L is assigned sum(L) as
a designated sum at some iteration of Procedure 3. Observe that the set L consists
exactly of those rows that are maximal subrows for some Rp. We prove the lemma
by induction on the length of L ∈ L. For the base of the induction, consider any
subrow L ∈ L that is shortest among all subrows in L. Since L is shortest, it must be
completely filled in a single iteration as part of a block B (or otherwise there would be
a shorter L′ ⊂ L with a designated sum sum(L′)). But by definition of the procedure,
we get that s̃um(L) = sum(L) as required.

Assume that the claim holds for every L of length less than �; we prove it for L
having length �. Consider the first iteration after which L became a maximal subrow
(and thus received the designated sum sum(L)) in which part of L is filled. If all
of L is filled, then the induction claim follows as in the base case. Otherwise, let
x be the sum of elements that was filled in the part P ⊂ L. Let L′ and L′′ be
what remains of L to the left and right of P , respectively. Then the procedure sets
sum(L′) + sum(L′′) = sum(L) − x. But L′ and L′′ are strictly shorter than L, and
therefore by the induction hypothesis s̃um(L′) = sum(L′) and s̃um(L′′) = sum(L′′).
Thus s̃um(L) = s̃um(L′) + s̃um(L′′) + x = sum(L′) + sum(L′′) + x = sum(L) as
required.

Definition 16 (boundary). We say that a point (i, j) is on the boundary of R
if (i, j) ∈ R, but either (i + 1, j) /∈ R, or (i, j + 1) /∈ R, or (i + 1, j + 1) /∈ R. We
denote the set of boundary points by B.

Definition 17. For a point (i, j), 1 ≤ i, j ≤ n, let R≤(i, j) denote the subset
of points (i′, j′) ∈ R, i′ ≤ i, j′ ≤ j, and let sumR(i, j) =

∑
(i′,j′)∈R≤(i,j) ci′,j′ and

s̃um
R
(i, j) =

∑
(i′,j′)∈R≤(i,j) c̃i′,j′ .

Property 1 and therefore Theorem 3 will follow directly from the next two lemmas.
Lemma 11. For every point (i, j) ∈ B, s̃um

R
(i, j) = sumR(i, j).

Proof. Consider any point (i, j) ∈ B, and let U = R≤(i, j). Let C(U) =
{B1, . . . , Bq} be the minimal set of (maximal) blocks whose union contains U . For
each Bh ∈ C(U) we know that s̃um(Bh) = sum(Bh). In particular, this is true for
every Bh ⊂ U . Let C1(U) = {Bh ∈ C(U) : Bh ⊂ U}. Hence we have that

∑
Bh∈C1(U)

s̃um(Bh ∩ U) =
∑

Bh∈C1(U)

s̃um(Bh) =
∑

Bh∈C1(U)

sum(Bh) .(11)

If every Bh ∈ C(U) is fully contained in U , then C1(U) = C(U) and we are done.
Otherwise, consider the remaining Bh’s in C(U) \ C1(U) (i.e., blocks that are not

fully contained in U but rather intersect it). Each of them contains either a column
that is a subcolumn of column j+1 or a row that is a subrow of row i+1 (recall that
U = R≤(i, j)). Let the former subset be denoted C2(U) and the latter C3(U). Thus
C2(U) contains blocks that “intersect U from the right,” and C3(U) contain blocks
that “intersect U from the top.” See, for example, Figure 9.

It is important to note that C2(U) ∩ C3(U) = ∅: If there existed a block Bh ∈
C2(U) ∩ C2(U), it would necessarily contain both (i, j) and the three neighboring
points, (i+ 1, j), (i, j + 1), and (i+ 1, j + 1). But this contradicts the fact that (i, j)
is a boundary point.

For each Bh ∈ C2(U), Bh∩U is a subset of maximal legal subcolumns with respect
to R (since each Bh ∈ C2(U) cannot extend beyond row i). Let K2(U) denote the set
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Fig. 9. An illustration for the proof of Lemma 11. The solid line denotes the outline of
U = R≤(i, j), where point (i, j) is in the top-right corner. Blocks B1–B6 are fully contained in
U and therefore belong to C1(U). Blocks B7 and B8 belong to C2(U) and blocks B9–B11 belong to
C3(U). Block B10 is twice the height of B9 and B11 and thus “extends out of the figure.”

of all maximal legal subcolumns that belong to
⋃

Bh∈C2(U)(Bh ∩ U). Since for every

maximal legal subcolumn K it holds that s̃um(K) = sum(K), we have that

∑
Bh∈C2(U)

s̃um(Bh ∩ U) =
∑

K∈K2(U)

s̃um(K) =
∑

K∈K2(U)

sum(K).(12)

Next consider the blocks Bh ∈ C3(U). Let L3(U) be the set of subrows in U that
are maximal subrows with respect to

⋃
Bh∈C3(U)(Bh∩U). Thus,

⋃
Bh∈C3(U)(Bh∩U) =⋃

L∈L3
L. We next observe that for every Bh ∈ C3(U), all blocks that border Bh and

belong either to C1(U) or to C2(U) must be strictly shorter than Bh. This follows
from the definition of legal subcolumns. Hence, the blocks in C1(U) and C2(U) are all
removed before the blocks in C3(U).

For each subrow in L3(U) there exists the first iteration p in which it becomes a
maximal subrow with respect to Rp (following the removal of some block in C1(U) ∪
C2(U) from Rp−1). We partition the rows in L3(U) accordingly. Let Lp

3(U) denote all
subrows in L3(U) that are maximal subrows with respect to Rp but were not maximal
subrows with respect to Rp−1. Observe that, in particular, L1

3(U) is the set of subrows
in L3(U) that were already maximal subrows with respect to R. By this definition
the subrows in Lp

3(U) constitute a submatrix of height sp−1. By the second part of
Lemma 9,

∑
L∈Lp

3(U) sum(L) =
∑

L∈Lp
3(U) sum(L), and by applying Lemma 10 we
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get that
∑

L∈L3(U) s̃um(L) =
∑

L∈L3(U) sum(L). Therefore,

∑
Bh∈C3(U)

s̃um(Bh ∩ U) =
∑

L∈L3(U)

s̃um(L) =
∑

L∈L3(U)

sum(L).(13)

By combining (11)–(13) we get

s̃um(U) =
∑

Bh∈C(U)

s̃um(Bh ∩ U)

=

3∑
q=1

∑
Bh∈Cq(U)

s̃um(Bh ∩ U)

=
∑

Bh∈C1(U)

sum(Bh) +
∑

K∈K2(U)

sum(K) +
∑

L∈L3(U)

sum(L)

= sum(U)

L1

R(i’,j’)
<=

L2 L3
L4

L5 L6

(i’,j’)

(i,j)

Fig. 10. An illustration for the proof of Lemma 12. The point (i′, j′) is as defined in the proof,
and the rows L1, . . . , L6 are all maximal subrows of R that belong to rows i′ + 1, . . . , i and end by
column j (that is, the set L(i, i′, j)).

Lemma 12. Let (i, j) be any point such that (i, j) /∈ R. Then s̃um
R
(i, j) =

sumR(i, j).
Proof. Let (i′, j′) ∈ R, i′ < i, j′ ≤ j, be the point for which j′ is maximized, and if

there are several such points, let it be the one amongst them for which i′ is maximized.
Thus, (i′, j′) is maximal in the sense that for every (i′′, j′′), i′′ < i, j′′ ≤ j such that
(i′′, j′′) > (i′, j′) it holds that (i′′, j′′) /∈ R. Furthermore, among all such maximal
points it is the right-most one (i.e., it belongs to the column with the highest index).
By definition, (i′, j′) belongs to B, since (i′+1, j′) necessarily does not belong to R. Let
L(i, i′, j) be the subset of all maximal subrows of R that belong to rows i′ + 1, . . . , i

and end by column j. Then s̃um
R
(i, j) = s̃um

R
(i′, j′) +

∑
L∈L(i,i′,j) s̃um(L). By



1184 MICHAL PARNAS, DANA RON, AND RONITT RUBINFELD

applying Lemma 11 and Lemma 10, we get that s̃um
R
(i, j) = sumR(i, j). For an

illustration, see Figure 10.

5.5. Distribution matrices. As noted in the introduction, a subfamily of in-
verse Monge matrices that is of particular interest is the class of distribution ma-
trices. A matrix V = {vi,j} is said to be a distribution matrix if there exists a
nonnegative density matrix D = {di,j} such that every entry vi,j in V is of the form
vi,j =

∑
k≤i

∑
�≤j dk,�. In particular, if V is a distribution matrix, then the corre-

sponding density matrix D is simply the matrix C ′
V (as defined in section 3). Hence,

in order to test that V is a distribution matrix, we simply run our algorithm for
inverse Monge matrix on C ′

V instead of CV .
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