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Abstract. We address the problem of designing optimal off-line algorithms that minimize the
required bandwidth for media-on-demand systems that use stream merging. We concentrate on the
case where clients can receive two media streams simultaneously and can buffer up to half of a full
stream. We construct an O(nm) optimal algorithm for n arbitrary time arrivals of clients, where m
is the average number of arrivals in an interval of a stream length. We then show how to adopt our
algorithm to be optimal even if clients have a limited size buffer. The complexity remains the same.

We also prove that using stream merging may reduce the required bandwidth by a factor of order
ρL/ log(ρL) compared to the simple batching solution where L is the length of a stream and ρ ≤ 1
is the density in time of all the n arrivals. On the other hand, we show that the bandwidth required
when clients can receive an unbounded number of streams simultaneously is always at least 1/2 the
bandwidth required when clients are limited to receiving at most two streams.

Key words. media-on-demand, stream merging, dynamic programming, monotonicity property

AMS subject classifications. 68W05, 68W40

DOI. 10.1137/S0097539701389245

1. Introduction. Media-on-demand is the demand by clients to play back, view,
listen to, or read various types of media such as video, audio, and large files with as
small as possible startup delays and with no interruptions. The solution of dedicating
a private channel to each client for the required media is implausible even with the ever
growing available network bandwidth. Thus, multicasting popular media to groups
of clients seems to be the ultimate solution to the ever growing demand for media.
The first, and most natural, way to exploit the advantage of multicasting is to batch
clients together. This implies a trade-off between the overall server bandwidth and
the guaranteed startup delay. The main advantage of the batching solutions lies in
their simplicity. The main disadvantage is that the guaranteed startup delay may be
too large.

The pyramid broadcasting paradigm, pioneered by Viswanathan and Imielinski
[43, 44], was the first solution that dramatically reduced the bandwidth requirements
for servers by using larger receiving bandwidth for clients and by adding buffers to
clients. Many papers have followed this line of research; all of them have demonstrated
the huge improvement over the traditional batching solutions. We adopt the stream
merging technique, introduced by Eager, Vernon, and Zahorjan [18, 19]. Stream merg-
ing seems to incorporate all the advantages of the pyramid broadcasting paradigm and
is very useful in designing and implementing efficient off-line and on-line solutions.

A system with stream merging capabilities is illustrated in Figure 1. The server
multicasts the popular media in a staggered way via several channels. Clients may
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Fig. 1. The mechanism of receiving data from two streams simultaneously.

receive data from two streams simultaneously while playing data they have accumu-
lated in their buffers. The playback rate is identical to each of the channels, so that
the receiving bandwidth is twice the playback bandwidth. The initial position is il-
lustrated in (a) where the client is about to receive data from a new stream and a
stream that was initiated earlier. After some time the system may look as illustrated
in (b). The client still receives data from both streams. The top of its buffer, which
represents the beginning of the stream, has been viewed by the player. This technique
is called stream merging because eventually, as the client receives both the earlier and
later streams, it no longer needs the later stream because it already has the data from
buffering the earlier one. At this point, if no other client needs the later stream, it
can terminate. In a sense the later stream merges with the earlier one, forming just
one stream. The termination of the later stream is where bandwidth is saved.
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Fig. 2. The figure on the left shows batching, while the figure on the right shows batching
with stream merging.

It is interesting to contrast stream merging with batching, the most common
technique for reducing server bandwidth in the presence of multicast. In batching time
is divided into intervals. A client that arrives in an interval is satisfied by a full stream
at the end of the interval. Bandwidth is saved at the expense of longer guaranteed
startup delay for the clients. Stream merging and batching can be combined so that
there is a bandwidth saving from both stream merging and batching. Figure 2 shows
the difference between pure batching and stream merging with batching. In this figure
full streams are of length 5. The three clients require 2 full streams (10 units) with
batching alone, but require only 1.4 streams (7 units) with stream merging. The
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second and the third clients receive parts 3 and 4 of the first stream at the same time
they receive parts 1 and 2 from the second stream; then they receive part 5 from the
first stream.

Given a sequence of arrivals, there can be a number of different stream merging
solutions to accommodate this sequence. Typically, a stream merging solution has
a number of full streams each associated with a number of other truncated streams
that eventually merge to this full stream. We measure the bandwidth required by
a solution as the sum of the lengths of all the individual (full or truncated) streams
in the solutions. We call this sum the full cost of the solution. This cost represents
the total bandwidth required by the solution and by dividing it by the time span
of arrivals it represents the average bandwidth to serve the clients during that time
span. In our example of Figure 2, the full cost of the batching solution is 10 units
(or 2 streams) and the full cost of the stream merging with the batching solution is 7
units (or 1.4 streams).
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Fig. 3. Comparison of bandwidth required for batching and batching with optimal stream
merging. The figure plots the bandwidth requirement vs. delay for a 2-hour movie, with
Poisson arrivals averaging every 10 seconds.

Figure 3 shows the bandwidth requirement vs. delay for a popular 2-hour movie,
with Poisson arrivals averaging every 10 seconds. The guaranteed startup delay ranges
from 1 second to 30 minutes. For stream merging with batching we used an optimal
stream merging algorithm. At 1 second delay the difference in bandwidth is dramatic.
For batching the bandwidth required is almost the same as it would be if each client
had its own stream. On the other hand, at 1 second delay, stream merging with
batching uses 1/60 the bandwidth of batching.

1.1. Contributions. The main goal of this paper is to find efficient ways to
compute the optimal stream merging solutions, those that minimize the full cost. To
determine an optimal solution, we have to decide when to start full streams and how
to merge the rest of the streams into the full streams. We assume that the arrival
times of clients are known ahead of time and we call this the off-line problem, as
opposed to the on-line problem where client arrivals are not known ahead of time.
Computing the optimal off-line solution quickly is a major focus of this paper. The
off-line scenario happens when clients make reservations for when their streams will
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begin. However, good on-line solutions are required for media-on-demand systems
that run in real time. The optimal off-line solution is the gold standard against which
on-line solutions should be compared. Fast algorithms for computing an optimal off-
line solution allow us to evaluate the quality of on-line solutions on large numbers of
media requests.

In our main model a client is capable of receiving two streams simultaneously.
We call this the receive-two model. It is instructive to consider the receive-all model
in which a client is capable of receiving any number of streams simultaneously. There
are several reasons to consider this case. First, we will see that there is very little
gain in going from the receive-two model to the receive-all model. Most of the benefit
of stream merging comes from just the ability to receive two streams simultaneously.
Second, we will see that many of the results from the receive-two model carry over in
a simpler form to the receive-all model.

Our first contribution is a novel model for the stream merging technique. A key
concept in our model is that of a merge tree, which is an abstraction of the diagram
in Figure 2. See Figure 4 for an example. A sequence of merge trees is called a merge
forest. The root of a merge tree represents a full stream; its structure represents the
merging pattern of the remaining streams that are associated with its descendent. A
sequence of merge trees is called a merge forest. We show that the knowledge of the
arrival times and the structure of the merge trees is sufficient to compute the lengths
of all the streams and to compute the full cost (total bandwidth) required by the
merge forest. A key component of our approach is the concept of merge cost. For a
given merge tree, the merge cost is the sum of the lengths of all the streams except
the root stream. The full cost counts everything, merge cost and the length of the
roots for all the merge trees in the forest. This separation into merge cost and full
cost helps in designing the optimal algorithms and in having a cleaner analysis. Later
in the paper, we first show how to construct an optimal merge tree for a sequence
that forms a single tree and then show how to construct the optimal merge forest for
a given sequence.

We show several properties that optimal merge trees must have. For example,
there is no gain in having streams that do not start at an arrival time of some clients.
Other properties will be defined in section 2. These properties were assumed implicitly
by all the on-line algorithms that use the stream merging technique [18, 19, 5, 14, 11,
12]. Thus our model, in a way, builds the foundations for designing “good” on-line
algorithms.

Our main focus is in designing efficient optimal algorithms in the receive-two
model, that is, algorithms that, for a given a sequence of arrivals, either find a merge
tree that minimizes merge cost or find a merge forest that minimizes full cost. We
have the following results depending on n, the number of arrivals. For the merge
cost, we present an efficient O(n2) time algorithm improving the known O(n3) time
algorithm (see [2, 19]). The latter algorithm is based on a straightforward dynamic
programming implementation. Our algorithm implements the dynamic programming
utilizing the monotonicity property ([34]) of the recursive definition for the merge
cost. For the full cost we use the optimal solution of the merge cost as a subroutine.
We describe an O(nm) time algorithm where m is the average number of arrivals in an
interval that begins with an arrival and whose length is a full stream length. We also
have efficient algorithms for a model in which clients have a limited buffer size. We
maintain the O(nm) complexity where this time m is the average number of arrivals
in an interval that begins or ends with an arrival and whose length is the minimum
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between the stream length and the maximum buffer size.

Additional results establish the performance of the optimal stream merging so-
lutions. Let L be the length of a full stream in slots, where a slot is the worst-case
waiting time for any arrival before it receives the first segment of the media. For a
fixed length media, as the parameter L grows the waiting time tends to zero. De-
fine ρ ≤ 1 to be the ratio of slots that have at least one arrival to all the slots in
a given period of time. We show that an optimal stream merging solution reduces
the required full cost by a factor of order ρL/ log(ρL) for the full cost compared to
the simple batching solution. Note that the improvement is huge for large L because
simple batching solutions must dedicate a full stream for each arrival. However, L
cannot grow forever because then ρ would approach zero.

Finally, we present optimal algorithms for the receive-all model that have the
same time complexity bounds as the receive-two model. We show that the full cost
required in an optimal solution in the receive-all model is always at least half the
optimal full cost required in the receive-two model.

1.2. Related research. Several papers (e.g., [15, 13, 3]) proposed various batch-
ing solutions demonstrating the trade-off between the guaranteed startup delay and
the required server bandwidth. The solutions are simple but may cause large startup
delays. The seminal pyramid broadcasting solution [43, 44] was the first paper to
explore the trade-off with two other resources: the receiving bandwidth of clients and
the buffer size of clients. Many researchers were concerned about reducing the buffer
size (see e.g., [1]). However, all of them demonstrated the huge improvement over the
traditional batching solutions.

The skyscraper broadcasting paper [27] showed that the receive-two model al-
ready exploits the dramatic improvement. Researchers also demonstrated the trade-
off between the server bandwidth and the receiving bandwidth [26, 20, 37, 38] in
this framework. All of these papers assumed a static allocation of bandwidth per
transmission. The need for dynamic allocation (or on-line algorithms) motivated the
papers [17, 16] that still used the skyscraper broadcasting model. The patching solu-
tion [25, 21, 8], the tapping solution [9, 10], the piggybacking solution [2, 23, 24, 35],
and the stream merging solution [18, 19] assumed the attractive dynamic allocation
of bandwidth to transmissions. The early papers regarding patching assumed that
clients may merge only to full streams. Later papers regarding patching assumed a
model that is essentially the stream merging model. New research regarding patching
[40] assumed that streams may be fragmented into many segments.

The original stream merging algorithms [18, 19] were on-line and event-driven,
where telling clients which streams to listen to was done at the time of an event.
The specific events were the arrival of a client, the merge time of two streams, and
the termination of a stream. The papers reported good practical results compared to
the optimal algorithm on Poisson arrivals. These event-driven algorithms are quite
different in character from the series of on-line algorithms that appeared subsequently
[5, 14, 11, 12]. Unlike in the event-driven algorithms, in the newer algorithms, a client
learns all the streams it will be receiving from at the time it arrives. The dynamic
Fibonacci tree algorithm of [5] used merge trees and had a competitive analysis. Next,
the dyadic algorithm [14] was proposed and analyzed for its average performance on
Poisson arrivals. Next, an algorithm based on a new version of merge trees called
rectilinear trees was shown to be 5-competitive (full cost no more than 5 times that
of the optimal) [11]. Later these same authors proved that the dyadic algorithm
is 3-competitive [12]. A comparison of the performance of on-line stream merging
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algorithms can be found in [4].
Finally, the following is a partial list of additional papers that address trade-offs

among the four parameters: server bandwidth, delay guaranteed, receiving band-
width, and buffer size: [28, 29, 30, 31, 32, 36, 39, 7, 22, 41, 42].

1.3. Paper organization. In section 2 we define our stream merging model and
prove properties of optimal solutions. Section 3 presents our algorithm in the receive-
two model with unbounded buffers. In section 4, we consider the limited buffer size
case. In section 5, we describe our results for the receive-all model. Finally, we discuss
our results and some related problems in section 6.

2. The stream merging model.
Basic definitions. Assume that time starts at 0 and is slotted into unit sized

intervals. For example, a 2-hour movie could be slotted into time intervals of 15
minutes. Thus, the movie is 8 units long. For a positive integer t, call the slot that
starts at time t− 1 slot t. The length of a full stream is L units. There are n arrival
times for clients denoted by integers 0 ≤ t1 < t2 < · · · < tn. Clients that arrive at
the same time slot are considered as one client. At each arrival time a stream must
be scheduled, although for a given arrival the stream may not run until conclusion
because only an initial segment of the stream is needed by the clients. A client may
receive and buffer data from two streams at the same time while viewing the data it
accumulated in its buffer. The objective of each client is to receive all the L parts
of the stream and to view them without any interruption starting at the time of its
arrival.

At this point we would like to note the following:
• We will show later that there is no gain in scheduling streams except at arrival

times. Hence, it is very useful to use the client arrival time t as both a name
for the client that arrives at time t and for the stream that is initiated at time
t. Moreover, for ease of presentation, in the rest of this section we assume
that only such streams exist.

• Our results hold for the nondiscrete time model as well by letting the time
slots be as small as desired and therefore the value of L as large as needed.
We adopt the discrete time model for ease of presentation.

Merge forests and merge trees. A solution to an arrival sequence is a merge forest
which is a sequence of merge trees. A merge tree is an ordered labeled tree, where each
node is labeled with an arrival time and the stream initiated at that time. The root
is labeled t1 and if a nonroot node is labeled ti, then its parent is labeled tj , where
j < i. This requirement means that a stream can merge only to an earlier stream.
Additionally, if tj is a right sibling of ti then j > i. This requirement means that
the children of a node are ordered by their arrival times. Clearly, in a merge forest
all the arrival times in one tree must precede the arrival times in the successive tree.
We say that an ordered labeled tree has the preorder traversal property if a preorder
traversal of the tree yields the arrival times in order. Any ordered labeled tree with
the preorder traversal property is a merge tree, but not necessarily vice versa. We will
see later in Lemma 2.2 that every optimal merge tree satisfies the preorder traversal
property.

Figure 4 illustrates a merge tree and a concrete diagram showing how merging
would proceed for the given merge tree. In the concrete diagram each arrival is shown
on the time axis and for each arrival a new stream is initiated. The vertical axis shows
the particular unit of the stream that is transmitted. The root stream, t1, is of full
length, while all the other streams are truncated. A stream is truncated because all
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Fig. 4. On the left is a concrete diagram showing the length of each stream with its
merging pattern. On the right is its corresponding merge tree. In this example there are 13
arrivals at times 0, . . . , 12.

the clients that were receiving the stream no longer need any data from it, having
already received the data from some other stream(s). Note that although the merge
tree does not show the stream lengths, it implicitly contains all the information in the
concrete diagram, as will be shown in Lemma 2.1.

For the moment, we postpone the explanation of how we calculate the lengths
of the truncated streams because we need more explanations of how merging works.
Nonetheless, we can now explain that the problem we are addressing is how to find a
solution that minimizes the sum of the lengths of all the streams in the solution. This
is equivalent to minimizing the total number of units (total bandwidth) needed to
serve all the clients. Minimizing the total bandwidth is essentially the same as mini-
mizing the average bandwidth needed to satisfy the requests. The average bandwidth
required to satisfy the requests by the forest F is the sum of the total bandwidth
required by F divided by (tn − t1) which is the time span of the n arrivals. The
equivalence follows since the quantity tn − t1 is independent of the solution.

Receiving procedures. Clients receive and buffer data from various streams ac-
cording to their location in the forest. At any one time a client can receive data from
at most two streams. Informally, a client arriving at time x receives data from all the
nodes on the path from x to the root of the tree. At the same time it receives data
from a node y and its parent until it does not need any more data from the node.
At that point the client moves closer to the root by receiving data from the parent
of y and its parent. We call this transition a merge operation. In the following we
formally define the actions of a client in the merge tree.

Let x0 < x1 < . . . < xk be the path from the root x0 to node xk that is the
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arrival time of a specific client. We call this sequence of length k + 1 the receiving
procedure of the client. Denote by x0, x1, . . . , xk the streams that are scheduled at the
corresponding arrival times. The client obeys the following stream merging rules.

Stage i, 0 ≤ i ≤ k − 1: For xk−i − xk−i−1 time slots from time 2xk − xk−i to time
2xk−xk−i−1 the client receives parts 2xk−2xk−i+1, . . . , 2xk−xk−i−xk−i−1

from stream xk−i and parts 2xk −xk−i −xk−i−1 + 1, . . . , 2xk − 2xk−i−1 from
stream xk−i−1.

Stage k: For L− 2(xk − x0) time slots from time 2xk − x0 to time x0 +L the client
receives parts 2(xk − x0) + 1, . . . , L from stream x0.

This describes how the client arriving at xk receives the entire transmission of the
stream. In particular, part j of the stream is received in stage i = k if 2(xk − x0) < j
and in stage i < k if 2(xk−xk−i) < j ≤ 2(xk−xk−i−1). Notice that if xk−x0 ≤ �L/2�,
then the client is busy receiving data for L − (xk − x0) time slots since in xk − x0

slots it receives data from two streams, and if xk−x0 > �L/2�, then the client is busy
receiving data for xk − x0 time slots since in L− (xk − x0) slots it receives data from
two streams.

Consider the example depicted in Figure 4. Assume a full stream of length 26
and the following stream merging rules for the client that arrives at time t13 = 12. In
this case, we have k = 3 with x0 = 0, x1 = 8, x2 = 11, x3 = 12. From time 12 to time
13 the client receives part 1 from stream x3 and part 2 from stream x2. From time
13 to time 16 the client receives parts 3, . . . , 5 from stream x2 and parts 6, . . . , 8 from
stream x1. From time 16 to time 24 the client receives parts 9, . . . , 16 from stream
x1 and parts 17, . . . , 24 from stream x0. Finally, from time 24 to time 26 the client
receives parts 25, 26 from stream x0.

Length of streams. Given the stream merging rules, we must still determine the
minimum length of each stream so that all the clients requiring the stream receive
their data. In a merge tree T the root is denoted by r(T ). If x is a node in the merge
tree, then we define �T (x) to be its length in T . That is, �T (x) is the minimum length
needed to guarantee that all the clients can receive their data from stream x using the
stream merging rules. For a nonroot node x define pT (x) to be its parent and zT (x)
to be the latest arrival time of a stream in the subtree rooted at x. If x is a leaf, then
zT (x) = x. We drop the subscript T when there is no ambiguity.

We can see from our definition of the stages that the length L of the root stream
must satisfy z−r(T ) ≤ L−1, where z is the last arrival in the merge tree T . Otherwise,
the clients arriving at z do not receive data from the stream initiated at r(T ). The
next lemma shows how to compute the lengths of all the nonroot streams.

Lemma 2.1. Let x �= r(T ) be a nonroot node in a tree T . Then

�(x) = 2z(x) − x− p(x).(1)

In particular, if x is a leaf, then �(x) = x− p(x) since z(x) = x.
Proof. First observe that if clients y′ < y both receive data from x, then client

y receives later parts of the stream x. This implies that the length of the stream
x is dictated by the needs of the client that arrives at time z(x). Let x0, x1, . . . , xk

be the path from the root of the tree T that contains both x and z(x). That is,
x = xi and p(x) = xi−1 for some i > 0 and z(x) = xk. By the stream merging
rule of stage k − i, the client z(x) receives data from the stream x = xi until time
2xk − xi−1 = 2z(x) − p(x). Since z(x) is the last client requiring stream x, then no
more transmission of stream x is required. Since the stream x begins at time x and
ends at time 2z(x) − p(x), its length is 2z(x) − x− p(x).
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In this paper, we will use for �(x) either expression (1) or the following two
alternative expressions:

�(x) = (x− p(x)) + 2(z(x) − x)(2)

= (z(x) − x) + (z(x) − p(x)).(3)

Expression (3) could be viewed as follows. The length of the stream x is composed of
two components. The first component is the time needed for clients arriving at time
x to receive data from stream x before they can merge with stream p(x). The second
component is the time stream x must spend until the clients arriving at time z(x)
merge to p(x).

2.1. The merge cost. Let T be a merge tree. The merge cost of T is defined
as

Mcost(T ) =
∑

x�=r(T )∈T

�(x).

That is, the merge cost of a tree is the sum of all lengths in the tree except the length
of the root of the tree. For an arrival sequence t1, . . . , tn, define the optimal merge
cost for the sequence to be the minimum cost of any merge tree for the sequence. An
optimal merge tree is one that has optimal merge cost. The following technical lemma
justifies restricting our attention to merge trees with the preorder traversal property.

Lemma 2.2. Every optimal merge tree satisfies the preorder traversal property.
Proof. The proof is by induction on the number of arrivals. The lemma is clearly

true for one arrival. Assume we have n > 1 arrivals and the lemma holds for any
number of arrivals less than n. Let T be an optimal merge tree for the arrivals and
let x be the last arrival to merge to the root r of T . Define TR to be the subtree
of T rooted at x and let TL be the subtree of T obtained by removing TR. By the
induction hypothesis we can assume that TR and TL both have the preorder traversal
property. Let w be the last arrival in the subtree TL and let z be the last arrival
in the subtree TR. If w < x, then the entire tree T must already have the preorder
property, and we are done. We need consider only the case where w > x. In this case
we will construct another merge tree T ′ for the same arrivals whose merge cost is less
than T ’s, contradicting the optimality of T .

Define a high tree to be a subtree of TL whose root is greater than x and whose
parent of the root is less than x. Let T ′ be the tree T where all the high trees are
removed from TL and are inserted as children of x. Naturally, the high trees must be
inserted so that all the children of x in T ′ are in arrival order. For all nodes u in T
such that u �= x or u is not an ancestor of a root of a high tree, we have �T (u) = �T ′(u).
For an ancestor u of a root of a high tree we have �T (u) > �T ′(u), and for x we have
�T (x) < �T ′(x). Let p be the parent of the root of the high tree containing w. We
must have p �= r for otherwise x would not be the last arrival to merge to the root
because the root of the high tree containing w is greater than x. We can just examine
the change in length of the nodes p and x. We have

Mcost(T ) − Mcost(T ′) ≥ �T (p) − �T ′(p) + �T (x) − �T ′(x).

Let w′ be the largest arrival in the tree rooted at p in T ′. We must have w′ < x;
otherwise, w′ is in some high tree that was removed from TL and made a child of x in
T ′. Since w is the largest arrival in the tree rooted at p in T , we have �T (p)−�T ′(p) =
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2(w − w′) by Lemma 2.1. There are two cases to consider depending on whether
w < z or w > z. If w < z, then �T (x) = �T ′(x) because z is the largest arrival in the
subtree rooted at x in both T and T ′. By definition w > w′; hence,

Mcost(T ) − Mcost(T ′) ≥ 2(w − w′) > 0.

If w > z, then �T (x) − �T ′(x) = 2(z − w) by Lemma 2.1. Hence,

Mcost(T ) − Mcost(T ′) ≥ 2(w − w′) + 2(z − w) = 2(z − w′) > 0

because w′ < x ≤ z.
Lemma 2.2 allows us to consider only merge trees with the preorder traversal

property. As a consequence, henceforth, we assume that all merge trees have the
preorder traversal property. Hence, a key property of merge trees is that for any
node ti, the subtree rooted at ti contains the interval of arrivals ti, ti+1, . . . , tj , where
z(ti) = tj . Furthermore, tj is the rightmost descendant of ti. As a result, we can
recursively decompose any merge tree into two in a natural way as shown in the
following lemma and seen in Figure 5.

T’’

x

z

T r

T’

Fig. 5. The recursive structure of a merge tree T with root r. The last arrival to merge
directly with r is x. All the arrivals before x are in T ′ and all the arrivals after x are in T ′′

and z is the last arrival.

Lemma 2.3. Let T be a merge tree with root r and last stream z and let x be the
last stream to merge to the root of T .

Mcost(T ) = Mcost(T ′) + Mcost(T ′′) + 2z − x− r,(4)

where T ′ is the subtree of all arrivals before x including r and T ′′ is the subtree of all
arrivals after and including x.

Proof. The length of any node in T ′ and T ′′ is the same as its length in T .
Since the root of T ′ is the root of T , it follows that x is the only node in Mcost(T )
whose length is not included in Mcost(T ′) or Mcost(T ′′). The lemma follows, since
by Lemma 2.1 the length of x is 2z(x) − x− p(x) = 2z − x− r.

We now prove that there is no gain in broadcasting a prefix of the full stream if
there is no arrival for it. That is, an optimal merge tree does not contain a node that
represents a prefix of the stream if this prefix does not start at ti for some 1 ≤ i ≤ n.
We first prove a lemma that shows that adding nodes to a merge tree always increases
the merge cost.

Lemma 2.4. Let T be a merge tree and let x ∈ T be one of its nodes. Then there
exists a merge tree T ′ on the nodes T − {x} such that Mcost(T ′) < Mcost(T ).
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Proof. Assume first that x is a leaf. Then let T ′ be T without x. We get that
Mcost(T ) ≥ Mcost(T ′) + �T (x) and therefore Mcost(T ′) < Mcost(T ). Let x be a
nonleaf node of T and let w be its leftmost child in T . The first modification is for
node w. If x is not the root of T , then let the parent of x in T be the parent of w
in T ′. Otherwise, make w the root of T ′. The second modification is for the rest of
the children of x in T . Make all of them children of w in T ′ and add them after w’s
own children, preserving their original order in T . The rest of the nodes maintain in
T ′ their parent-child relationship from T . By (1),

�T (v) = �T ′(v) for pT (v) �= x.(5)

That is, the length of any node v that is not a child of x in T remains the same in T ′

because there is no change in p(v) and z(v). If v �= w is a child of x, then (1) implies
that

�T (v) − �T ′(v) = w − x > 0 for v �= w and pT (v) = x,(6)

since w is a later arrival than x. As for w, there are two cases to consider depending
on whether w is the root of T ′ or not. If w is the root of T ′, then x is the root of
T . Hence, �T (x) is not counted in Mcost(T ) and �T ′(w) is not counted in Mcost(T ′).
Hence, we have by inequalities (5) and (6)

Mcost(T ) − Mcost(T ′) = �T (w) +
∑

(v �=w)∧(pT (v)=x)

(�T (v) − �T ′(v)) > 0.

If w is not the root of T ′, then we might have �T ′(w) > �T (w). However, this is more
than compensated for by the inequality

�T (x) > �T ′(w).(7)

To see inequality (7), note that zT (x) = zT ′(w) and that pT (x) = pT ′(w); hence by
(1), �T (x)−�T ′(w) = w−x > 0. By combining inequalities (5), (6), and (7) we obtain
the following:

Mcost(T )−Mcost(T ′) = �T (x)+�T (w)−�T ′(w)+
∑

(v �=w)∧(pT (v)=x)

(�T (v)−�T ′(v)) > 0,

which is our desired result.
Lemma 2.5. For arrivals t1, t2, . . . , tn every node (stream) x in an optimal merge

tree starts at time ti for some 1 ≤ i ≤ n.
Proof. Assume to the contrary that there exists a stream x that starts at time t

that is not one of the n arrival times t1, . . . , tn. By definition, no client needs stream
x. Hence, by Lemma 2.4, we could omit node x from T to get a tree T ′ without x,
whose merge cost is smaller than the merge cost of T and is a contradiction to the
optimality of T .

Remark. Optimal merge trees also give a lower bound on the bandwidth for the
more dynamic event-driven algorithms [18, 19]. A client’s receiving procedure, which
streams it listens to and when, is determined, in part, by future arrivals. Nonetheless,
in the end, the final receiving pattern of a client forms a path in a merge tree. At
any point in time only a set of subtrees of the final merge tree is known. Each root of
a subtree represents an active stream at that time. When a merge event occurs, the
root of some subtree becomes the child of some root in another subtree.
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2.2. The full cost. Let F be composed of s merge trees T1, . . . , Ts. The full
cost of F is defined as

Fcost(F ) = s · L +
∑

1≤i≤s

Mcost(Ti).

The above definition is a bit problematic since in the way we define the merge cost
it could be the case that a length of a stream is L or larger. Consider the following
example. Suppose that the root arrives at time 0 and there are two additional arrivals
at times L − 2 and L − 1. In one optimal merge tree the third arrival first merges
with the second arrival and then both merge with the root; that is, p(L− 1) = L− 2
and p(L− 2) = 0. The cost of this tree is L for the root, L for the second arrival, and
1 for the third arrival for a total cost of 2L+ 1. It is clear that this single merge tree
can be considered as a merge forest of two merge trees, the first with one arrival, 0,
and the second with two, L− 2 and L− 1. A more serious problem is exposed by the
following example where the arrival times are 0, L − 3, and L − 1. In this case the
definition of a merge tree would allow p(L− 1) = L− 3 and p(L− 3) = 0. In this case
the full cost of the merge tree is 2L + 3. Length L for the root 0, length L + 1 for
L− 3, and length 2 for L− 1. We have �(L− 3) greater than L. However, this merge
tree is not an optimal merge forest for these three arrivals. The optimal merge forest
has two trees, one with root 0 and one with root L− 3 for a full cost of 2L + 2.

Naturally, we cannot allow the length of any stream to be greater than L. To
remedy this problem we define an L-tree to be a merge tree in which the length of
each stream has length less than or equal to L and the length of the root is L. The
first example above is an L-tree, but the second is not. It should be clear that an
L-tree with a nonroot x of length L can be split into two L-trees of the same cost by
simply making x a new root. An L-forest is a merge forest that is composed of L-trees
only. For an arrival sequence t1, . . . , tn and stream length L define the optimal full
cost for the sequence to be the minimum full cost of any L-forest for the sequence.
An optimal L-forest is one that has optimal full cost.

Our strategy for searching for the optimal L-forest is to consider all possible merge
forests as candidates for the optimal. The following lemma shows that this extended
search always yields an L-forest as the optimal.

Lemma 2.6. Any merge forest F that minimizes Fcost(F ) is an L-forest.

Proof. Define the following split operation on trees. Let T be a merge tree on
the arrivals t1, . . . , tn. Let x = ti be a node in the tree. Then the x-split of T creates
two trees: T ′ and T ′′. T ′ is rooted at t1 and contains the arrivals t1, . . . , ti−1 with
the same parent-child relation as in T . T ′′ is rooted at x and contains the arrivals
ti, . . . , tn. The parent relation in T ′′ is defined as follows: Let y = tj for i < j ≤ n
and let w = p(y) be the parent of y in T . If w > x, then w = p(y) in T ′′ as well.
Otherwise, x = p(y) in T ′′.

Let T be a non-L-tree and let x ∈ T be a node whose length is �(x) > L. We
claim that

Fcost(T ′) + Fcost(T ′′) < Fcost(T ).(8)

We prove this claim by showing that the length of each node, other than x, in T ′ or
T ′′ is no more than its length in T . Since the length of x is greater than L in T and
equal to L in T ′′, we are done. There are two cases to consider: (i) The length of all
the nodes that have the same parent in T ′ or T ′′ as they had in T remains the same;
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(ii) By Lemma 2.1, the length of all nodes y such that w = p(y) in T but x = p(y) in
T ′′ is reduced since w < x.

To prove the lemma, let F be a merge forest that minimizes Fcost(F ). If F is not
an L-forest, then there is some merge tree T in F which is not an L-tree. Apply the
above split procedure to this tree to obtain a new merge forest with less cost than F .
Thus, F must be an L-forest.

3. The optimal algorithm. In this section we give efficient algorithms for
finding a merge tree that minimizes the merge cost and for finding a merge forest that
minimizes the full cost. For the merge cost case we assume that the root has length
infinity and that all the arrivals can merge to it. In the full cost case we assume that
the length of a full stream is L. We then search for the best assignment of roots among
the n arrivals. Although some of the assignments may lead to non-L-trees (trees in
which some of the nodes have length greater than L), by Lemma 2.6 we know that
an optimal merge forest is an L-forest.

For the merge cost we present an efficient O(n2) time algorithm improving the
known O(n3) time algorithm (see [2, 19]). The latter algorithm is based on a straight-
forward dynamic programming implementation. Our algorithm implements the dy-
namic programming utilizing the monotonicity property of the recursive definition for
the merge cost. For the full cost we use the optimal solution of the merge cost as a
subroutine. We describe an O(nm) time algorithm where m is the average number of
arrivals in an interval of length L− 1 that begins with an arrival.

3.1. Optimal merge cost. Let t1, t2, . . . , tn be a sequence of arrivals. Define
M(i, j) to be the optimal merge cost for the input sequence ti, . . . , tj . In a dynamic
programming fashion we show how to compute M(i, j). The optimal cost for the
entire sequence is M(1, n). By Lemma 2.3 we can recursively define

M(i, j) = min
i<k≤j

{M(i, k − 1) + M(k, j) + (2tj − tk − ti)}(9)

with the initialization M(i, i) = 0. Using the notation of Lemma 2.3, ti is the root r,
tj is the last arrival z, and we are looking for the optimal last arrival tk, which is x,
that merges to the root. This recursive formulation naturally leads to an O(n3) time
algorithm using dynamic programming. The following theorem shows that this can
be significantly improved.

Theorem 3.1. An optimal merge tree can be computed in time O(n2).
Proof. To reduce the time to compute the optimal merge cost to O(n2) we employ

monotonicity, a classic technique pioneered by Knuth [33, 34]. Define r(i, i) = i and
for i < j

r(i, j) = max {k : M(i, j) = M(i, k − 1) + M(k, j) + 2tj − tk − ti} .

That is, r(i, j) is the last arrival that can merge to the root in some optimal merge
tree for ti, . . . , tj . Monotonicity is the property that for 1 ≤ i < n and 1 < j ≤ n

r(i, j − 1) ≤ r(i, j) ≤ r(i + 1, j).(10)

We should note that there is nothing special about using the max in the definition of
r(i, j); the min would yield the same inequality (10). Once monotonicity is demon-
strated then the search for the k in (9) can be reduced to r(i + 1, j) − r(i, j − 1) + 1
possibilities from j − i possibilities. Hence, the sum of the lengths of all the search
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intervals is reduced to
∑

1≤i<n

∑
i<j≤n(r(i + 1, j) − r(i, j − 1) + 1) = O(n2) from∑

1≤i<j≤n(j − i) = O(n3). This yields an O(n2) algorithm.
Fortunately, for our problem we can apply the very elegant method of quadrangle

inequalities, pioneered by Yao [45] and extended by Borchers and Gupta [6], that
leads to a proof of monotonicity. Define h(i, k, j) = 2tj − tk − ti which is the third
term in (9). Borchers and Gupta show that if h satisfies the following two properties,
then monotonicity holds. For i ≤ j < t ≤ k ≤ l and i < s ≤ l,

1. if t ≤ s, then h(i, t, k) − h(j, t, k) + h(j, s, l) − h(i, s, l) ≤ 0 and h(j, s, l) −
h(i, s, l) ≤ 0;

2. if s ≤ t, then h(j, t, l) − h(j, t, k) + h(i, s, k) − h(i, s, l) ≤ 0 and h(i, s, k) −
h(i, s, l) ≤ 0.

In our case, both four-term sums are identically zero, while h(j, s, l) − h(i, s, l) =
ti − tj ≤ 0 and h(i, s, k) − h(i, s, l) = 2(tk − tl) ≤ 0.

As a byproduct of the computation of r(i, j) we can recursively compute the
optimal merge tree using the recursive characterization of Lemma 2.3. We define a
recursive procedure for computing an optimal merge tree for the input ti, . . . , tj as
follows. If i = j, then return the tree with one node labeled ti. Otherwise, recursively
compute optimal merge trees T ′ for the input ti, . . . , tr(i,j)−1 and T ′′ for tr(i,j), . . . , tj ,
then attach the root of T ′′ as an additional last child of the root of T ′ and return
the resulting tree. This procedure is then called for the input t1, . . . , tn to get the
final result. With an elementary data structure, and with r(i, j) already computed
for 1 ≤ i ≤ j ≤ n, the construction of the optimal merge tree can be done in linear
time.

We conclude this subsection with an upper bound on the merge cost of an arrival
sequence t1, t2, . . . , tn. Denote by N = tn− ti the span of the arrivals. We are looking
for an upper bound that depends only on N and n and not on the sequence itself. In
the following theorem we establish an O(N log n) upper bound based on a full binary
merge tree.

Theorem 3.2. The optimal merge cost is O(N log n).
Proof. Using the notation of this subsection, we prove that

M(i, j) ≤ c(tj − ti) log2(j − i + 1)

by induction on h = j − i, for some constant c ≥ 4. For the rest of the proof we
omit the base 2 from the log function. The theorem follows by choosing i = 1 and
j = n. The claim trivially holds for h = 0. For h = 1 the claim holds for c = 1 since
M(i, i + 1) = ti+1 − ti. Assume h ≥ 2 and that the claim holds for 1, . . . , h− 1. We
distinguish between the cases of an odd h and an even h. In both cases assume that
j − i = h for some 1 ≤ i < j ≤ n.

An odd h.

M(i, j) ≤ M (i, (i + j − 1)/2) + M ((i + j + 1)/2, j) + 2tj − t(i+j+1)/2 − ti

≤ c(t(i+j−1)/2 − ti) log ((h + 1)/2) + c(tj − t(i+j+1)/2) log ((h + 1)/2) + 2(tj − ti)

≤ c(tj − ti) log ((h + 1)/2) + 2(tj − ti)

≤ c(tj − ti) log(h + 1) − (c− 2)(tj − ti)

≤ c(tj − ti) log(h + 1).

The first inequality is based on (9). The second inequality is by the induction hy-
pothesis and by the fact that t(i+j+1)/2 > ti. The third inequality is valid since
tj − ti ≥ (t(i+j−1)/2) − (ti + tj − t(i+j+1)/2). The fourth inequality is implied since
log((h + 1)/2) = log(h + 1) − 1. Finally, the last inequality holds for c ≥ 2.
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An even h.

M(i, j) ≤ M (i, (i + j − 2)/2) + M ((i + j)/2, j) + 2tj − t(i+j)/2 − ti

≤ c(t(i+j−2)/2 − ti) log (h/2) + c(tj − t(i+j)/2) log ((h + 2)/2) + 2(tj − ti)

≤ c(tj − ti) log ((h + 2)/2) + 2(tj − ti)

≤ c(tj − ti) log(h + 2) − (c− 2)(tj − ti)

≤ c(tj − ti) log(h + 1) + 0.5c(tj − ti) − (c− 2)(t− j − ti)

≤ c(tj − ti) log(h + 1) − (0.5c− 2)(t− j − ti)

≤ c(tj − ti) log(h + 1).

The first inequality is based on (9). The second inequality is by the induction hy-
pothesis and by the fact that t(i+j)/2 > ti. The third inequality is valid since
tj − ti ≥ (t(i+j−1)/2 − ti) + (tj − t(i+j+1)/2) and log((h + 2)/2) ≥ log(h/2). The
fourth inequality is implied since log((h+ 2)/2) = log(h+ 2)− 1. The fifth inequality
is due to the fact that log2(h + 2) ≤ log2(h + 1) + 0.5 for h ≥ 2. Rearranging terms
implies the sixth inequality. Finally, the last inequality holds for c ≥ 4.

3.2. Optimal full cost. The optimal algorithm for full cost uses the optimal
algorithm for merge cost as a subroutine. Let t1, t2, . . . , tn be a sequence of arrivals
and let L be the length of a full stream. We know that a full stream must begin at
t1; then there are two possible cases in an optimal solution. Either all the remaining
streams merge to this first stream or there is a next full stream tk for some k ≤ n. In
the former case, the optimal full cost is simply L + M(1, n). In the latter case, the
optimal full cost is L+M(1, k−1) plus the optimal full cost of the remaining arrivals
tk, . . . , tn. In both cases, the last arrival to merge to the first stream must be within
L− 1 of the first stream. That is, in the former case tn − t1 ≤ L− 1 and in the latter
case tk−1 − t1 ≤ L− 1.

For 1 ≤ i ≤ n, define G(i) to be the optimal full cost for the last n− i+1 arrivals
ti, . . . , tn. By the analysis above, we can define G(n + 1) = 0 and for 1 ≤ i ≤ n

G(i) = L + min {M(i, k − 1) + G(k) : i < k ≤ n + 1 and tk−1 − ti ≤ L− 1} .(11)

The order of computation is G(n + 1), G(n), . . . , G(1). The optimal full cost is G(1).
This analysis leads us to the following theorem.

Theorem 3.3. An optimal L-forest can be computed in time O(nm) where m
is the average number of arrivals in an interval of length L − 1 that begins with an
arrival.

Proof. We begin by giving an algorithm for computing the optimal full cost and
then show how it yields an algorithm to construct an optimal merge forest. By Lemma
2.6 this optimal merge forest is an L-forest. The optimal full cost algorithm proceeds
in two phases. In the first phase we compute the optimal merge cost M(i, j) for all
i and j such that 0 ≤ tj − ti ≤ L − 1, so that these values can be used to compute
G(i). In the second phase we compute G(i) from i = n down to 1 using (11). Define
mi to be the cardinality of the set {j : 0 ≤ tj − ti ≤ L− 1} and define m to be the
average of the mi’s, that is, m =

∑n
i=1 mi/n. The quantity m can be thought of

as the average number of arrivals in an interval of length L − 1 that begins with an
arrival.

We argue that each of the two phases can be computed in O(nm) = O (
∑n

i=1 mi)
time. This is mostly a data structure issue because the number of additions and
subtractions in the two phases is bounded by a constant times

∑n
i=1 mi. To facilitate
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the computations we define an array A[1..n] of arrays. The array A[i] is indexed from
0 to mi − 1. Ultimately, the array entry A[i][d] will contain M(i, i + d) for 1 ≤ i ≤ n
and 0 ≤ d < mi. Initially, A[i][0] = 0 and A[i][d] = ∞ for 1 ≤ d < mi. In phase
one, a dynamic program based on (9) can be used to compute the ultimate value of
A[i][d] = M(i, i + d). Here, a specific order is required for the computation of all the
nm entries in the array A[1..n]. Using the monotonicity property, it can be done in
time O(nm). In phase two, we use the array A to access the value M(i, k − 1) when
it is needed. Since the minimization in (11) ranges over at most mi values, the time
of phase two is bounded by a constant times

∑n
i=1 mi. Hence both phases together

run in time O(nm).
We have already seen how to construct an optimal merge tree, so all that is left

is to identify the full streams. This is done inductively using the values G(i) for
1 ≤ i ≤ n that we have already computed. We know that t1 is a full stream. Suppose
that we know the first j ≥ 1 full streams that are indexed f1, f2, . . . , fj . We want to
determine if fj is the last full stream, or that the next full stream is indexed fj+1.
Find the smallest k such that

G(fj) = L + M(fj , k − 1) + G(k),

where fj < k ≤ n + 1 and tk−1 − tfj ≤ L − 1. If k = n + 1, then fj is the last full
stream. If k < n + 1, then the next full stream is indexed fj+1 = k. When we are
done, suppose there are s full streams which start at the arrivals indexed f1, f2, . . . , fs.
We then compute s merge trees where the ith merge tree is for inputs tfi , . . . , tfi+1−1

if i < s and for inputs tfs , . . . , tn if i = s. Given that G(i) for 1 ≤ i ≤ n + 1 and
M(i, j) and r(i, j) for tj − ti ≤ L−1 are already computed, then the time to compute
the sequence f1, f2, . . . , fs and to compute the merge trees rooted at these arrivals is
O(

∑n
i=s mfi) which is O(n).

We now compute an upper bound on the full cost of an arrival sequence t1, t2, . . . , tn,
where n ≥ 2. This time we are looking for an upper bound that depends only on
N = tn − t1, n, and L and not on the sequence itself. Define ρ = n/N to be the
density of the n arrivals. We have 0 < ρ ≤ 1. If ρ is near zero, then there are very
few arrivals over the span N , so we would expect the optimal full cost to be O(nL).
On the other hand, if ρ is large, we would expect a lot of merging to occur, reducing
the full cost considerably. This intuition is quantified in the following theorem.

Theorem 3.4. The optimal full cost is O(nL) for any values of n and N . The
optimal full cost is O(N log(ρL)) for ρ ≥ α/L for some positive constant α.

Proof. The first statement of the theorem is true for any solution since in the
worst case each arrival gets a full stream for a total cost of nL. This is optimal if any
two arrivals are more than L apart.

To prove the second statement of the theorem, assume that the optimal full cost
is obtained by the L-forest F that contains s L-trees. Let the cardinalities of these
trees be m1,m2, . . . ,ms, where mi ≥ 1 for 1 ≤ i ≤ s and

∑s
i=1 mi = n. It follows

that

Fcost(F ) = sL +
s∑

i=1

Mcost(mi).

By Theorem 3.2 there is a constant c (c = 4 log2 e is sufficient) such that

Fcost(F ) ≤ sL + cL
s∑

i=1

loge mi.
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The convexity of the function loge implies that

Fcost(F ) ≤ sL + cL

s∑
i=1

loge(n/s) = sL + csL loge(n/s) = sL(c loge(n/s) + 1).(12)

The expression sL(c loge(n/s) + 1) as a function of s is concave and, by calculus,
achieves a global maximum of ce−1+1/cnL at s = e−1+1/cn.

We now show a natural upper bound on s:

s ≤ 4N

L
.(13)

To see this we argue that there cannot be three full streams in an interval of length
L/2. In such a case, the last arrival of the second tree is less than L/2 slots far from
the root of the first tree. One could save cost by merging the root of the second tree
to the root of the first tree. The worst case happens when every L/4 + 1 slots there
is a new stream.

We conclude the proof of the second statement by letting α = 4e1−1/c and as-
suming that ρ ≥ α/L. It follows that e−1+1/cn ≥ 4N/L. The concavity of the Fcost
as a function of s implies that Fcost(F ) is bounded above when s = 4N/L which is
the maximum value for s by (13). By plugging this value for s into (12) we get

Fcost(F ) ≤ 4N

L
L

(
c loge

n

4N/L
+ 1

)

= O(N log(ρL)).

The statement of Theorem 3.4 seems to be different from the statement of Theo-
rem 3.2. Here the performance depends on L as well. Nevertheless, when ρ is large,
the term ρL, which is close to the average number of arrivals in an interval of length
L, is analogous to n.

We conclude this section by comparing analytically the performance of the tradi-
tional batching with the performance of the optimal full cost using the upper bound
of Theorem 3.4.

Theorem 3.5. There is a positive constant α such that if ρ ≥ α/L, then batching
with stream merging is Ω(ρL/ log(ρL)) better than batching alone.

Proof. Choose α by Theorem 3.4. The cost of batching the n full streams is nL.
Therefore, by Theorem 3.4, the ratio between the performance of batching alone and
batching with stream merging is

Ω

(
nL

N log(ρL)

)
= Ω

(
ρL

log(ρL)

)
.

If ρ < α/L, then the gain is at most a constant factor in using batching with
stream merging over batching alone.

4. Limited buffer size. In this section we show how to adapt our solution to
the case in which each client has a limited buffer size for storing later parts of streams.
Let B be the maximum buffer size. Clients start viewing the stream immediately while
being able to receive data from at most two streams. Therefore, if a client has b parts
in its buffer it must have viewed the first b parts of the stream. Hence, clients never
need a buffer of size more than �L/2�. In this section, we assume that B < �L/2�
and we modify the algorithms accordingly.
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Suppose that arrival x belongs to the merge tree T that is rooted at r < x.
Assume further that T is an L-tree (the length of all nonroot nodes in the tree is
less than or equal to L). Our goal is to calculate b(x), the buffer size required by
clients that arrive at time x. These clients base their receiving procedure only on
earlier arrivals; therefore in calculating b(x), it is enough to consider the merge tree
T without all the arrivals after x. Define T (x) to be this tree; in particular, x is the
last arrival in T (x).

Lemma 4.1. The buffer size required by clients arriving at x in the merge L-tree
T rooted at r is

b(x) = min {x− r, L− (x− r)} .

Proof. We distinguish between the following two cases.
Case 1. Assume 0 < x−r ≤ �L/2�. Let y be the ancestor of x in T (x) (could be x

itself) that is the child of the root r. It follows that x merges to r at time y+�(y) that
is the end time of the stream that was initiated at y. Now, �(y) = (x−y)+(x−r) by (3)
which implies that x merges to r at time 2x−r. At this time x spent (2x−r)−x = x−r
slots receiving data from two streams and from this time on x receives data from only
one stream. Hence, b(x) = x− r.

Case 2. Assume �L/2� < x − r ≤ L − 1. By the assumption T is an L-tree and
hence the length of all the ancestors of x is strictly less than L. It follows that x
receives the Lth part of the stream from the root and stops buffering after time r+L
which is the end time of the stream initiated at the root. This implies that x buffers
exactly L + r − x parts of the stream.

The lemma follows since if x − r ≤ �L/2�, then x − r < L − (x − r) and if
�L/2� < x ≤ L− 1, then L− (x− r) < x− r.

We are now ready to describe the optimal algorithm for the full cost assuming
B < �L/2�. Let t1, t2, . . . , tn be the sequence of arrivals. The only change is in the
definition of G(i) in (11). In this equation the search for the minimum value was for
i < k ≤ n + 1 such that tk−1 − ti ≤ L− 1. In what follows we modify this condition.

Lemma 4.2. For 1 ≤ i ≤ i′ ≤ n, let ti′ be the last arrival that can merge to ti
assuming ti is a root. Then either (i) ti′ − ti ≤ B, or (ii) L− (ti′ − ti) ≤ B and there
are no arrivals tj such that ti + B < tj < ti + L−B.

Proof. Assume first that there exists an arrival tj such that ti+B < tj < ti+L−B.
By Lemma 4.1 it follows that if tj belongs to a tree rooted at ti then its buffer size
must be greater than B. This means that tj must belong to a tree rooted at a later
arrival than ti. Thus, in this case ti′−ti ≤ B. Assume now that there are no arrivals tj
such that ti +B < tj < ti +L−B. The same lemma implies that arrivals in the range
[ti +L−B, ti +L− 1] need buffer size less than or equal to B if they merge to a tree
rooted at ti. Hence, if there exists an arrival tj such that ti +L−B ≤ tj ≤ ti +L− 1,
then L− (ti′ − ti) ≤ B. Otherwise, ti′ − ti ≤ B since arrivals after ti + L− 1 cannot
merge to a tree rooted at ti.

Let ti′ be the last arrival that can belong to a merge L-tree rooted at ti as implied
by Lemma 4.2. Define GB(i) to be the optimal full cost for the last n− i+ 1 arrivals
ti, . . . , tn. We can define GB(n + 1) = 0 and for 1 ≤ i ≤ n

GB(i) = L + min {M(i, k − 1) + GB(k) : i < k ≤ n + 1 and tk−1 ≤ ti′} .(14)

The order of computation is GB(n + 1), GB(n), . . . , GB(1). The optimal full cost is
G(1). The following theorem is a modification of Theorem 3.3.
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Theorem 4.3. An optimal merge forest can be computed in time O(nm) where
m is the average number of arrivals in an interval of length B that begins or ends with
an arrival.

Proof. The proof is almost identical to the proof of Theorem 3.3. The only
change is the definition of m. The O(nm) is true since by Lemma 4.2 the search for
the minimum in computing GB(i) is conducted in at most in two intervals each of
size B.
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Fig. 6. Comparison of bandwidth required for batching, batching in the receive-two model,
and batching in the receive-all model. The figure plots the bandwidth requirement vs. delay
for a 2-hour movie, with Poisson arrivals averaging every 10 seconds.

5. The receive-all model. In this section we consider the receive-all model.
In this model a client is capable of receiving data from all the existing streams.
Surprisingly, the gain is very little compared to the receive-two model. Experimentally
these two models are compared with the traditional batching (receive-one) in Figure 6.
We added batching in the receive-all model to the plot of Figure 3. The figure speaks
for itself. The rest of the section is devoted to demonstrating analytical comparisons
of the full cost. In particular, we show a gain of at most 2. Recall that the gain from
the traditional batching to the receive-two model is Ω(ρL/ log(ρL)) (for ρ ≥ α/L for
some α).

We omit some of the details in the proofs of our claims in this section since
the proofs are very similar to those in the receive-two model. We first prove some
preliminary results as we did in the receive-two model.

In the receive-all model we define merge trees in exactly the same way as the
receive-two model. Without going into detail, if x0, x1, . . . , xk is the path from the
root x0 to node xk that is the arrival time of a specific client, then the client xk can
receive data from all the streams x0, . . . , xk. As in the receive-two model each stream
starts at the beginning and runs continuously until it terminates, perhaps early.

Given a merge tree T and a node x, define �ω(x) to be the minimum length needed
to guarantee that all the clients can receive the stream using the receive-all stream
merging rules.
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Lemma 5.1. Let x �= r(T ) be a nonroot node in a tree T . Then

�ω(x) = z(x) − p(x).(15)

In particular, if x is a leaf, then �(x) = x− p(x) since z(x) = x.
Proof. Let a path from the root r to a leaf y be r = x0, x1, . . . , xk = y. At time

xk the clients arriving at y receive the following parts of the stream: part 1 from xk,
part 1 + (xk − xk−1) from xk−1, part 1 + (xk − xk−2) from xk−2, and in general part
1 + (xk − xi) from xi. In particular they receive part 1 + (xk − x0) from the root.
This means that the stream at xk must last for at least xk − xk−1 slots in order for
the clients arriving at y to receive parts [1, (xk − xk−1)]. Since the only stream that
can provide parts [1 + (xk − xk−1), (xk − xk−2)] to these clients is the one at xk−1,
this stream must last for at least xk − xk−2 slots. In general, since the stream at xi

provides parts [1 + (xk − xi), (xk − xi−1)] to these clients, this stream must last for
at least xk − xi slots.

Now let x be a node in the tree, let p(x) be its parent, and let z(x) be the
node representing the last arrival in the subtree rooted at x. The above arguments
imply that the stream at x provides parts [1 + (z(x) − x), (z(x) − p(x))] to the clients
arriving at z(x). Since a stream is always a prefix of the full transmission, the length
of the stream at x must be at least z(x)− p(x). The proof is completed, since by the
definition of z(x), no other clients require later parts from the stream at x.

Define Mcostω(T ) to be the sum of �ω(x) for all x in T except the root. For
a merge forest F consisting of merge trees T1, . . . , Ts, define Fcostω(F ) = s · L +∑s

i=1 Mcostω(Ti), where L is the length of a full stream. Again we have an elegant
recursive formula for the merge cost.

Lemma 5.2. Let T be a merge tree with root r and last stream z and let x be the
last stream to merge to the root of T . Then we have

Mcostω(T ) = Mcostω(T ′) + Mcostω(T ′′) + (z − r),(16)

where T ′ is the subtree of all arrivals before the last stream to merge to the root of T
and T ′′ is the subtree rooted at the last stream to merge to the root.

Proof. The length of any node in T ′ and T ′′ is the same as its length in T .
Since the root of T ′ is the root of T , it follows that x is the only node in Mcost(T )
whose length is not included in Mcost(T ′) or Mcost(T ′′). The lemma follows, since
by Lemma 5.1 the length of x is z(x) − p(x) = z − r.

We are now ready to compute the merge cost and then the full cost. Let t1, . . . , tn
be a sequence of arrivals. Define Mω(i, j) to be the minimum cost of a merge tree in
the receive-all model for the input sequence ti, . . . , tj . Similar to the way we computed
M(i, j) we can compute Mω(i, j) using the recursive formulation based on (16):

Mω(i, j) = min
i<k≤j

{Mω(i, k − 1) + Mω(k, j)} + (tj − ti)(17)

with the initialization Mω(i, i) = 0 for 1 ≤ i ≤ n. The optimal cost for the entire
sequence is Mω(1, n). Because tk does not appear as a parameter in (17), we can use
the simpler approach of Yao [45] to show monotonicity. As a result we have an O(n2)
time algorithm for computing an optimal merge tree in the receive-all model.

Equations (9) and (17) allow us to give bounds on the gain in optimal merge cost
that can be achieved by moving to the receive-all model.

Theorem 5.3. For any arrival sequence t1, . . . , tn and 1 ≤ i ≤ j ≤ n

Mω(i, j) ≤ M(i, j) ≤ 2Mω(i, j).
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Proof. The proof is by induction on j−i. If j−i = 0, then M(i, j) = Mω(i, j) = 0.
If j − i > 0, then let k and h be such that

M(i, j) = M(i, k − 1) + M(k, j) + 2tj − tk − ti,(18)

Mω(i, j) = Mω(i, h− 1) + Mω(h, j) + tj − ti.(19)

The following proves the lower bound claim of the theorem.

Mω(i, j) ≤ Mω(i, k − 1) + Mω(k, j) + tj − ti

≤ M(i, k − 1) + M(k, j) + tj − ti

≤ M(i, k − 1) + M(k, j) + 2tj − tk − ti

≤ M(i, j).

The first inequality follows since Mω(i, j) is a minimization. By the induction hy-
pothesis, we get the second inequality. The third inequality is implied since tj ≥ tk.
Finally, (18) yields the last inequality.

The following proves the upper bound claim of the theorem:

M(i, j) ≤ M(i, h− 1) + M(h, j) + 2tj − th − ti

≤ 2Mω(i, h− 1) + 2Mω(h, j) + 2tj − th − ti

≤ 2Mω(i, h− 1) + 2Mω(h, j) + 2(tj − ti)

≤ 2Mω(i, j).

The first inequality follows since M(i, j) is a minimization. By the induction hy-
pothesis, we get the second inequality. The third inequality is implied since th ≥ ti.
Finally, (19) yields the last inequality. In the same way as we did for the receive-
two model, define Gω(i) to be the optimal full cost in the receive-all model for the
sequence ti, . . . tn, the last n− i+ 1 arrivals. We have G(n+ 1) = 0 and for 1 ≤ i ≤ n

Gω(i) = L + min {Mω(i, k − 1) + Gω(k) : i < k ≤ n + 1 and tk−1 − ti ≤ L− 1} .(20)

The order of computation is Gω(n + 1), Gω(n), . . . , Gω(1). The optimal full cost is
Gω(1). Using exactly the same technique as we did for the receive-two model, we
achieve an O(nm) algorithm for computing an optimal merge forest in the receive-all
model, where m is the average number of arrivals in a interval of length L − 1 that
begins with an arrival.

We now apply Theorem 5.3 to show the same factor of 2 bound on the optimal
full cost.

Theorem 5.4. For any arrival sequence t1, . . . , tn and 1 ≤ i ≤ n + 1,

Gω(i) ≤ G(i) ≤ 2Gω(i).

Proof. The proof is by a reverse induction from n + 1 to 1. For n + 1 we have
Gω(n + 1) = G(n + 1) = 0. If i < n + 1, then we proceed in a way similar to the
proof of theorem 5.3, by letting k > i and h > i be such that tk−1 − ti ≤ L − 1,
th−1 − ti ≤ L− 1, and

G(i) = L + M(i, k − 1) + G(k),(21)

Gω(i) = L + Mω(i, h− 1) + Gω(h).(22)
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The following proves the lower bound claim of the theorem:

Gω(i) ≤ L + Mω(i, k − 1) + Gω(k)

≤ L + M(i, k − 1) + G(k)

≤ G(i).

The first inequality follows since Gω(i) is a minimization. The induction hypothesis
and Theorem 5.3 imply the second inequality. The last inequality is by (21).

The following proves the upper bound claim of the theorem:

G(i) ≤ L + M(i, h− 1) + G(h)

≤ 2L + 2Mω(i, h− 1) + 2Gω(h)

≤ 2Gω(i).

The first inequality follows since G(i) is a minimization. The induction hypoth-
esis, Theorem 5.3, and the fact that L is positive imply the second inequality. The
last inequality is by (22).

The factor of 2 is not at all tight for optimal full cost. For example, if L = 2,
then it can be shown that the optimal full cost in the receive-two model is identical
to the optimal full cost in the receive-all model.

6. Conclusions. In this paper, we addressed the problem of designing efficient
off-line algorithms to compute the optimal stream merging in media-on-demand sys-
tems. In a stream merging system, clients are assigned to receive data from streams
that transmit a popular media where they are capable of receiving data from two
streams simultaneously. When clients arrive, they get a receiving program that in-
structs them from which streams to receive data and when. Their program is inde-
pendent of later arrivals and is simple. Streams are broadcast by the server each time
clients request to view the transmission. However, very few of the streams are full
streams, thus allowing the savings in the total utilized bandwidth per one popular
media. The main advantage of stream merging is its flexibility. With stream merging,
it is easier to allocate channels dynamically to various media based on the current
demand.

The main objective of this paper was to construct an efficient optimal algorithm.
Recall that n is the number of arrivals, L is the length of the full stream, and m is the
average number of arrivals in an interval of length L − 1 that starts with an arrival.
With these parameters, we have an O(nm) optimal algorithm. We also showed how
to modify our algorithm to be optimal even if the buffer of clients is limited in its
size while maintaining the same running time complexity. To obtain these results, we
introduced a new abstract model for the stream merging paradigm. Our merge forest
model captures all the information regarding the system. We first analyze a single
merge tree and then the merge forest itself.

Finally, we considered a stronger model in which clients may receive data from
all the existing streams simultaneously. We showed how our techniques extend to this
model with less effort. We used these results to show that analytically the gain from
the receive-two model to the receive-all model is at most 2, whereas the gain from the
traditional batching to the receive-two model is of order ρL/ log(ρL), where ρ ≤ 1 is
the density of the n arrivals in the time interval between the first and the last arrival
and ρ is large enough. This phenomenon was known experimentally and we support
it with analytical results.
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