
AN ALGORITHM FOR SHORTEST PATHS IN BIPARTITE
DIGRAPHS WITH CONCAVE WEIGHT MATRICES

AND ITS APPLICATIONS∗

XIN HE† AND ZHI-ZHONG CHEN‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 65–80

Abstract. The traveling salesman problem on an n-point convex polygon and the minimum
latency tour problem for n points on a straight line are two basic problems in graph theory and have
been studied in the past. Previously, it was known that both problems can be solved in O(n2) time.
However, whether they can be solved in o(n2) time was left open by Marcotte and Suri [SIAM J.
Comput., 20 (1991), pp. 405–422] and Afrati et al. [Informatique Theorique Appl., 20 (1986), pp.
79–87], respectively.

In this paper we show that both problems can be solved in O(n logn) time by reducing them
to the following problem: Given an edge-weighted complete bipartite digraph G = (X,Y,E) with
X = {x0, . . . , xn} and Y = {y0, . . . , ym}, we wish to find the shortest path from x0 to xn in G.
This new problem requires Ω(nm) time to solve in general, but we show that it can be solved in
O(n+m logn) time if the weight matrices A and B of G are both concave, where for 0 ≤ i ≤ n and
0 ≤ j ≤ m, A[i, j] and B[j, i] are the weights of the edges (xi, yj) and (yj , xi) in G, respectively. As
demonstrated in this paper, the new problem is a powerful tool and we believe that it can be used
to solve more problems.

Key words. graph algorithm, shortest path, traveling salesman problem, minimum latency tour
problem, concave matrix

AMS subject classifications. 68Q25, 68R10

PII. S0097539797322255

1. Introduction. The traveling salesman problem (TSP) is a classical problem
of combinatorial optimization. It has been the testing ground of many new algorith-
mic ideas during the past half-century: dynamic programming, linear programming,
genetic algorithms, etc. The TSP is NP-hard and even nonapproximatable. This has
motivated researchers to look at its special cases. It turns out that various special
cases of the TSP remain NP-hard but are approximatable. Among the special cases
solvable in polynomial time, the TSP for points on a convex polygon is well known.
In this special case, we are given a set S of n points on the boundary of a convex
polygon C and two points x and y in S and are requested to compute a shortest tour
starting at x, visiting all the points in S−{x, y}, and ending at y. Here, the distance
between two points in S is the Euclidean distance between them. This special case
can be solved in O(n2) time via dynamic programming [10], but whether it can be
solved in o(n2) time was an open question (posed in [10]). In this paper, we give an
affirmative answer to this open question. More specifically, we show that the TSP for
points on a convex polygon can be solved in O(n logn) time.

The minimum latency problem (MLP) is as follows: We are given a metric space
M on n points {x1, . . . , xn} and are requested to compute a tour in M starting at x1

∗Received by the editors June 4, 1997; accepted for publication (in revised form) January 28,
1998; published electronically September 14, 1999. A preliminary version of this work was presented
as Shortest path in complete bipartite digraph problem and its applications, 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, LA, 1997.

http://www.siam.org/journals/sicomp/29-1/32225.html
†Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260

(xinhe@cse.buffalo.edu). The research of this author was supported in part by NSF grant CCR-
9205982.
‡Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-03,

Japan.

65



66 XIN HE AND ZHI-ZHONG CHEN

which minimizes the sum of the arrival times at the n points. More precisely, if T is
a tour starting at x1 we say that the latency of xi with respect to T is the distance
traveled in T before reaching xi; and the latency of T is the sum of the latencies of
the n points. The goal is then to find a tour of minimum latency. The MLP is a
well-studied problem in the operations research literature, where it is also known as
the “delivery-man problem” and the “traveling repairman problem” (see [5] for more
discussions and references). Although it looks similar to the TSP, the MLP is very
different from the TSP in nature [5]. Generally, the MLP is NP-complete [5]. Even
for points on a tree or on a convex polygon, it is not known whether the MLP is in
P or NP-complete [5]. The case where points are on a straight line was considered
in [1, 5]. This case is interesting since it is exactly the following disk head scheduling
problem: A disk head moves along a straight line L. The head must visit a set of
n points on L in order to satisfy disk access requests. The time needed to travel is
proportional to the distance being traveled. Once the head reaches a point, the disk
access time can be ignored (since the disk rotating speed is much higher than the head
moving speed). We want to find a tour of the head such that the average delay (or
equivalently, the total delay) of all requests is minimized. The MLP for this special
case can be solved in O(n2) time via dynamic programming [1, 5]. However, whether
it can be solved in o(n2) time was an open question [1]. In this paper, we answer this
question in the affirmative by giving an O(n logn)-time algorithm for it.

We obtain the two results mentioned above by efficient reductions to a single prob-
lem called the shortest path in bipartite digraph (SPBD) problem, which is defined as
follows. Let G = (X,Y,E) be a complete bipartite digraph with X = {x0, x1, . . . , xn}
and Y = {y0, y1, . . . , ym}. Each edge e ∈ E is associated with a real-valued weight
w(e). We use xi → yj and yj → xi to denote the edges. Let A[0..n, 0..m] be the matrix
with A[i, j] = w(xi → yj) and B[0..m, 0..n] be the matrix with B[i, j] = w(yi → xj).
The weight of a (directed) path P in G is defined as w(P ) =

∑
e∈P w(e). Given such

a digraph G, the SPBD problem is to find a path P in G from x0 to xn such that
w(P ) is minimized. For arbitrary weight matrices, we must examine all the edges of
G in order to find the shortest path. Thus we need at least Ω(nm) time to solve the
problem. A matrix M [0..n, 0..m] is called concave if the following hold:

M [i1, j1] +M [i2, j2] ≤M [i2, j1] +M [i1, j2]

for 0 ≤ i1 ≤ i2 ≤ n and 0 ≤ j1 ≤ j2 ≤ m.(1.1)

Concave matrices were first discussed in [12] and have been very successfully used
in solving various problems (see [2, 3, 4, 6, 7, 8, 9, 11, 12, 13] and the references
cited within). Given two matrices A[0..n, 0..m] and B[0..m, 0..n], the product matrix
W [0..n, 0..n] = A×B is defined by

W [i, j] = min
0≤k≤m

(A[i, k] +B[k, j]).(1.2)

For the SPBD problem we require that G contains no negative cycles since oth-
erwise the shortest path of G is not well defined. If both A and B are concave, as we
will prove later, this requirement is satisfied if all the entries on the main diagonal
of the product matrix W = A × B are nonnegative. In section 4 we will prove the
following theorem.

Theorem 1.1. Given two concave matrices A and B such that all the entries
on the main diagonal of the product matrix W = A × B are nonnegative, the SPBD
problem defined by A and B can be solved in O(n+m logn) time.



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 67

Even for this special case, no algorithm with o(nm) running time was previously
known. In this theorem we assume that the matrices A and B are not explicitly given.
Rather, an entry is computed in constant time when it is needed. This is true when
we apply our SPBD algorithm to solve the TSP and the MLP.

The rest of this paper is organized as follows. In section 2 we present the reduction
from the TSP for points on a convex polygon to the SPBD problem. In section 3 we
reduce the MLP for points on a straight line to the SPBD problem. In section 4 we
prove Theorem 1 by giving an O(n+m logn)-time algorithm for the SPBD problem.
Section 5 concludes the paper.

2. The TSP for points on a convex polygon. Let C be a convex polygon
and Z be the set of the corner vertices of C. The members of Z will be called points.
For two points z1 and z2 in Z, let d(z1, z2) denote the Euclidean distance between
z1 and z2. The points in Z induce an edge-weighted complete graph GZ , where the
weight on each edge {z1, z2} is d(z1, z2). We identify each edge {z1, z2} with the line
segment whose endpoints are z1 and z2. The weight of a path P in GZ is the sum
of the weights on the edges in P and is denoted by w(P ). Fix two points x and y
in Z. Hereafter, a Hamiltonian path in GZ always means one from x to y. Our goal
is to compute an optimal Hamiltonian path in GZ , i.e., a Hamiltonian path in GZ
of minimum weight. An easy geometric argument shows that every optimal path P
must be simple, i.e., no two edges of P cross each other.

Let x = x0, x1, . . . , xn = y be the points in Z that lie on the boundary of C from
x to y in the clockwise order. Let CX be the portion of the boundary of C which
starts at x, includes x1, . . . , xn−1, and ends at y. Similarly, let x = y0, y1, . . . , ym = y
be the points in Z that lie on the boundary of C from x to y in the counterclockwise
order. Let CY be the portion of the boundary of C which starts at x, includes y1, . . . ,

ym−1, and ends at y. For 0 ≤ i < j ≤ n let xi
X→ xj denote the portion of CX from

xi to xj . For 0 ≤ i < j ≤ m let yi
Y→ yj denote the portion of CY from yi to yj .

Let P be an optimal Hamiltonian path from x0 = y0 to xn = ym in GZ . Depend-
ing on whether the first and the last edges of P are in CX or in CY , there are four
possibilities. We assume that both the first and the last edges of P are in CY . Then
P must be of the following form:

xi0 = x0 = y0
Y→ yj1 → x1

X→ xi1 → yj1+1
Y→ yj2 → xi1+1

X→ · · · X→ xit

= xn−1 → yjt+1
Y→ ym = xn

for some 0 < j1 < j2 < · · · < jt < m − 1 and 0 = i0 < i1 < i2 < · · · < it = n − 1.
(See Figure 2.1. In Figure 2.1(b) the points in CX and CY are drawn on two vertical
lines for the sake of clarity.) We use the following dummy path P ′ to represent P (the
edges of P ′ are shown as dashed lines in Figure 2.1(b)):

P ′ : xi0(= x0)→ yj1 → xi1 → yj2 → xi2 → · · · → yjt−1
→ xit−1

→ yjt → xit(= xn−1).

The edges xil−1
→ yjl and yjl → xil in P ′ are called dummy edges. P is completely

specified by P ′.
For each dummy edge xil−1

→ yjl in P ′, the edge xil−1
→ xil−1+1 is not in P ,

while the edge yjl → xil−1+1 is in P . For each dummy edge yjl → xil in P ′, the
edge yjl → yjl+1 is not in P , while the edge xil → yjl+1 is in P . This motivates the
following definition of the weights of dummy edges xi → yj and yj → xi given in the
matrices A[0..n− 1, 0..m− 1] and B[0..m− 1, 0..n− 1]:

A[i, j] = w(xi → yj) = d(xi+1, yj)− d(xi, xi+1),(2.1)



68 XIN HE AND ZHI-ZHONG CHEN

1

mn

i 1

i
2

i
3

j
1

j
2

j 3

0 0

j
1
+1

edges in P

dummy edges in P’

i 0
=

yC

xC

yx
0 0
=

yx
n m

=

j
1

j
1
+1

j
2

j 3

i 1

i
2

i
3

(a) (b)

Fig. 2.1. (a) An optimal path P in a convex polygon; (b) a simplified representation of P .

B[j, i] = w(yj → xi) = d(yj+1, xi)− d(yj , yj+1).(2.2)

Note thatA[0, 0] = B[0, 0] = 0. Let SX =
∑n−1
i=1 d(xi−1, xi) and SY =

∑m
j=1 d(yj−1, yj).

It is easy to verify that the total weight of P is

w(P ) = SX + SY +
t∑
l=1

A[il−1, jl] +
t∑
l=1

B[jl, il].(2.3)

Although the above discussion is carried out by assuming that the first and the
last edges of P are in CY , it also applies to other cases. For example, if the first edge
of P is in CX , we let j1 = 0. If the last edge of P is in CX , we let jt = m − 1. It is
easy to verify that (2.3) is valid for these cases, too.

Since the term SX + SY in (2.3) is fixed for any P , to minimize w(P ) we need
only to minimize the reduced weight w(P ′) defined as follows:

w(P ′) =
t∑
l=1

A[il−1, jl] +
t∑
l=1

B[jl, il].(2.4)

Let G = (X,Y,E) be the complete bipartite digraph with X = {x0, x1, . . . , xn−1}
and Y = {y0, y1, . . . , ym−1} and the weight matrices A and B. Then a dummy path
P ′ with minimum reduced weight w(P ′) is exactly a shortest path in G from x0 to
xn−1.

For 0 ≤ i < i′ ≤ n − 1 and 0 ≤ j < j′ ≤ m − 1, by the definition of A and
the fact that C is a convex polygon, we have A[i, j] + A[i′, j′] − A[i, j′] − A[i′, j] =
d(xi+1, yj) + d(xi′+1, yj′)− d(xi+1, yj′)− d(xi′+1, yj) < 0.

Thus A is concave. Similarly, we can show that B is also concave. Let W = A×B.
Then

W [i, i] = min
0≤j≤m−1

[d(xi+1, yj)− d(xi, xi+1) + d(yj+1, xi)− d(yj , yj+1)].



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 69

By the quadrangle inequality the expression within the min sign is > 0 for each j.
Thus W [i, i] > 0 for all 0 ≤ i ≤ n−1. By Theorem 1.1 we have the following theorem.

Theorem 2.1. The traveling salesman problem for points on an N -point convex
polygon can be solved in O(N logN) time.

3. The MLP for points on a straight line. Consider a set S of n+ 1 points,
a symmetric distance matrix d[0..n, 0..n], and a tour T which visits the points of S
in some order. The latency of a point p ∈ S with respect to T is the length of the
tour from the starting point to the first occurrence of p. More precisely, suppose
that T visits the points in S in the order p0, p1, . . . , pn starting at p0. Let d(pi−1, pi)
be the distance traveled along T between pi−1 and pi. Then the latency of pi is
w(pi) =

∑i
j=1 d(pj−1, pj). The total latency w(T ) of T is the sum of the latencies of

all the points in S: w(T ) =
∑n
i=1 w(pi). Or, equivalently,

w(T ) =

n∑
k=1

d(pk−1, pk)(n− k + 1).(3.1)

We wish to find a tour T with minimum w(T ). In this section we show that the
MLP for points on a straight line can be reduced to the SPBD problem and solved in
O(n logn) time.

Let S = {xn, xn−1, . . . , x1, x0 = y0 = 0, y1, y2, . . . , ym} be a set of N = n+m+ 1
distinct points on the real line from left to right. We overload xi (and yj) to denote
both a point and the distance from it to the origin. The tour starts at the point 0.
Define

w(TX) =
n∑
k=1

(xk − xk−1)(n− k + 1),

w(TY ) =

m∑
k=1

(yk − yk−1)(m− k + 1).

w(TX) is the total latency of the tour TX that starts at x0 = 0 and travels the
points x1, x2, . . . , xn in this order. w(TY ) is the total latency of the tour TY that
starts at y0 = 0 and travels the points y1, y2, . . . , ym in this order.

Consider an optimal tour T for S. Depending on whether the first and the last
edges of T are to the left or to the right, there are four possibilities. If, for example,
the first edge is to the right and the last edge is to the left, then T must be of the
following form (see Figure 3.1):

xi0 = yj0 = x0 = y0
∆→ yj1

∆→ xi1
∆→ yj2

∆→ xi2
∆→ · · · ∆→ xit−1

∆→ yjt = ym
∆→ xit = xn

for some 0 = j0 < j1 < j2 < · · · < jt−1 < jt = m and 0 = i0 < i1 < · · · < it−1 < it =

n. (The notation xi
∆→ yj denotes the straight line segment whose end points are xi

and yj consisting of several edges.) We use the following dummy tour T ′ to represent
T :

T ′ : xi0(= x0)→ yj1 → xi1 → · · · → xit−1
→ yjt(= ym)→ xit(= xn).

T is completely specified by T ′. Define the reduced weight of the dummy tour T ′ to
be

w(T ′) =
t∑
l=1

yjl [n+m− jl − il−1] +
t∑
l=1

xil [n+m− jl − il].(3.2)



70 XIN HE AND ZHI-ZHONG CHEN

mn i 1i
2

i
3

j
1

j
2

j
3

= =x y0

Fig. 3.1. Optimal tour for points on a straight line.

Lemma 3.1. The weight of T and the reduced weight of T ′ satisfies

w(T ) = w(TX) + w(TY ) + 2w(T ′).(3.3)

Proof. First we note that w(TX)+w(Ty) is the sum of the shortest-path distances
from x0 = y0 to the points xi (1 ≤ i ≤ n) and yj (1 ≤ j ≤ m). In the tour T , the
latency of each point will be the shortest-path distance plus some additional delay
(caused by the zigzag-shaped detour). We need to compute this additional delay.
Each “loop” of the form “from y0 to yjl and back” contributes a delay of 2yjl to each
point that is as yet unvisited when this loop is traversed; there are (n+m− jl− il−1)
such points. So the additional delay contributed by this loop is

2yjl(n+m− jl − il−1).

Similarly, the additional delay contributed by a loop of the form “from x0 to xil and
back” is

2xil(n+m− jl − il).

Summing up all these additional delay terms, we have w(T ) = w(TX) + w(TY ) +∑t
l=1 2yjl [n+m− jl − il−1] +

∑t
l=1 2xil [n+m− jl − il] = w(TX) +w(TY ) + 2w(T ′).

Although Lemma 3.1 is proved by assuming that the first edge of T is to the right
and the last edge of T is to the left, it also applies to other cases. For example, if the
first edge of T is to the left, we can let j1 = 0. If the last edge of T is to the right,
we can let it−1 = n and delete from T the subpath from ym to xn. It can be verified
that (3.3) is valid for those cases, too. Since the term w(TX) + w(TY ) is fixed for all
T , in order to minimize w(T ) we need only to minimize w(T ′).

Let G = (X,Y,E) be the complete bipartite digraph with X = {x0, x1, . . . , xn},
Y = {y0, y1, . . . , ym}, and the weight matrices A[0..n, 0..m] and B[0..m, 0..n] defined



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 71

as follows:

A[i, j] = w(xi → yj) = yj(n+m− i− j),
B[j, i] = w(yj → xi) = xi(n+m− i− j).

Note that A[0, 0] = B[0, 0] = 0. It is easy to check that a dummy tour T ′ with
minimum reduced weight w(T ′) is exactly a shortest path in G from x0 to xn. By the
definition of A, for 0 ≤ i < i′ ≤ n and 0 ≤ j < j′ ≤ m, we have (A[i, j] + A[i′, j′])−
(A[i, j′] +A[i′, j]) = (i′ − i)(yj − yj′) < 0. Thus A is concave. Similarly, we can show
that B is also concave. Since all the entries of A and B are nonnegative, all the entries
of W = A×B are nonnegative. Thus by Theorem 1.1 we have the following.

Theorem 3.2. The minimum latency problem for a set of N points on straight
line can be solved in O(N logN) time.

4. Solving the SPBD problem. Our algorithm for solving the SPBD problem
is a reduction to an enhanced version of the least weight subsequence (LWS) problem.
In section 4.1 we describe the LWS problem and its enhanced version. The reduction
from the SPBD problem to the enhanced LWS problem is discussed in section 4.2. An
algorithm for solving the enhanced LWS problem is given in section 4.3. In section 4.4
we give a complete description of our algorithm for the SPBD problem and analyze
its time complexity.

4.1. The LWS problem and the enhanced LWS problem. The following
LWS problem was introduced in [8]. Given a sequence {x0, x1, . . . , xn} and a real-
valued weight function w(xi, xj) defined for indices 0 ≤ i < j ≤ n, find an integer
k ≥ 1 and a sequence S = {0 = i0 < i1 < · · · < ik−1 < ik = n} such that

the total weight w(S) =
∑k
l=1 w(xil−1

, xil) is minimized. The LWS problem can
also be formulated as a graph problem: Given an acyclic digraph G with vertex
set V = {x0, . . . , xn}, the edge set E = {xi → xj | 0 ≤ i < j ≤ n}, and the weight
function w, we wish to find a shortest path in G from x0 to xn. For an arbitrary weight
function w, the LWS problem requires Ω(n2) time to solve. The weight function w is
concave if the following hold:

w(xi1 , xj1) + w(xi2 , xj2)≤w(xi2 , xj1) + w(xi1 , xj2)

for 0 ≤ i1 ≤ i2 ≤ j1 ≤ j2 ≤ n.(4.1)

If the weight function is concave, then we have an instance of the concave LWS
problem. Hirschberg and Larmore showed that the concave LWS problem can be
solved in O(n logn) time [8]. Similar algorithms were developed in [6, 7]. Wilber
discovered an elegant linear-time algorithm for solving this problem [11]. All these
algorithms assume that each entry w(i, j) can be computed in constant time. In this
paper we consider only the concave LWS problem. From now on the phrase “LWS
problem” always means the concave LWS problem.

The enhanced version of the LWS problem is defined as follows. An instance of
the enhanced LWS problem is a sequence {x0, x1, . . . , xn} and a real-valued concave
weight function w(xi, xj) defined on all 0 ≤ i, j ≤ n such that w(xi, xi) ≥ 0 for all
0 ≤ i ≤ n. We want to find a sequence S = {0 = i0, i1, . . . , ik = n} (i0, i1, . . . , ik
are not necessarily in increasing order, as in the ordinary LWS problem), such that

the total weight w(S) =
∑k
l=1 w(xil−1

, xil) is minimized. In terms of the graph
formulation, given a complete digraph G with vertex set V = {x0, x1, . . . , xn} and a
weight function w, we wish to find a shortest x0 to xn path in G. Let e = xi → xj



72 XIN HE AND ZHI-ZHONG CHEN

be an edge of G. If i < j, e is called a forward edge. If i = j, e is called a selfloop. If
i > j, e is called a backward edge. We require that the weight of the selfloops of G be
nonnegative since otherwise the weight of the shortest path in G would be −∞.

Lemma 4.1. For any instance of the enhanced LWS problem there exists a shortest
x0 to xn path consisting of only forward edges.

Proof. Let P be a shortest path from x0 to xn in G such that the number of
edges in P is minimum. Since w(xi, xi) ≥ 0 for all i, we may assume that P contains
no selfloops. Toward a contradiction, suppose that P contains a backward edge.
Let xil → xil+1

be the first backward edge of P . Then il > il+1 and il > il−1.
By the concavity of w and the assumption that w(xi, xi) ≥ 0 for all xi, we have
w(xil−1

, xil+1
) ≤ w(xil−1

, xil+1
) + w(xil , xil) ≤ w(xil−1

, xil) + w(xil , xil+1
). Thus

replacing the two edges xil−1
→ xil → xil+1

in P by a single edge xil−1
→ xil+1

, we
get a path P ′ such that w(P ′) ≤ w(P ) and the number of edges in P ′ is one less than
that in P . This contradicts the choice of P .

Lemma 4.1, together with the concavity of w, implies that there are no negative
cycles in any instance of the enhanced LWS problem. It also implies that we can
ignore all the backward edges and selfloops when solving the enhanced LWS problem.

4.2. Reduction. In this section we show that the SPBD problem can be reduced
to the enhanced LWS problem. First we need several technical lemmas. The following
lemma was proved in [12].

Lemma 4.2. If both A and B are concave, then the product matrix W = A × B
is also concave.

For 0 ≤ i ≤ n and 0 ≤ j ≤ n, let I(i, j) denote the smallest index k that realizes
the minimum value in definition (1.2). Namely, I(i, j) is the smallest index such that
W [i, j] = A[i, I(i, j)] +B[I(i, j), j]. The following lemma was proved in [12].

Lemma 4.3. For any i, j (0 ≤ i < n, 0 ≤ j < n), we have I(i, j) ≤ I(i, j + 1) ≤
I(i+ 1, j + 1).

Remark. The definitions of concavity and the matrix product in [12] are slightly
different from the definitions used here. In [12] a concave matrix is an upper triangular
matrix such that the condition (1.1) is true for i1 ≤ i2 ≤ j1 ≤ j2. In the matrix
product definition (1.2) the minimum is taken over i ≤ k ≤ j. Under these definitions,
Yao proved Lemmas 4.2 and 4.3. Under our definitions, Lemmas 4.2 and 4.3 can be
proved via similar methods.

Let (i, j) and (i′, j′) be two pairs of indices. If i ≤ i′ and j ≤ j′, we write
(i, j) ≺ (i′, j′). By Lemma 4.3, (i, j) ≺ (i′, j′) implies I(i, j) ≤ I(i′, j′).

Lemma 4.4. Let (i1, j1), (i2, j2), . . . , (ip, jp) be p pairs of indices such that (il, jl) ≺
(il+1, jl+1) for all 1 ≤ l < p. Then I(i1, j1), I(i2, j2), . . . , I(ip, jp) can be computed in
O(m log p) time.

Proof. This can be done in a binary search fashion. More specific, we find
Ip/2 = I(ip/2, jp/2) in the first stage, find I(ip/4, jp/4) (by searching the range 0..Ip/2)
and I(i3p/4, j3p/4) (by searching the range Ip/2..m) in the second stage, and so on. In
total, there are log p stages. Since each stage can be done in O(m) time, the lemma
holds.

Consider an instance of the SPBD problem defined by a complete bipartite di-
graph G = (X,Y,E) and two concave weight matrices A and B. Let G′ = (X,E′) be
the complete digraph on X with the concave weight matrix w = A×B. If w(xi, xi) ≥ 0
for all 0 ≤ i ≤ n, then G′ and w define an instance of the enhanced LWS problem.

Let P ′ : x0 = xi0 → xi1 → · · · → xik = xn be a shortest path in G′ from x0 to
xn. For each l (0 ≤ l ≤ k), let jl = I(il−1, il). Then P : x0 = xi0 → yj1 → xi1 →



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 73

yj2 → · · · → yjk → xik = xn is a path in G from x0 to xn. Let w(P ′) denote the
weight of P ′ in G′ and w(P ) the weight of P in G. Clearly, w(P ) = w(P ′). We will
show that w(P ) is minimum among all paths from x0 to xn in G.

Let Q be a shortest path in G from x0 to xn. Since G is bipartite, Q is a
concatenation of subpaths Q1, Q2, . . . , Qp for some p ≥ 1, where each Ql (1 ≤ l ≤ p)
consists of two edges xi′

l−1
→ yj′

l
→ xi′

l
(i′0 = 0 and i′p = n). For each 1 ≤ l ≤ p, if

j′l 6= I(i′l−1, i
′
l), we can replace Ql by the subpath xi′

l−1
→ yI(i′

l−1
,i′
l
) → xi′

l
without

increasing the total weight w(Q). Therefore, without loss of generality, we may assume
that j′l = I(i′l−1, i

′
l) for all 1 ≤ l ≤ p. Hence the weight of Ql is w[i′l−1, i

′
l]. Thus Q

corresponds to a path Q′ = {x0 = xi′0 → xi′1 → · · · → xi′p = xn} from x0 to xn in G′

with w(Q′) = w(Q). Since the weight of P ′ is minimum among all such paths in G′,
we have w(P ) = w(P ′) ≤ w(Q′) = w(Q). Thus P is a shortest path in G from x0 to
xn.

Lemma 4.5. Let A and B be two concave matrices such that all the entries on
the main diagonal of the product matrix w = A×B are nonnegative. If the enhanced
LWS problem defined by the matrix w can be solved in T (n,m) time, then the SPBD
problem defined by A and B can be solved in O(T (n,m) +m logn) time.

Proof. In order to solve the SPBD problem defined by matrices A and B, we first
solve the enhanced LWS problem defined by the matrix w = A × B. Let P ′ : x0 =
xi0 → xi1 → · · · → xik = xn be the solution path found. We compute j1, j2, . . . , jk,
where jl = I(il−1, il). Since (i0, i1) ≺ (i1, i2) ≺ · · · ≺ (ik−1, ik), this can be done in
O(m logn) time by Lemma 4.4. The path x0 = xi0 → yj1 → xi1 → · · · → yjk →
xik = xn is the solution for the SPBD problem.

We want to use Wilber’s algorithm in [11] to solve our enhanced LWS problem.
In order to do this, however, we have to overcome two difficulties. First, Wilber’s
algorithm is for solving the (ordinary) LWS problem which is defined by an upper
triangle matrix while our problem is defined by a full matrix. Second, Wilber’s algo-
rithm assumes that each entry w(i, j) can be evaluated in O(1) time. In our case, an
entry of the matrix w = A × B may need Θ(m) time to evaluate. We will address
these two issues in the next section.

4.3. An algorithm for the enhanced LWS problem. Our algorithm for the
enhanced LWS problem is a modification of Wilber’s algorithm for the LWS problem.
First, we briefly review Wilber’s algorithm. (We assume that the reader is familiar
with [11].) Then we show how to modify Wilber’s algorithm to solve our problem.

Consider an instance of the LWS problem with the sequence {x0, x1, . . . , xn} and
the weight matrix w(xi, xj). Recall that w is an (n + 1) × (n + 1) upper triangular
matrix. Let f(0) = 0 and, for 1 ≤ j ≤ n, let f(j) be the weight of the lowest weight
subsequence between x0 and xj . For 0 ≤ i < j ≤ n let g(i, j) be the weight of the
lowest-weight subsequence between x0 and xj whose next-to-last element is xi. Then
we have {

f(j) = min0≤i<j g(i, j) for 1 ≤ j ≤ n,
g(i, j) = f(i) + w(xi, xj) for 0 ≤ i < j ≤ n.(4.2)

To solve the LWS problem it is enough to compute f(1), f(2), . . . , f(n). Adding
f(i1) + f(i2) to both sides of inequality (4.1) and applying definition (4.2), we get

g(i1, j1) + g(i2, j2) ≤ g(i1, j2) + g(i2, j1) for 0 ≤ i1 ≤ i2 ≤ j1 ≤ j2 ≤ n.
Consider a matrix M [0..n, 0..m]. For each column index 0 ≤ j ≤ m let i(j) be

the smallest row index such that M(i(j), j) equals the minimum value in the jth



74 XIN HE AND ZHI-ZHONG CHEN

column of M . The column minima searching problem for M is to find the i(j)’s for
all 0 ≤ j ≤ m. M is called monotone if i(j1) ≤ i(j2) for all 0 ≤ j1 < j2 ≤ m. M
is totally monotone if every 2 × 2 submatrix of M is monotone [3]. If M is concave,
then it is easy to check that M is totally monotone. (The reverse is not necessarily
true.) For a totally monotone matrix M , the column minima searching problem for
M can be solved in O(n+m) time, assuming that each entry of M can be evaluated
in O(1) time [3]. Following [8], we will refer to the algorithm in [3] as the SMAWK
algorithm.

We extend the definition of g by setting g(i, j) = +∞ for 0 ≤ j ≤ i ≤ n. Then g
becomes a full (n+ 1)× (n+ 1) matrix. It is easy to verify that the extended matrix
g is totally monotone. (The only role of the +∞ entries is to make g a full matrix for
convenience. These entries otherwise have no effect on the computation.) Our goal is
to determine the row index of the minimum value in each column of g (which gives
f(1), . . . , f(n)). One might simply want to apply the SMAWK algorithm to g. But
we cannot, because for i < j, the value of g(i, j) depends on f(i) and f(i) depends
on g(0, i), g(1, i), . . . , g(i− 1, i). Thus we cannot compute the value of g in O(1) time
as required by the SMAWK algorithm.

Wilber’s algorithm starts in the upper left corner of g and works rightward and
downward, at each iteration learning enough new values of f to be able to compute
enough new values of g to continue with the next iteration. Actually, during one step
of each iteration, the algorithm might “pretend” to know values of f that it really
does not have. At the end of the iteration, the assumed value of f is checked for
validity.

We use f(j) and g(i, j) to refer to the correct values of f and g, respectively. The
currently computed value of f(j) is denoted by F (j) and sometimes will be incorrect.
The currently computed value of g(i, j) is denoted by G[i, j] and is always computed
as F [i] + w(i, j). Therefore G[i, j] = g(i, j) iff F (i) = f(i). The algorithm does not
explicitly store the matrices w, g,G. Rather, their entries are calculated when needed.
Let G[i1, i2; j1, j2] denote the submatrix of G consisting of the intersection of rows i1
through i2 and columns j1 through j2. G[i1, i2; j] denotes the intersection of rows i1
through i2 with column j. The rows of G are indexed from 0 and the columns are
indexed from 1. Wilber’s algorithm is as follows.

Wilber’s Algorithm.

F [0]← c← r ← 0.

while (c < n) do

1. p← min{2c− r + 1, n}.
2. Apply the SMAWK algorithm to find the minimum in each column of sub-

matrix S = G[r, c; c + 1, p]. For j ∈ [c + 1, p], let F [j] = the minimum value
found in G[r, c; j].

3. Apply the SMAWK algorithm to find the minimum in each column of the
submatrix T = G[c + 1, p − 1; c + 2, p]. For j ∈ [c + 2, p], let H[j] = the
minimum value found in G[c+ 1, p− 1; j].

4. If there is an integer j ∈ [c + 2, p] such that H[j] < F [j], then set j0 to the
smallest such integer. Otherwise set j0 ← p+ 1.

5. if (j0 = p+ 1) then c← p;
else F [j0]← H[j0]; r ← c+ 1; c← j0.

end.

Figure 4.1 shows the submatrices S and T during a typical iteration of the al-
gorithm. (This figure is taken from [11].) Each time we are at the beginning of the



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 75

c

p

r

c

p-1

r

S

T

↓

→

→

→

↓ ↓1
0

Fig. 4.1. A typical iteration of Wilber’s algorithm.

loop, the following invariants hold:
(a) r ≥ 0 and c ≥ r.
(b) For each j ∈ [0, c], F [j] = f(j).
(c) All the minima in columns c+ 1 through n of g are in rows ≥ r.
These invariants are clearly satisfied at the beginning when r = c = 0.
Invariant (b) implies that G[i, j] = g(i, j) for all j and all i ∈ [0, c]. So the entries

of the submatrix S are the same as the corresponding entries of g. Therefore S is
totally monotone, and for each j ∈ [c + 1, p] step 2 sets F [j] to the minimum value
of the subcolumn g(r, c; j). Also, since S contains all the finite-valued cells in column
c+ 1 of g that are in rows ≥ r, we have F [c+ 1] = f(c+ 1) at the end of step 2. On
the other hand, we do not necessarily have F [j] = f(j) for any j ∈ [c+ 2, p], since g
has finite-valued cells in those columns that are in rows ≥ r and not in S.

In step 3 we proceed as if F [j] = f(j) for all j ∈ [c+ 1, p− 1]. Since this may be
false, some of the values in T may be bogus. However, T is always totally monotone
because if we add F [i1] + F [i2] to both sides of (4.1) we get G[i1, j1] + G[i2, j2] ≤
G[i1, j2] + G[i2, j1]. Thus the SMAWK algorithm works correctly and H[j] is set to
the minimum value of the subcolumn G[c + 1, p − 1; j] (which is not necessarily the
same as the minimum value of the subcolumn g(c + 1, p − 1; j)). Note that since all
the entries on and below the main diagonal of g are +∞, they cannot be H[j] for any
j and hence have no effect on the computation.

In step 4 we either verify that F [j] = f(j) for all j ∈ [c+ 2, p] (this is the case if
H[j] ≥ F [j] for all j ∈ [c + 2, p]) or we find the smallest j where this condition fails
(this is the case when there exists j ∈ [c+ 2, p] such that H[j] < F [j]). In either case,
the values of c and r are set accordingly at step 5 so that the loop invariants hold.
This completes the description of Wilber’s algorithm.

Next we discuss how to use Wilber’s algorithm to solve the enhanced LWS prob-
lem. Let w[0..n, 0..n] be the weight matrix of an instance of the enhanced LWS
problem. Let L denote the portion of w consisting of the entries on and below the
main diagonal of w. Let w′ be the matrix obtained from w by replacing all the en-
tries in L by +∞. Then w′ defines an instance of the (ordinary) LWS problem. By



76 XIN HE AND ZHI-ZHONG CHEN

Lemma 4.1, the solution for the problem defined by w′ is identical to the solution for
the problem defined by w. If each entry of w can be computed in O(1) time, we can
use Wilber’s algorithm on w′ to solve the problem. However, if the enhanced LWS
problem is derived from an instance of the SPBD problem, the entries of the matrix
w = A×B cannot be computed in O(1) time. In this case we cannot afford to change
w to w′ since doing so will destroy some properties of w that are crucial for obtaining
a fast algorithm. Fortunately, we will show that Wilber’s algorithm can be applied
directly to w to solve the enhanced LWS problem.

It is enough to show that the entries in L have no effect on the computation
of Wilber’s algorithm. The only place where Wilber’s algorithm needs the entries
in L is step 3, where the SMAWK algorithm is applied to the submatrix T . For
each j ∈ [c + 2, p] let F [j] and H[j] be the minimum value of column j in S and T ,
respectively. There are three cases:

(a) F [j] ≤ H[j].

(b) F [j] > H[j] and H[j] is not in L. Namely, H[j] = G[i, j] for some i < j.

(c) F [j] > H[j] and H[j] is in L. Namely, H[j] = G[i, j] for some i ≥ j.
In cases (a) and (b) the values in L do not affect the computation. In the following

we show that case(c) cannot occur. Toward a contradiction, assume that there exist
indices j ∈ [c+ 2, p] and i such that i ≥ j and H[j] = G[i, j] < F [j].

Case 1: If i = j, then H[j] = G[j, j] = F [j] + w(j, j) ≥ F [j]. This is impossible.

Case 2: If i > j, then H[j] = G[i, j] = F [i] + w(i, j). Recall that F [i] is the
minimum value of the subcolumn G[r, c; i]. Suppose that F [i] = G[t, i] = F [t]+w(t, i)
for some r ≤ t ≤ c. Note that t ≤ c < i and j < i. By the concavity of w
we have w(t, j) + w(i, i) ≤ w(t, i) + w(i, j). Since w(i, i) ≥ 0 for all i, we have
H[j] = F [i]+w(i, j) = F [t]+w(t, i)+w(i, j) ≥ F [t]+w(t, j)+w(i, i) ≥ F [t]+w(t, j) =
G[t, j] ≥ F [j]. This contradicts the assumption that H[j] < F [j].

Since case (c) cannot occur, the entries in L do not affect the computation of
Wilber’s algorithm, regardless of whether they are changed to +∞ or not. Hence we
have proved the following lemma.

Lemma 4.6. An instance of the enhanced LWS problem defined by a (full) concave
matrix w can be correctly solved by applying Wilber’s algorithm to the matrix w.

Next we address the second difficulty mentioned at the end of section 4.2. If
the instance of the enhanced LWS problem is derived from an instance of the SPBD
problem (defined by matrices A and B), the weight matrix w of the enhanced LWS
problem is the product matrix w = A×B. Therefore the key assumption of Wilber’s
algorithm that each entry w[i, j] can be evaluated in O(1) time is not valid.

During each stage of Wilber’s algorithm (steps 2 and 3) we need to find column
minima of the submatrices S and T . Both S and T have the form C′[r, c; q, p] where
C ′[i, j] = F [i] + w[i, j] for some known value F [i]. Since the values C′[i, j] cannot be
computed in O(1) time, we cannot use the SMAWK algorithm directly. Instead, we
use the algorithm given in the following lemma.

Lemma 4.7. The column minima searching problem for the submatrix C ′[r, c; q, p]
with r ≤ q and c ≤ p can be solved in O((c − r) + (p − q) + (k2 − k1)) time, where
k1 = I(r, r) and k2 = I(p, p).

Proof. By Lemma 4.3, for each i ∈ [r, c] and j ∈ [q, p], w[i, j] = min0≤k≤m(A[i, k]+
B[k, j]) can be computed by searching k in the range k ∈ [k1, k2]. For j ∈ [q, p] let d(j)
denote the column minimum of C ′[r, c; j]. Then d(j) = minr≤i≤c{F [i] + w[i, j]} =
minr≤i≤c{F [i]+mink1≤k≤k2(A[i, k]+B[k, j])} = mink1≤k≤k2{B[k, j]+minr≤i≤c(F [i]+
A[i, k])}.



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 77

For i ∈ [r, c] and k ∈ [k1, k2] let A′[i, k] = F [i] + A[i, k]. Then A′ is totally
monotone. For each k ∈ [k1, k2] let J [k] be the minimum of the subcolumn A′[r, c; k].

For k ∈ [k1, k2] and j ∈ [q, p] let B′[k, j] = B[k, j] + J [k]. Then B′ is totally
monotone. Clearly, d(j) is the minimum of the subcolumn B′[k1, k2; j]. Thus the
column minima d(j)’s of C ′[r, c; q, p] can be found by two applications of the SMAWK
algorithm, once on A′ and once on B′. Each entry of A′ and B′ can be evaluated in
O(1) time. Thus the total time needed is O((c−r)+(k2−k1))+O((k2−k1)+(p−q)) =
O((c− r) + (p− q) + (k2 − k1)).

4.4. The SPBD algorithm and its complexity. The following is the com-
plete description of our SPBD algorithm.

SPBD Algorithm.
Input: An instance of the SPBD problem defined by two concave matrices A and B.

1. Compute I(0, 0), I(1, 1), . . . , I(n, n) (cf. Lemma 4.4).
2. Solve the enhanced LWS problem defined by the matrix w = A × B by ap-

plying Wilber’s algorithm on w. But instead of using the SMAWK algorithm
we use the algorithm given in Lemma 4.7 to search the column minima of the
submatrix S and T during the execution.

3. Using the method described in Lemma 4.5, convert the solution of the en-
hanced LWS problem defined by w to the solution of the original SPBD
problem.

end.
The correctness of the algorithm follows from the discussion of the last subsection.

Next we analyze the running time of the SPBD algorithm. We concentrate on step 2
since this is the nontrivial part of the algorithm. Each iteration of Wilber’s algorithm
is completely specified by three parameters: r, c, p. Let ri, ci, pi be the values of these
parameters in the ith iteration. The parameters for the next iteration are calculated
in step 5 as follows:

Case 1: “then” part of step 5 is executed. In this case, ri+1 = ri, ci+1 = pi, and
Case 1a: pi+1 = 2ci+1 − ri+1 + 1, if it is ≤ n, or
Case 1b: pi+1 = n, otherwise.

Case 2: “else” part is executed. In this case, ri+1 = ci + 1, ci+1 = j0 (where
ci + 2 ≤ j0 ≤ pi), and

Case 2a: pi+1 = 2ci+1 − ri+1 + 1, if it is ≤ n, or
Case 2b: pi+1 = n, otherwise.

If Case 1a (or 1b, 2a, 2b, respectively) applies to the ith iteration, we call it a
type 1a (or 1b, 2a, 2b, respectively) iteration. We call [ri, pi] the ith span; ri and pi
are the left and the right ends of the ith span, respectively. Note that after a type 1a
or 1b iteration, the left end is not changed and the right end increases. After a type
2a or 2b iteration, the left end increases and the right end may increase, decrease, or
remain unchanged. For an interval [t, t + 1] (0 ≤ t < n) we say that a span [ri, pi]
covers [t, t+ 1], written as [t, t+ 1] ∈ [ri, pi], if ri ≤ t and t+ 1 ≤ pi. Since the left end
of spans never decreases, the spans “move” from left to right during the execution of
the algorithm. Once the left end of a span is ≥ t + 1, [t, t + 1] will never be covered
by any subsequent spans. First we make the following obvious observations:

(a) If a type 1a or 1b iteration follows a type 1b or 2b iteration, the algorithm
terminates immediately.

(b) If the ith iteration is of type 1a, then pi+1−ri+1 = (2ci+1−ri+1 +1)−ri+1 =
2(pi − ri) + 1. Namely, the length of the (i+ 1)th span is 1 + 2× (the length of the
ith span).



78 XIN HE AND ZHI-ZHONG CHEN

(c) Suppose that the ith iteration is of type 2a or 2b. Since pi ≤ 2ci − ri + 1, we
have ci ≥ (pi + ri − 1)/2. Hence ri+1 = ci + 1 ≥ (pi + ri − 1)/2 + 1.

(d) Suppose that an interval [t, t + 1] is covered by the ith span [ri, pi]. If the
ith iteration is of type 1a or 1b, and the (i + 1)st iteration is of type 2a or 2b, then
ri+2 = ci+1 + 1 = pi + 1 > t+ 1. Hence [t, t+ 1] is not covered by [ri+2, pi+2] nor by
any subsequent spans.

The following lemma gives an upper bound on the number of times an interval
[t, t+1] can be covered by spans. This bound is needed in the analysis of our algorithm.

Lemma 4.8. Any interval [t, t + 1] (0 ≤ t < n) is covered by at most 2 logn + 2
spans.

Proof. Let [ri1 , pi1 ], [ri2 , pi2 ], . . . , [rik , pik ] be all the spans covering [t, t+1], where
i1 < i2 < · · · < ik. Then ril ≤ t and t+ 1 ≤ pil for all 1 ≤ l ≤ k.

Let l be the first index such that the ilth iteration is of type 1a or type 1b. (If
no such l exists, let l = k.) We first show that k − l ≤ logn+ 2.

Case 1: The ilth iteration is of type 1b. If the (il + 1)st iteration is of type 1a or
1b, then the algorithm terminates by observation (a). If the (il + 1)st iteration is of
type 2a or 2b, then by observation (d) [t, t+ 1] is not covered by [ril+2, pil+2] nor by
any subsequent spans.

Case 2: The ilth iteration is of type 1a. Let s (possibly s = 0) be the largest
integer such that the iterations il, il + 1, . . . , il + s are all of type 1a. Clearly, [t, t+ 1]
is covered by the spans [ril+1, pil+1], . . . , [ril+s, pil+s]. By observation (b) each type
1a iteration doubles the length of the span. Since the length of a span is at most n,
we have s ≤ logn. The (il + s+ 1)st iteration is of type 1b, 2a, or 2b. If it is of type
2a or 2b, then by observation (d) [t, t + 1] is not covered by the (il + s + 2)nd span
nor by any subsequent spans. If the (il + s+ 1)st iteration is of type 1b, then, similar
to Case 1, either the algorithm terminates at the (il + s+ 2)nd iteration, or [t, t+ 1]
is not covered by the (il + s+ 2)nd span nor by any subsequent spans.

In either case, the number of spans following the ilth iteration that cover [t, t+ 1]
is at most log n+2. So k−l ≤ logn+2. Next we show l ≤ logn and this will complete
the proof of the lemma.

For each 1 ≤ h < l the ihth iteration is of type 2a or 2b. Fix an index h. For
each j ≥ ih let Lj = (t + 1) − rj . Note that if Lj ≤ 0, then the span [rj , pj ] cannot
cover the interval [t, t+ 1]. By the fact that t+ 1 ≤ pih and observation (c), we have

Lih+1 = (t+ 1)− rih+1 ≤ (t+ 1)− ((pih + rih − 1)/2 + 1)

= (2t− pih − rih + 1)/2 ≤ (t− rih)/2 < Lih/2.

Since the left end of the spans never decreases, we now have that Lih+1
≤ Lih+1 <

Lih/2. This is true for all 1 ≤ h < l. Hence Lil < Li1/2
l. If l > logn, then Lil

becomes 0 and the interval [t, t+ 1] is not covered by [ril , pil ] nor by any subsequent
spans. So we must have l ≤ logn. This establishes the lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Step 1 of the SPBD algorithm takes O(m logn) time by
Lemma 4.4. In step 2 we use Wilber’s algorithm to solve the enhanced LWS problem
defined by the matrix w = A × B. But instead of using the SMAWK algorithm we
use the subroutine in Lemma 4.7 for finding column minima in S and T . Note that all
the other steps of Wilber’s algorithm take O(n+m) time. Thus if we can show that
the time needed by these subroutine calls is bounded by O(n+m logn), the theorem
will follow from Lemma 4.5.



SHORTEST PATHS IN CONCAVELY WEIGHTED BIPARTITE DIGRAPHS 79

Consider the ith iteration. We need to find the column minima of the submatrices
Si = G[ri, ci; ci + 1, pi] and Ti = G[ci + 1, pi − 1; ci + 2, pi]. Let k1 = I(ri, ri),
k2 = I(pi, pi), and k3 = I(ci + 1, ci + 1). Since ri < ci + 1 ≤ pi we have k1 ≤ k3 ≤ k2

by Lemma 4.3.
By Lemma 4.7 the searching of Si needs O((ci− ri) + (pi− ci− 1) + (k2− k1)) =

O((pi − ri) + (k2 − k1)) time. The searching of Ti needs O((pi − 1 − ci − 1) + (pi −
ci − 2) + (k2 − k3)) time. Since pi ≤ 2ci − ri + 1 and k3 ≥ k1, this is bounded by
O((pi − ri) + (k2 − k1)). Thus the total time needed to search Si and Ti in all the

iterations is
∑K
i=1O((pi − ri) + (I(pi, pi) − I(ri, ri))), where K is the total number

of iterations of the algorithm. Since Wilber’s original algorithm takes O(n) time, the

term
∑K
i=1O(pi − ri) is bounded by O(n). On the other hand,

K∑
i=1

(I(pi, pi)− I(ri, ri)) =
K∑
i=1

pi−1∑
t=ri

(I(t+ 1, t+ 1)− I(t, t))

=
∑

t,i where [t,t+1]∈[ri,pi]

(I(t+ 1, t+ 1)− I(t, t)).(4.3)

By Lemma 4.8 each interval [t, t + 1] is covered by at most 2 logn + 2 spans. Thus

the above sum is bounded by O(logn
∑n−1
t=0 (I(t+ 1, t+ 1)− I(t, t))) = O(m logn) as

to be shown.

5. Conclusion. We introduced the SPBD problem and showed that if the weight
matrices are concave, then the SPBD problem can be reduced to the enhanced LWS
problem and solved in O(n+m logn) time. As applications, we showed that the MLP
for points on a straight line and the TSP for points on a convex polygon can be reduced
to the SPBD problem and solved in O(n logn) time, which substantially improves the
previously known O(n2)-time algorithms. The setting of the SPBD problem is quite
general. It is interesting to find other applications of the SPBD problem.

We tried (but failed) to use this technique to solve the MLP for points on a convex
polygon. (To our knowledge, the MLP for this special case is not known to be in P .)
In the two applications discussed in this paper, the optimal paths are simple (i.e., no
two edges of the path cross). Unfortunately, the optimal tour in the MLP for points
on a convex polygon does not have this crucial property. It would be interesting to
find a polynomial-time algorithm for solving the MLP for this case.

Another open problem is to solve the MLP for an r-arm star graph G, which has
a center vertex c and r “arms” connected to c, and each arm is a straight line with
several vertices on it. (Thus the straight line discussed in section 3 is a two-arm star
graph.) If each arm of G contains at most k vertices, then the MLP problem for
G can be solved in O(r × kr) time by using dynamic programming, which is not a
polynomial in terms the number of vertices of G. Is it possible to solve this problem
in polynomial time using ideas similar to the SPBD algorithm? This would seem to
require, at the very least, solving r-partite generalization of the SPBD problem.

Acknowledgments. The authors would like to thank the referees for pointing
out the much simplified proof of Lemma 3.1, for mentioning the last open problem in
section 5, and for suggestions that considerably improved the exposition.



80 XIN HE AND ZHI-ZHONG CHEN

REFERENCES

[1] F. Afrati, S. Cosmadakis, C. Papadimitriou, G. Papageorgiou, and N. Papkostanti-
nou, The complexity of the traveling repairman problem, Informatique Theorique Appl.
(Theoret. Informatics Appl.) 20 (1986), pp. 79–87.

[2] A. Aggarwal and J. Park, Notes on searching in multidimensional monotone arrays, in Proc.
29th IEEE Foundations of Computer Science, White Plains, NY, 1988, pp. 497–512.

[3] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications
of a matrix searching algorithm, Algorithmica, 2 (1987), pp. 195–208.

[4] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and S.-H. Teng, Constructing
trees in parallel, in Proc. ACM Symposium on Parallel Algorithms and Architectures, Santa
Fe, NM, 1989, pp. 421–431.

[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Su-
dan, The minimum latency problem, in Proc. 26th ACM Symposium on the Theory of
Computing, Montreal, Quebec, 1994, pp. 163–171.

[6] D. Eppstein, Sequence comparison with mixed convex and concave costs, J. Algorithms, 11
(1990), pp. 85–101.

[7] Z. Galil and R. Giancarlo, Speeding-up dynamic programming with applications to molecular
biology, Theoret. Comput. Sci., 64 (1989), pp. 107–118.

[8] D. S. Hirschberg and L. L. Larmore, The least weight subsequence problem, SIAM J. Com-
put., 16 (1987), pp. 628–638.

[9] M. M. Klawe and D. J. Kleitman, An almost linear time algorithm for generalized matrix
searching, SIAM J. Discrete Math., 3 (1990), pp. 81–97.

[10] O. Marcotte and S. Suri, Fast matching algorithms for points on a polygon, SIAM J. Com-
put., 20 (1991), pp. 405–422.

[11] R. Wilber, The concave least-weight subsequence problem revisited, J. Algorithms, 9 (1988),
pp. 418–425.

[12] F. F. Yao, Efficient dynamic programming using quadrangle inequalities, in Proc. 12th ACM
Symposium on the Theory of Computing, 1980, pp. 429–435.

[13] F. F. Yao, Speed-up in dynamic programming, SIAM J. Alg. Discrete Methods, 3 (1982), pp.
532–540.


