
THE CONSTRUCTION OF HUFFMAN CODES
IS A SUBMODULAR (“CONVEX”) OPTIMIZATION PROBLEM

OVER A LATTICE OF BINARY TREES∗

D. STOTT PARKER† AND PRASAD RAM‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1875–1905

Abstract. We show that the space of all binary Huffman codes for a finite alphabet defines a
lattice, ordered by the imbalance of the code trees. Representing code trees as path-length sequences,
we show that the imbalance ordering is closely related to a majorization ordering on real-valued
sequences that correspond to discrete probability density functions. Furthermore, this tree imbalance
is a partial ordering that is consistent with the total orderings given by either the external path
length (sum of tree path lengths) or the entropy determined by the tree structure. On the imbalance
lattice, we show the weighted path-length of a tree (the usual objective function for Huffman coding)
is a submodular function, as is the corresponding function on the majorization lattice. Submodular
functions are discrete analogues of convex functions. These results give perspective on Huffman
coding and suggest new approaches to coding as optimization over a lattice.

Key words. Huffman coding, adaptive coding, prefix codes, enumeration of trees, lattices,
combinatorial optimization, convexity, submodular functions, entropy, tree imbalance, Schur convex
functions, majorization, Moebius inversion, combinatorial inequalities, Fortuin–Kasteleyn–Ginibre
(FKG) inequality, quadrangle inequality, Monge matrices, dynamic programming, greedy algorithms.

AMS subject classifications. 94A15, 94A24, 94A29, 94A45, 90C25, 90C27, 90C39, 90C48,
52A41, 68Q20, 68R05, 05A05, 05A20, 05C05, 05C30, 06A07, 26B25, 26D15

PII. S0097539796311077

1. Introduction. The Huffman algorithm has been used heavily to produce
efficient binary codes for almost half a century now. It has inspired a large literature
with diverse theoretical and practical contributions. A comprehensive, very recent
survey is [1]. Although the algorithm is quite elegant, it is tricky to prove correct
and to reason about. While there may be little hope of improving on the O(n log n)
complexity of the Huffman algorithm itself,1 there is still room for improvement in
our understanding of the algorithm.

There is also plenty of room for improvement in our understanding of variants of
Huffman coding. Although the Huffman algorithm is remarkably robust in general
and has widespread use, it is far from optimal in many real applications. Huffman
coding is optimal only when the symbols to be coded are random and occur with fixed
probabilities. Time-varying dependencies are not captured by the Huffman coding
model, and optimal encoding of finite messages is not captured either.

Our motivation came from analysis of dynamic Huffman coding, a specific exten-
sion of Huffman coding in which the code used evolves over time. Recently, dynamic
coding algorithms have been studied heavily. Our initial idea was to define “rebalanc-
ing” operations on code trees and to use these dynamically (“on the fly”) in producing

∗Received by the editors October 25, 1996; accepted for publication (in revised form) September
8, 1997; published electronically May 21, 1999.

http://www.siam.org/journals/sicomp/28-5/31107.html
†Computer Science Department, University of California, Los Angeles, CA 90095-1596

(stott@cs.ucla.edu).
‡Xerox Corporation, El Segundo, CA 90245 (Prasad.Ram@usa.xerox.com).
1The algorithm is closely related to sorting, in the sense that the sorted sequence of a se-

quence of integer values 〈x1 · · · xn 〉 is obtainable directly from the optimal code tree for the values
〈 2x1 · · · 2xn 〉 (e.g., [26, p. 335]).

1875

1876 D. STOTT PARKER AND PRASAD RAM

better codes, in situations where the distribution of symbols to be coded varies over
time and/or is not accurately predictable in advance.

This paper reconstructs Huffman coding as an optimization over the space of
binary trees. A natural representation for this space is sequences of ascending path-
lengths, since this captures what is significant in producing optimal codes.

We show that the set of path-length sequences representing binary trees forms a
lattice, which we call the imbalance lattice. This lattice orders trees by their imbalance
and gives an organization for them that is useful in optimization. Our belief is that
having a better mathematical (and not purely procedural) understanding of coding
will ultimately pay off in improved algorithms.

The imbalance lattice and its imbalance ordering on trees depend on majorization
in an essential way. Majorization is an important ordering on sequences that has
many applications in pure and applied mathematics [27]. We have related it to greedy
algorithms directly [33]. Earlier majorization was recognized as an important property
of the internal node weights produced by the Huffman algorithm [13, 32], and in this
work we go further to clarify its pervasive role.

By viewing the space of trees as a lattice, a variety of new theorems and algorithms
become possible. For example, the objective functions commonly used in evaluating
codes are submodular on this lattice. Submodular functions are closely related to
convex functions (as we explain later; see Theorem 4.5) and are often easy to optimize
[6, 9, 23, 24, 25]. Huffman coding gives a significant example of the importance of
submodularity in algorithms.

2. Ordered sequences, rooted binary trees, and Huffman codes.

2.1. Ordered sequences. By a sequence we mean an ordered collection of non-
negative real values such as

x = 〈 x1 x2 · · · xn 〉.
Repetition of values in the sequence is permitted: the values xj need not be distinct.
The length of this sequence is n, and for simplicity we also refer to the set of such
sequences with the vector notation <+

n.
We introduce several useful operators on sequences:

ascending sort sort↑ (x) = 〈 x put in ascending order 〉,
descending sort sort↓ (x) = 〈 x put in descending order 〉,
sequence exponential 2−x = 〈 2−x1 · · · 2−xn 〉,
sequence logarithm −log2(x) = 〈 −log2(x1) · · · −log2(xn) 〉.

A density sequence is a nonnegative real-valued sequence whose entries sum to 1.
A distribution sequence is an ascending nonnegative sequence whose final entry is

1.
For simplicity, throughout this paper many sequences are implicitly sorted:
`, s, t, u denote ascending sequences of positive integer values

whose sequence exponentials 2−`, 2−s, 2−t are density sequences.
w denotes a descending sequence of positive real values.
v denotes an ascending distribution sequence.
x, y, z denote descending density sequences.

Note since ` is ascending, 2−` is descending; and since x is descending, −log2(x) is
ascending.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1877

x�������� XXXXXXXXx���� HHHH

x x
¡
¡
@
@x x xx x¡

¡
@
@

�
�
A
A

�
�
A
Ax x x x

Fig. 2.1. A binary tree having path-length sequence 〈 1 3 3 4 4 4 4 〉.

We also allow sequences to be operated upon as vectors. Thus, if x is a sequence
(vector) of length n and A is an n×n matrix, then Ax is a sequence (vector). Treating
sequences as vectors allows us to define several useful operators using matrix algebra.

2.2. Rooted binary trees and path-length sequences. Rooted binary trees
here are binary trees with a root node, in which every node is either a leaf node
or an internal node having one parent and two children. The order of the leaves is
insignificant, so a given tree is determined (up to permutation of the leaves) by the
lengths of the paths from the root node to each leaf node (the distance of the leaf
from the root). Thus we can represent equivalence classes of the rooted binary trees
with n leaves by sequences of n nonnegative integers, which give the path-length of
each leaf. For example, the path-length sequence

〈 1 3 3 4 4 4 4 〉

represents a binary tree with n = 7 leaves, of which one has path-length 1, two have
path-length 3, and four have path-length 4; it is shown in Figure 2.1.

Path-length sequences obey what we call the Kraft equality, a special case of the
Kraft inequality of noiseless coding theory (see, e.g., [10, p. 45]).

Theorem 2.1. For all n ≥ 1, 〈 `1 · · · `n 〉 is the sequence of path-lengths in a
rooted binary tree iff

n∑
i=1

2−`i = 1.

Thus ` is a path-length sequence iff 2−` is a density sequence.
Proof. The theorem is easily proven by induction on n. For the basis, with n = 1

we must have `1 = 0. The induction step follows by noticing that the two principal
subtrees of any binary tree must have sequences 〈`′1 · · · `′p〉 and 〈`′′1 · · · `′′q 〉 satisfying
the equality and that their composition has the sequence 〈 (`′1 +1) · · · (`′p+1)(`′′1 +1)
· · · (`′′q + 1) 〉, which again satisfies the equality.

Henceforth we assume that tree path-length sequences are in ascending sorted
order. Table 2.1 shows a lexicographic tabulation of all possible sequences for 1 ≤
n ≤ 7, along with Tn, the total number of inequivalent sequences of length n. Tn
is enumerated as sequence M0710 (A002572) in [39]. An upper bound on Tn can
be obtained from the Catalan number Cn, which computes the number of unordered
binary trees: for n ≥ 3, Tn ≤ 1

2Cn ≤ 2n−3. Gilbert [12], using the notation g(N) for
TN , points out that Tn is well approximated for n ≤ 30 by

Tn ' 0.148 (1.791)n.

1878 D. STOTT PARKER AND PRASAD RAM

Table 2.1
Path-length sequences for small values of n.

n 1 2 3 4 5 6 7 8
Tn 1 1 1 2 3 5 9 16

〈 0 〉 〈 1 1 〉 〈 1 2 2 〉 〈 1 2 3 3 〉
〈 2 2 2 2 〉

〈 1 2 3 4 4 〉
〈 1 3 3 3 3 〉
〈 2 2 2 3 3 〉

〈 1 2 3 4 5 5 〉
〈 1 2 4 4 4 4 〉
〈 1 3 3 3 4 4 〉
〈 2 2 2 3 4 4 〉
〈 2 2 3 3 3 3 〉

〈 1 2 3 4 5 6 6 〉
〈 1 2 3 5 5 5 5 〉
〈 1 2 4 4 4 5 5 〉
〈 1 3 3 3 4 5 5 〉
〈 1 3 3 4 4 4 4 〉
〈 2 2 2 3 4 5 5 〉
〈 2 2 2 4 4 4 4 〉
〈 2 2 3 3 3 4 4 〉
〈 2 3 3 3 3 3 3 〉

...

Table 2.2
Path-length sequences ‘ and their weighted path-length gw(‘) for w = 〈 189 95 73 71 28 23 21 〉.

‘ gw(‘)
〈 1 2 3 4 5 6 6 〉 1286
〈 1 2 3 5 5 5 5 〉 1313
〈 1 2 4 4 4 5 5 〉 1287

〈 1 3 3 3 4 5 5 〉 1238

〈 1 3 3 4 4 4 4 〉 1265
〈 2 2 2 3 4 5 5 〉 1259
〈 2 2 2 4 4 4 4 〉 1286
〈 2 2 3 3 3 4 4 〉 1260
〈 2 3 3 3 3 3 3 〉 1311

2.3. Huffman codes are optimal path-length sequences. A Huffman code
for a given positive weight sequence

w1 ≥ w2 ≥ · · · ≥ wn

consists of a binary tree, i.e., a path-length sequence ` = 〈 `1 `2 · · · `n 〉, which we
evidently want to be in ascending order,

`1 ≤ `2 ≤ · · · ≤ `n,

so that the weighted path-length

gw(`) =

n∑
i=1

wi `i

is minimal. Beyond the Kraft equality of Theorem 2.1, it is difficult to characterize
what it is that makes ` optimal. For example, Table 2.2 shows all feasible codes and
costs for the weight sequence w = 〈 189 95 73 71 28 23 21 〉, with n = 7.

Huffman’s breakthrough [18] was to identify an efficient algorithm that finds an
optimal tree, avoiding a search over the exponentially large space of trees. The algo-
rithm repeatedly combines the two tree leaves with least weight, whose sum becomes
the weight of a new leaf. The Huffman (optimal) tree in Table 2.2 has path lengths
` = 〈 1 3 3 3 4 5 5 〉 and total weighted path-length 1238. The Huffman algorithm
reflects a divide-and-conquer structure that has interesting properties on the space of
trees, but because of its procedural nature does little to characterize optimal trees.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1879

3. The imbalance lattice of binary trees. The optimality of a Huffman code
is determined by the match between the balance (or imbalance) between the code tree
and the weights of the symbols to be coded. In this section we show ternary balancing
exchanges give an imbalance ordering on binary trees that defines a lattice.

The idea of using lattices in coding dates back at least to Shannon in 1950 [38].
However, we have not found the lattice characterization of tree imbalance elsewhere.
Following considerable work in the early 1980s on enumeration of trees, Pallo classified
trees by their rotational structure (e.g., [30, 31]) and showed that they then form a
lattice. Our work differs from Pallo’s in that we classify trees by their path-length
(imbalance) structure.

3.1. Important properties of tree path-length sequences.
Theorem 3.1. Every path-length sequence ` has the form

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,
a sequence including 2k copies of its largest value q (where j, k > 0). Also, j is at
most the largest exponent of 2 in 2k, and therefore j ≤ log2(2k).

Proof. `must include 2k copies of its largest value q since otherwise
(
2q ·∑n

i=1 2−`i
)

is odd, contradicting the Kraft equality. Using this argument again on the shorter
path-length sequence obtained by replacing the 2k copies of q with k copies of (q−1),
the Kraft equality requires not only that j > 0 but also that j be at most the number
of times that 2 divides 2k.

Theorem 3.2. Except for the sequence 〈 1 2 3 . . . (n−2) (n−1) (n−1) 〉, any
path-length sequence contains at least three identical values.

Proof. The proof is by induction on the length n of the sequence. For the
basis, when n = 3 the only sequence is 〈 1 2 2 〉, satisfying the theorem. For the
induction step, suppose n > 3, and to the contrary of the theorem that there is a
sequence does not have three identical values. Let q be the smallest value in the
sequence appearing twice. We may assume q < (n−1), since otherwise the sequence is
〈 1 2 3 . . . (n−2) (n−1) (n−1) 〉. Construct the sequence of length n−1 that results
from replacing the two values q with one value (q−1). In this new sequence, q does
not appear at all (since there were only two before), and (q−1) appears at most twice.
Therefore, by induction, since this sequence does not have three identical values it is
〈 1 2 3 . . . (n−3) (n−2) (n−2) 〉. But since q < (n−1) and q does not appear in the
new sequence, this gives a contradiction.

3.2. Ternary exchanges determine tree imbalance. The insight that in-
spired us to write this paper is that it is possible to generate all binary tree path-length
sequences using ternary exchanges. Given any path-length sequence

〈· · · p · · · · · · · · · (q + 1) (q + 1) · · ·〉,
then the revision

〈· · · (p+ 1) (p+ 1) · · · · · · · · · q · · ·〉
is a path-length sequence also, because

2−p + 2−(q+1) + 2−(q+1) = 2−p + 2−q = 2−(p+1) + 2−(p+1) + 2−q.

Moreover, if the initial sequence is sorted in ascending order (so p ≤ q) and we replace
the rightmost p and leftmost two (q + 1)s, then the resulting sequence is still sorted.

1880 D. STOTT PARKER AND PRASAD RAM

t����� XXXXXt��� HHH
t t

¡¡@@t t��
��tt t¡¡@@

��AA ��AAt t t t
t����� XXXXXt��� HHH

t t
¡¡@@t t tt t¡¡@@

��AA ��AAt t t t��
��

〈 1 3 3 4 4 4 4 〉 〈 1 3 3 4 4 4 4 〉
↓ ↓

〈 2 2 2 4 4 4 4 〉 〈 2 2 3 3 3 4 4 〉t����� XXXXXt��� HHH
t
¡¡@@t t��
�� t tt t¡¡@@

��AA ��AAt t t t
t����� XXXXXt��� HHH

t
��AAt t��
�� t

¡¡@@t t tt t¡¡@@
��AAt t

Fig. 3.1. Balancing exchanges: 〈 1 3 3 4 4 4 4 〉 → 〈 2 2 2 4 4 4 4 〉 and 〈 1 3 3 4 4 4 4 〉 → 〈 2 2 3 3 3 4 4 〉.

(When p = q the two sequences are identical.) Dually, this exchange can be applied
in reverse; with sorted sequences, if we replace the leftmost two (p + 1)s and the
rightmost (q − 1), the result will still be sorted in ascending order.

The net effect of this exchange is to transfer two leaves dangling from level q to
level p. The two examples in Figure 3.1 show this pictorially.

Definition 3.3. Let p, q be integers such that 1 ≤ p < q < n. A balancing
exchange is a ternary exchange of the form

〈· · · p · · · · · · (q + 1) (q + 1) · · ·〉
↓ ↘ · · · ↘ ↓

〈· · · (p+ 1) (p+ 1) · · · · · · q · · ·〉.

It is called a minimal balancing exchange if (p+ 1) = q. An imbalancing exchange is
of the reverse form,

〈· · · (p+ 1) (p+ 1) · · · · · · q · · ·〉
↓ ↙ · · · ↙ ↓

〈· · · p · · · · · · (q + 1) (q + 1) · · ·〉.
Finally, we can define partial orders as the reflexive transitive closures of these re-
lations among sequences. Given two sequences s and t, we say that s is at least as
balanced as t,

s � t,

if there are sequences `1, . . . , `m (m ≥ 1) where t = `1, `m = s, and for each i,
1 ≤ i < m, there is a balancing exchange from `i to `i+1.

Minimal balancing exchanges, in which (p + 1) = q, are particularly significant.
The balancing exchange 〈 1 3 3 4 4 4 4 〉 → 〈 2 2 2 4 4 4 4 〉 in Figure 3.1 gives an ex-
ample. Minimal balancing exchanges are ternary exchanges of consecutive length val-
ues, so any tree path-length sequence of the form 〈· · · (q − 1) · · · (q + 1) (q + 1) · · ·〉
determines the more balanced tree path-length sequence 〈· · · q · · · q q · · ·〉 and vice
versa.

Theorem 3.4. If two path-length sequences differ, they differ in at least three
values. Also, if they differ in exactly three values, there is a ternary exchange between
the sequences.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1881

�
�

�
�
'

&
�
���

$$$Ã
!%

�
�
'

&
�
�������

#

"
'

&

t t t tt t t tt t tt tt t tttt

2222

1233

22233

13333

12344

223333

222344

133344

124444

123455
1234566

1235555

1244455

1333455

1334444

2224444

2233344

2333333

2223455

Fig. 3.2. The path-length imbalance ordering for n = 4, 5, 6, 7; edges denote ternary exchanges.

Proof. Direct consequence of the Kraft equality. The equality shows that two
path-length sequences cannot differ in one value. Similarly, there cannot be sequences
s and t differing in two values, since if the differences were the disjoint sequences of
positive integers 〈 si sj 〉 and 〈 ti tj 〉, then the Kraft equality would imply 2−si +
2−sj = 2−ti + 2−tj , which is false under the disjointness condition. Finally, sequences
differing in three integer values 〈 si sj sk 〉 and 〈 ti tj tk 〉 must satisfy 2−si + 2−sj +
2−sk = 2−ti + 2−tj + 2−tk , and a case analysis shows that this is solved only by
〈 si sj sk 〉 = 〈 p (q+1) (q+1) 〉 and 〈 ti tj tk 〉 = 〈 (p+1) (p+1) q 〉, corresponding
to a ternary exchange.

Theorem 3.5. The path-length imbalance ordering is a partial order.
Proof. It is reflexive and transitive by construction. Also the imbalance ordering

is antisymmetric, since s � t and t � s together imply s = t. Otherwise there would
be a sequence of balancing exchanges that transform t to s and ultimately back to t;
this is not possible, since each balancing exchange reduces by at least one the sum of
the values in the sequence.

The imbalance partial order is straightforward to derive for small values of n. In
Figure 3.2, it is displayed for n = 4, 5, 6, 7. The most imbalanced sequence appears
at the top of the partial order, and an edge from a sequence s down to another t
means that a balancing exchange is possible from s to t. It is evident from Figure 3.2
that the minimal exchanges define the bulk of the ordering. In order to provide a
deeper appreciation for its structure, Figure 3.3 presents the ordering for n = 6, 7, 8, 9.
Figures 3.2 and 3.3 suggest a number of results about the imbalance ordering.

Theorem 3.6. A sequence is on level k of the imbalance partial order (counting
from 0, the topmost and least balanced level) iff k minimal balancing exchanges are
needed to derive it from the least balanced sequence 〈 1 2 3 · · · (n−2) (n−1) (n−1) 〉.
In this situation the sum of the values in the sequence is

(n+ 2)(n− 1)

2
− k.

Thus the level of a sequence in the partial order is determined by the sum of its path-
length values.

Proof. By induction on k. For the basis k = 0, the sum of the path-lengths in the
least balanced sequence is (

∑n−1
i=1 i) + (n−1) = (n + 2)(n − 1)/2. For the induction

step, consider a sequence whose sum of values is (n+2)(n−1)
2 − k with k > 0. By

1882 D. STOTT PARKER AND PRASAD RAM

e
e

e
ee

Z
Z
ZZ

�
�
��

Z
Z
ZZ

�
�
��

Z
Z
ZZ

Z
Z
ZZ

J
J
J
J
JJ

b
b
b
bb

"
"
"
""

b
b
b
bb

b
b
b
bb

e
e
e
e
ee

b
b
b
bb

b
b
b
bb

b
b
b
bb

b
b
b
bb

b
b
b
bb

e
e
e
e
ee

b
b
b
bb

"
"
"
""

b
b
b
bb

"
"
"
""

223333

u = s−−−

222344
` = t−−−

133344

124444

123455

2333333

2233344

2224444

`+

s−−
1334444

u+

1333455

1244455

1235555

1234566

2223455
t−−

s−
13444444

13344455

13335555
u+

+

12445555

12444566

12355566

12346666

12345677

33333333

23333344

22334444

`++

22333455

22244455

22235555
t−

22234566

13334566

124555555

124455566

124446666

123556666

123555677

123466677

123457777

123456788

144444444
s

134444455

133445555

133444566

133355566
u+

+
+

133346666

133345677

124445677

223335555

222445555

222444566

222355566
t

222346666

333333344

222345677

233334444

223444444
`+++

223344455

223334566

233333455

s t s ∨ t s ∧ t

〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 6 6 〉 〈 1 3 3 3 5 5 5 6 6 〉 〈 2 2 3 4 4 4 4 4 4 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 3 3 3 4 5 6 6 〉 〈 1 3 3 4 4 4 5 6 6 〉 〈 2 2 3 4 4 4 4 4 4 〉
〈 1 3 4 4 4 4 4 5 5 〉 〈 2 2 3 3 3 4 5 6 6 〉 〈 1 3 3 4 4 4 5 6 6 〉 〈 2 2 3 3 4 4 4 5 5 〉
〈 1 2 4 5 5 5 5 5 5 〉 〈 2 2 3 3 3 4 5 6 6 〉 〈 1 2 4 4 5 5 5 6 6 〉 〈 2 2 3 3 3 5 5 5 5 〉
〈 1 2 4 5 5 5 5 5 5 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 1 2 4 4 4 5 6 7 7 〉 〈 2 2 2 4 4 5 5 5 5 〉
〈 1 2 4 4 5 5 5 6 6 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 1 2 4 4 4 5 6 7 7 〉 〈 2 2 2 3 5 5 5 6 6 〉

r
r
r
r
r

r
r
r
r
r
r
r
r

r

r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

r
r
r
r
r

r

r

r
r
r

r

r

Fig. 3.3. The imbalance lattice, showing path-length sequences ordered by imbalance. The
sequence 〈 1 2 3 4 · · · 〉 is maximally imbalanced. The graphs display the (transitively reduced) path-
length imbalance ordering for n = 6, 7, 8, 9. For clarity, only a minimal subset of the imbalance
ordering is drawn; orderings in the transitive closure of the minimal set are omitted. The imbalance
ordering is also a lattice, with well-defined upper bounds s ∨ t and lower bounds s ∧ t for every pair
of trees s and t. Some trees are marked to clarify certain notions (contractions, lower expansions,
and upper expansions), and their use in derivation of the first entry in the table of representative
upper and lower bounds for n = 9.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1883

Theorem 3.2, this sequence must contain at least three identical values 〈 q q q 〉. Thus
there is a minimal balancing exchange to this sequence from another that contains
〈 (q−1) (q+1) (q+1) 〉. This sequence is at level k−1 by construction, and by induction
it has the stated sum.

Theorem 3.6 shows the significance of the level of a sequence in the imbalance
partial order.

Definition 3.7. The level of balance of a path-length sequence s is

(n+ 2)(n− 1)

2
− (sum of the path-length values in s).

3.3. Contractions and expansions of path-length sequences.
Definition 3.8. Let ` = 〈 `1 · · · `n 〉 be a tree path-length sequence of length n.

The contraction `− of ` is the sequence of length (n−1) defined by

`− = sort↑ (〈 `1 · · · `n−2 (`n−1 − 1) 〉).
The position i expansion of ` is the sequence of length (n+1) defined by

sort↑ (〈 `1 · · · `i−1 (`i+1) (`i+1) `i+1 · · · `n 〉).
As permitted by Theorem 3.1, if we write

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉
with j, k > 0, then 2k is the suffix length of `, and j is the suffix increment of `. The
contraction `− is then

`− = 〈 · · · (q−j) (q−1)

2k−2︷ ︸︸ ︷
q · · · q 〉.

The lower expansion `+ is the position n− 2k expansion of `:

`+ = 〈 · · · (q−j+1) (q−j+1)

2k︷ ︸︸ ︷
q · · · q 〉.

The upper expansion `+ is the position n expansion of `:

`+ = 〈 · · · (q−j)
2k−1︷ ︸︸ ︷

q · · · q (q+1) (q+1) 〉.

Note the definition for `+ assumes 2k < n. When 2k = n, requiring n to be a
power of 2 and ` = 〈 q · · · q 〉, where q = log2(n), the formula above does not define
`+. In this very special case we define `+ = `+ rather than leave `+ undefined.

These definitions will be used heavily throughout the rest of the paper. Figure 3.4
and Table 3.1 give examples for n = 7. Figure 3.3 also gives examples illustrating the
relationships these definitions produce among the imbalance orderings for successive
values of n.

Theorem 3.9. If ` is a path-length sequence, `+ � `+ and (`+)− � (`+)−

= `. Furthermore, either ` = (`−)+, or ` = (`−)+. Thus (`−)+ � ` � (`−)+.

1884 D. STOTT PARKER AND PRASAD RAM

Table 3.1
Path-length sequences of length 7, with their contractions and expansions. Note that all con-

tractions have length 6, and expansions length 8. Emboldened digits reflect changes from ‘ .

path-length suffix suffix lower upper
sequence length incr. contraction expansion expansion

‘ 2k j ‘ − ‘ + ‘ +

〈 1 2 3 4 5 6 6 〉 2 1 〈 1 2 3 4 5 5 〉 〈 1 2 3 4 6 6 6 6 〉 〈 1 2 3 4 5 6 7 7 〉
〈 1 2 4 4 4 5 5 〉 2 1 〈 1 2 4 4 4 4 〉 〈 1 2 4 4 5 5 5 5 〉 〈 1 2 4 4 4 5 6 6 〉
〈 1 2 3 5 5 5 5 〉 4 2 〈 1 2 3 4 5 5 〉 〈 1 2 4 4 5 5 5 5 〉 〈 1 2 3 5 5 5 6 6 〉
〈 1 3 3 3 4 5 5 〉 2 1 〈 1 3 3 3 4 4 〉 〈 1 3 3 3 5 5 5 5 〉 〈 1 3 3 3 4 5 6 6 〉
〈 1 3 3 4 4 4 4 〉 4 1 〈 1 3 3 3 4 4 〉 〈 1 3 4 4 4 4 4 4 〉 〈 1 3 3 4 4 4 5 5 〉
〈 2 2 2 3 4 5 5 〉 2 1 〈 2 2 2 3 4 4 〉 〈 2 2 2 3 5 5 5 5 〉 〈 2 2 2 3 4 5 6 6 〉
〈 2 2 2 4 4 4 4 〉 4 2 〈 2 2 2 3 4 4 〉 〈 2 2 3 3 4 4 4 4 〉 〈 2 2 2 4 4 4 5 5 〉
〈 2 2 3 3 3 4 4 〉 2 1 〈 2 2 3 3 3 3 〉 〈 2 2 3 3 4 4 4 4 〉 〈 2 2 3 3 3 4 5 5 〉
〈 2 3 3 3 3 3 3 〉 6 1 〈 2 2 3 3 3 3 〉 〈 3 3 3 3 3 3 3 3 〉 〈 2 3 3 3 3 3 4 4 〉

`+ = 〈 1 3 3 4 4 4 5 5 〉
upper expansion of ‘

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@
��AA ��AAt t t t

AA��t t����

`− = 〈 1 3 3 3 4 4 〉
contraction of ‘

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@������AAt t
` = 〈 1 3 3 4 4 4 4 〉

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@
��AA ��AAt t t t

`+ = 〈 1 3 4 4 4 4 4 4 〉
lower expansion of ‘

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@
��AA ��AA ��AAt t t����t t t

Fig. 3.4. The contraction and expansions of the path-length sequence ‘ = 〈 1 3 3 4 4 4 4 〉.

Proof. `+ and `+ differ by a ternary exchange, so `+ � `+. From Theorem 3.1
we can assume

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,
and thus (`+)− = `. Furthermore (`+)− = ` if j = 1 and

(`+)− = 〈 · · · (q−j+ 1)(q−j+ 1)(q−1)

2k−2︷ ︸︸ ︷
q · · · q 〉 � `

if j > 1. Finally (`−)+ = ` if k = 1 (necessitating j = 1) and (`−)+ = ` if k > 1.
Consequently ` ∈ { (`−)+, (`−)+ }.

Theorem 3.10. If s � t , then s− � t−, s+ � t+, and s+ � t+.
Proof. Recall that if s � t, then there are sequences `1, . . . , `m (m ≥ 1) such

that t = `1, `m = s and for each i, 1 ≤ i < m, there is a balancing exchange from

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1885

`i to `i+1. Our approach here is very simple: to prove s− � t− we convert the
derivation t = `1, . . . , `m = s directly to the derivation t− = `1

−, . . . , `m− = s−. For
this it is sufficient to show that either each step from (`i)

− to (`i+1)− is a balancing
exchange, or (`i)

− = (`i+1)−. The former must hold if `i and `i+1 agree in the final
two positions. If they disagree,

`i = 〈 · · · p a · · · b q q 〉,
`i+1 = 〈 · · · (p+1) (p+1) a · · · b (q−1) 〉

because they define a balancing exchange, and by Theorem 3.1 necessarily b = (q−1).
Then

(`i)
− = sort↑ (〈 · · · p a · · · (q−1) (q−1) 〉),

(`i+1)− = sort↑ (〈 · · · (p+1) (p+1) a · · · (q−2) 〉).

If (p+1) = b = (q−1), then p = (q−2) and the two contractions are equal. If not, they
still differ by a balancing exchange. Proving s+ � t+ is similar, where (`i)+ = (`i+1)+

iff `i = 〈 · · · (q−j) q q · · · q 〉, `i+1 = 〈 · · · (q−j+1) (q−j+1) (q−1) · · · q 〉 and
j ≥ 2. Proving s+ � t+ is also similar, but easier, since then it is never the case
that (`i)

+ = (`i+1)+.

3.4. The vector lattice and distribution lattice. Recall [5] that a lattice is
an algebra 〈S,v,u,t〉 in which S is a set, v is a partial ordering on S, and for all
a, b ∈ S, there is a unique greatest lower bound (glb) au b and least upper bound (lub)
a t b. The lattice is called distributive if these operators satisfy the distributive law:

for all a, b, c in S, a u (b t c) = (a u b) t (a u c).

Optionally the lattice can have a greatest element > and least element ⊥.
Definition 3.11. Let ≤vec be the element-wise ordering on vectors (sequences)

in <n. Then

x ≤vec y iff xi ≤ yi for 1 ≤ i ≤ n.

Also define vector element-wise minima and maxima as

x minvec y = 〈 min(x1, y1) · · · min(xn, yn) 〉,
x maxvec y = 〈 max(x1, y1) · · · max(xn, yn) 〉.

Theorem 3.12. The nonnegative vectors 〈<+
n,≤vec,minvec,maxvec〉 form a

distributive lattice called the vector lattice.
The set P of distribution sequences of length n (ascending nonnegative vectors

v with vn = 1) also form a distributive lattice, 〈P,≤vec,minvec,maxvec〉, called the
distribution lattice, with least element ⊥ = 〈 0 0 · · · 0 1 〉 and greatest element > =
〈 1 1 · · · 1 1 〉.

Proof. The one-dimensional algebra 〈<+,≤,min,max〉 is a distributive lattice.
The vector properties required here follow from this.

3.5. The majorization lattice and density lattice. We reproduce basic ma-
jorization concepts developed in [34]. Majorization as defined here is an extension
of the classical majorization of Muirhead and Hardy, Littlewood, and Pólya [16],
which is useful in the study of inequalities. Marshall and Olkin [27] provide a very
good account of the classical theory and its applications. The classical theory defines

1886 D. STOTT PARKER AND PRASAD RAM

a majorization ordering on descendingly ordered (or sometimes ascendingly ordered)
multisets, and although quite beautiful it is also quite complex. We have transplanted
the theory to rely only on linear algebra and convexity. Thus the definitions in this
section are ours, and the results vary from those in [27].

Definition 3.13. The zeta matrix
∫

= (ζij) is defined by

ζij = 1 if i ≥ j, 0 otherwise.

The Möbius matrix ∂ = (µij) is defined by

µij = 1 if i = j, − 1 if j = i− 1, 0 otherwise.

The Möbius matrix is the inverse of the zeta matrix. For example, when n = 5:

∫
=

 1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

 ∂ =
∫ −1

=

 1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 .

The Möbius matrix is also significant in that it corresponds directly to the concept
of pairwise exchange (of adjacent elements in a sequence). The theory of Möbius
inversion [36] gives a generalized notion of differential on partially ordered domains
(although here we consider only totally ordered sequences). We can think of

∫
as an

integral operator (which transforms a sequence to its left-to-right “integral”), with ∂
as its inverse differential operator.

Theorem 3.14. If x and y are density sequences (so
∑n
i=1 xi =

∑n
i=1 yi = 1),

then

x � y iff (
∫

x) ≤vec (
∫

y).

If v and v′ are distribution sequences, then ∂ v and ∂ v′ are density sequences and

v ≤vec v′ iff (∂ v) � (∂ v′).

Proof. (
∫

x) ≤vec (
∫

y) is equivalent to

x1 ≤ y1, x1 + x2 ≤ y1 + y2, . . . , x1 + x2 + · · ·+ xn ≤ y1 + y2 + · · ·+ yn.

Note that x is a density sequence iff (
∫

x) is a distribution sequence. The second
statement then follows since the Möbius and zeta transformations are inverses of one
another.

This isomorphism between≤vec and � implies that majorization defines a lattice.
Definition 3.15. Majorization lub and glb operators are definable by

x t y = ∂ ((
∫

x) maxvec (
∫

y)),
x u y = ∂ ((

∫
x) minvec (

∫
y)).

Theorem 3.16. The nonnegative reals ordered by majorization forms a distribu-
tive lattice 〈<+

n,�,u,t〉 called the majorization lattice.
The set D of density sequences of length n (nonnegative x with

∑n
i=1 xi = 1) forms

a distributive lattice 〈D,�,u,t,⊥,>〉 called the density lattice, with least element
⊥ = 〈 0 0 · · · 0 1 〉 and greatest element > = 〈 1 0 · · · 0 0 〉.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1887

Proof. The transformation x 7→ ∫
x defines a lattice isomorphism between the

vector and majorization lattices and between the distribution and density lattices.
Here x u y and x t y are defined just so as to be the majorization glb and lub:

z � x, z � y x � z, y � z
⇔ (

∫
z) ≤vec (

∫
x), (

∫
z) ≤vec (

∫
y) ⇔ (

∫
x) ≤vec (

∫
z), (

∫
y) ≤vec (

∫
z)

⇔ (
∫

z) ≤vec ((
∫

x) minvec (
∫

y)) ⇔ ((
∫

x) maxvec (
∫

y)) ≤vec (
∫

z)
⇔ z � ∂ ((

∫
x) minvec (

∫
y)) ⇔ ∂ ((

∫
x) maxvec (

∫
y)) � z

⇔ z � x u y. ⇔ x t y � z.

Thus the majorization algebra also forms a distributive lattice.
Even when x and y are in descending order, the sequences (x u y) and (x t y)

defined here are not necessarily in descending order:

x = 〈 2−2 2−2 2−3 2−4 2−4 2−4 2−4 2−4 2−4 〉

and

y = 〈 2−2 2−3 2−3 2−3 2−3 2−3 2−4 2−5 2−5 〉

yield the least upper bound

x t y = ∂ (
∫

x maxvec

∫
y) = 〈 2−2 2−2 2−3 2−4 2−4 2−3 2−4 2−5 2−5 〉.

See Figure 3.6.

3.6. The imbalance lattice: A discrete cousin of the majorization lat-
tice. Since every pair of sequences in Figures 3.2 and 3.3 has a unique glb and lub,
the imbalance ordering is not only a partial order but also a lattice. In this section we
prove this by showing that every pair of sequences s, t has a glb s ∧ t and lub s ∨ t.
We also relate the imbalance lattice directly to the majorization lattice, as illustrated
in Figures 3.5–3.7.

Theorem 3.17. On tree path-length sequences, the imbalance ordering is isomor-
phic to the majorization ordering. Specifically, whenever s and t are tree path-length
sequences, then

s � t iff 2−s � 2−t.

Proof. We show first that balancing exchanges cause a reduction in the majoriza-
tion ordering. Let s be the result of a balancing exchange on t (so s � t). Then the
following holds:

t = (· · · p u · · v (q + 1) (q + 1) · ·)

s = (· · · (p + 1) (p + 1) u · · v q · ·)

2−t = (· · · 2−p 2−u · · 2−v 2−(q+1) 2−(q+1) · ·)

2−s = (· · · 2−(p+1) 2−(p+1) 2−u · · 2−v 2−q · ·)∫
2−t = (· · S S+2−p S+2−p+2−u · · T T+2−(q+1) T+2−q · 1)∫
2−s = (· · S S+2−(p+1) S+2−p · · T−2−v T T+2−q · 1)

(0 · 0 + 2−(p+1) + 2−u · · + 2−v + 2−(q+1) 0 · 0)

Thus
∫

2−s and
∫

2−t differ only in the values appearing between p and q, and each
element in

∫
2−t − ∫

2−s is nonnegative, so 2−s � 2−t.

1888 D. STOTT PARKER AND PRASAD RAM

s = (1 2 4 4 5 5 5 6 6)

2−s = (2−1 2−2 2−4 2−4 2−5 2−5 2−5 2−6 2−6)∫
2−s = 2−7 (64 96 104 112 116 120 124 126 128)

t = (2 2 2 3 4 5 6 7 7)

2−t = (2−2 2−2 2−2 2−3 2−4 2−5 2−6 2−7 2−7)∫
2−t = 2−7 (32 64 96 112 120 124 126 127 128)∫

2−s maxvec

∫
2−t = 2−7 (64 96 104 112 120 124 126 127 128)

∂ (
∫

2−s maxvec

∫
2−t) = 2−7 (64 32 8 8 8 4 2 1 1)

= 2−s t 2−t = (2−1 2−2 2−4 2−4 2−4 2−5 2−6 2−7 2−7)

s ∨ t = (1 2 4 4 4 5 6 7 7)∫
2−s minvec

∫
2−t = 2−7 (32 64 96 112 116 120 124 126 128)

∂ (
∫

2−s minvec

∫
2−t) = 2−7 (32 32 32 16 4 4 4 2 2)

= 2−s u 2−t = (2−2 2−2 2−2 2−3 2−5 2−5 2−5 2−6 2−6)

s ∧ t = (2 2 2 3 5 5 5 6 6)

Fig. 3.5. Related points in the majorization and imbalance lattices, showing their connection.

s = (2 2 3 4 4 4 4 4 4)

2−s = (2−2 2−2 2−3 2−4 2−4 2−4 2−4 2−4 2−4)∫
2−s = 2−7 (32 64 80 88 96 104 112 120 128)

t = (2 3 3 3 3 3 4 5 5)

2−t = (2−2 2−3 2−3 2−3 2−3 2−3 2−4 2−5 2−5)∫
2−t = 2−7 (32 48 64 80 96 112 120 124 128)∫

2−s maxvec

∫
2−t = 2−7 (32 64 80 88 96 112 120 124 128)

∂ (
∫

2−s maxvec

∫
2−t) = 2−7 (32 32 16 8 8 16 8 4 4)

= 2−s t 2−t = (2−2 2−2 2−3 2−4 2−4 2−3 2−4 2−5 2−5)

s ∨ t = (2 2 3 3 4 4 4 5 5)

Fig. 3.6. Results of (2−s u 2−t) and (2−s t 2−t) are not necessarily in descending order.

s = (1 2 4 5 5 5 5 5 5)

2−s = (2−1 2−2 2−4 2−5 2−5 2−5 2−5 2−5 2−5)∫
2−s = 2−7 (64 96 104 108 112 116 120 124 128)

t = (2 2 2 3 4 5 6 7 7)

2−t = (2−2 2−2 2−2 2−3 2−4 2−5 2−6 2−7 2−7)∫
2−t = 2−7 (32 64 96 112 120 124 126 127 128)∫

2−s minvec

∫
2−t = 2−7 (32 64 96 108 112 116 120 124 128)

∂ (
∫

2−s minvec

∫
2−t) = 2−7 (32 32 32 12 4 4 4 4 4)

= 2−s u 2−t = (2−2 2−2 2−2 2−α 2−5 2−5 2−5 2−5 2−5)

−α = (−7 + log2(12)) ≈ −3.4150375

� (2−2 2−2 2−2 2−4 2−4 2−5 2−5 2−5 2−5)

s ∧ t = (2 2 2 4 4 5 5 5 5)

2− (s ∧ t) � (2−s u 2−t); the two differ where indicated. Nonintegral exponents occur for n ≥ 9.

Fig. 3.7. The imbalance lattice is not simply conjugate to a sublattice of the majorization lattice.

The proof of the converse, that 2−s � 2−t implies s � t for tree path-length

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1889

sequences s, t, can proceed by assuming a counterexample for which the difference in
the levels of balance of

m = (level of balance of s) − (level of balance of t)

is minimal. Since 2−s � 2−t let a, b, c, d be the rightmost aligned pairwise-differing
values among the two sorted sequences such that s = 〈· · · a · · · b · · ·〉 and t =
〈· · · c · · · d · · ·〉, where c < a, b < d because of the majorization inequality, a ≤ b and
c ≤ d because the sequences are ascending, c 6= d since c < a ≤ b < d, and finally 2−a+
· · ·+ 2−b = 2−c + · · ·+ 2−d, which is always possible by the Kraft equality. Because
b < d necessarily t = 〈· · · c · · · d d · · ·〉, since otherwise we reach a contradiction
(multiplying both sides of the equality by 2d makes the left side even but the right
side odd). Thus, if we define the result t′ = 〈· · · (c+ 1) (c+ 1) · · · (d− 1) · · ·〉 of
a balancing exchange on t = 〈· · · c · · · d d · · ·〉, then the level difference between s

and t′ is at most (m − 1), and 2−t′ � 2−t. Furthermore we claim 2−s � 2−t′ , using
the following schematic:

t = (· · · c u · d d · ·)

t′ = (· · · (c + 1) (c + 1) · · (d − 1) · ·)
s = (· · · a w · · b · ·)

2−t = (· · · 2−c 2−u · 2−d 2−d · ·)

2−t′ = (· · · 2−(c+1) 2−(c+1) · · 2−(d−1) · ·)

2−s = (· · · 2−a 2−w · · 2−b · ·)∫
2−t −

∫
2−s = (0 · 0 +(2−c − 2−a) +S1 · +Sk 0 · 0)∫

2−t −
∫

2−t′ = (0 · 0 +2−(c+1) +2−u · +2−d 0 · 0)∫
2−t′ −

∫
2−s = (0 · 0 +(2−(c+1) − 2−a) +(S1 − 2−u) · +(Sk − 2−d) 0 · 0)

Because 2−s � 2−t, the running totals S1, . . . , Sk are nonnegative. Also, (2−(c+1) −
2−a) ≥ 0 since c < a. Furthermore c ≤ (a − 1) ≤ w, implying S1 − 2−u = (2−c −
2−a) − 2w ≥ 2−(a−1) − 2−w ≥ 0. Finally Sk + 2−d − 2−b = 0, so b ≤ (d − 1)
implies Sk − 2−d = (2−b − 2−d)− 2−d = 2−b − 2−(d−1) ≥ 0. Thus

∫
2−s≤vec

∫
2−t′

(i.e., 2−s � 2−t′), contradicting the assumed minimality of m, and existence of a
counterexample.

Theorem 3.18. The imbalance ordering on binary trees determines a bona fide
lattice in which, for all s and t, the glb s∧ t and lub s∨ t are defined with the following
recursive algorithms, where the expansion used is chosen from among the lower and
upper expansions:

s ∧ t =


s if s � t,
t if t � s,
the greatest expansion of s− ∧ t−

that is also a lower bound for s and t otherwise;

s ∨ t =


t if s � t,
s if t � s,
the least expansion of s− ∨ t−

that is also an upper bound for s and t otherwise.

Proof. We must show that, whenever s and t are tree path-length sequences
of length n, there are unique path-length sequences s ∧ t and s ∨ t such that the
following hold:

• s ∧ t � s, t; also, if ` is any path-length sequence, then ` � s, t iff ` � s ∧ t.
• s, t � s ∨ t; also, if ` is any path-length sequence, then s, t � ` iff s ∨ t � `.

1890 D. STOTT PARKER AND PRASAD RAM

Table 3.2
Elaboration of the first example of representative bounds in Figure 3.3, showing how s∧ t and

s∨ t can be derived with their recursive algorithms.

n s t s ∧ t s ∨ t
9 〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 6 6 〉 〈 2 2 3 4 4 4 4 4 4 〉 〈 1 3 3 3 5 5 5 6 6 〉

↑ lower expansion ↑ upper expansion ↑ lower expansion ↑ upper expansion

8 〈 1 3 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 5 〉 〈 2 2 3 3 4 4 4 4 〉 〈 1 3 3 3 5 5 5 5 〉
↑ lower expansion ↑ lower expansion ↑ lower expansion ↑ lower expansion

7 〈 1 3 3 4 4 4 4 〉 〈 2 2 2 3 4 5 5 〉 〈 2 2 2 4 4 4 4 〉 〈 1 3 3 3 4 5 5 〉
↑ lower expansion ↑ upper expansion ↑ lower expansion ↑ upper expansion

6 〈 1 3 3 3 4 4 〉 〈 2 2 2 3 4 4 〉 〈 2 2 2 3 4 4 〉 〈 1 3 3 3 4 4 〉

This can be done by induction on n. We consider only the glb here, the proof for
the lub being similar. The theorem holds trivially for n ≤ 6, since then the trees are
totally ordered. Assume that it holds for sequences of size n−1 or less.

First, s and t must have a common lower bound: The glb s− ∧ t− exists by
induction, and (Theorems 3.9 and 3.10) lower expansion gives a lower bound

(s− ∧ t−)+ � (s−)+ � s, (s− ∧ t−)+ � (t−)+ � t.

Second, if s and t have two greatest lower bounds ` and `′, then they must be
equal: From ` � s, t and `′ � s, t we infer `− � s− ∧ t− and `′− � s− ∧ t− by
Theorem 3.10. Since furthermore ` and `′ are greatest lower bounds, s− ∧ t− � `−

and s− ∧ t− � `′−. Thus `− = `′−. By Theorem 3.9, the only way ` 6= `′ can arise
is that

` = (`−)+, `′ = (`−)+ or ` = (`−)+, `′ = (`−)+

so ` � `′ or `′ � `, contradicting their both being greatest lower bounds. Thus ` = `′.
Third, the algorithm produces a glb that is as good as any other lower bound:

Assuming this for (s− ∧ t−) by induction, there can be no lower bound ` 6= (s ∧ t)
such that (s− ∧ t−)+ � `, since otherwise (s− ∧ t−) � `− � s−, t−, contradicting
our assumption.

The table of nontrivial examples in Figure 3.3 gives an appreciation for glbs and
lubs. The first example (which is illustrated in the figure) is expanded in Table 3.2.
Note that the final pairs of entries in s and t are the same as the final pairs of entries
in s ∧ t and s ∨ t and that the suffix lengths of s and t are never shorter than those
of s ∧ t and s ∨ t.

Theorem 3.19. If s and t are path-length sequences of length n, then

s ∨ t =

{
(s− ∨ t−)+ if s = (s−)+ and t = (t−)+,
(s− ∨ t−)+ if s = (s−)+ and t = (t−)+;

s ∧ t =

{
(s− ∧ t−)+ if s = (s−)+ and t = (t−)+,
(s− ∧ t−)+ if s = (s−)+ and t = (t−)+.

Otherwise, if either s = (s−)+ and t = (t−)+, or s = (s−)+ and t = (t−)+, then
either s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+, or s∧ t = (s− ∧ t−)+ and s∨ t =
(s− ∨ t−)+.

Furthermore, if the final pairs of entries of s and t are 〈p p〉 and 〈q q〉, where
p ≤ q, then the final pairs of entries of s∧ t and s∨ t are, respectively, 〈p p〉 and
〈q q〉.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1891

Also, the suffix lengths of s and t are at least as long as those of (s∧ t) and
(s∨ t).

Proof. These properties follow by induction on n. For the basis, they all hold
trivially when n ≤ 6, since then the imbalance lattice is a total order and { s, t } =
{ s∨ t, s∧ t }, and the final two entries of any path-length sequence are a pair by
Theorem 3.1. For the induction step, we can write

s = 〈 · · · (p−i)
2h︷ ︸︸ ︷

p · · · p 〉, t = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,

s− = 〈 · · · (p−i) (p−1)

2h−2︷ ︸︸ ︷
p · · · p 〉, t− = 〈 · · · (q−j) (q−1)

2k−2︷ ︸︸ ︷
q · · · q 〉,

where i, j, h, k > 0, and we assume with no loss of generality that p ≤ q. There
are four cases to consider, depending on the suffix lengths 2h of s and 2k of t. In
the first, h = 1 and k = 1 (i.e., s = (s−)+ and t = (t−)+). Then i = 1 and
j = 1 by Theorem 3.1. By induction (s− ∧ t−) and (s− ∨ t−) have respective final
pairs 〈(p−1) (p−1)〉 and 〈(q−1) (q−1)〉 and have suffix lengths not exceeding those
of s− and t−. Now, by Theorem 3.10 (s− ∧ t−)+ � (s−)+ and (s− ∧ t−)+ � (t−)+.
Because (s−)+ = s and (t−)+ = t, the recursive algorithm in Theorem 3.18 will find
(s− ∧ t−)+ = s∧ t. Thus the final pair of s∧ t will be 〈p p〉, and it will have suffix
length 2. Similarly s∨ t = (s− ∨ t−)+ because s∨ t ∈ { (s− ∨ t−)+, (s− ∨ t−)+ },
and choosing (s− ∨ t−)+ gives a contradiction: if s = (s−)+ � (s− ∨ t−)+ and t =
(t−)+ � (s− ∨ t−)+, then (because of Theorem 3.10) s− = ((s−)+)−� ((s− ∨ t−)+)− 6=
((s− ∨ t−)+)− = s− ∨ t− and correspondingly t− = ((t−)+)−� ((s− ∨ t−)+)− 6=
((s− ∨ t−)+)− = s− ∨ t−, so the lub of s− and t− is not s− ∨ t−, a contradiction.
Again the final pair of s∨ t will be 〈q q〉, with suffix length 2.

The other three cases, where h > 1 and/or k > 1, are similar.

4. Submodularity of weighted path-length over the lattices. Huffman
codes for a positive descending weight sequence w = 〈w1 w2 · · · wn 〉 are binary tree
path-length sequences ` = 〈 `1 `2 · · · `n 〉 that minimize the weighted path-length

gw(`) =
n∑
i=1

wi `i.

In this section we show that gw is submodular over the lattice of trees, which helps
explain why efficient algorithms for finding optimal trees are possible at all.

4.1. Submodularity. Most work on submodular functions assumes that the lat-
tice is the lattice of subsets of a given set, the case originally emphasized by Edmonds
[6]. However, the definition applies to any lattice.

Definition 4.1. A real-valued function f : L → < defined on a lattice 〈L,v,u,t〉
is submodular if

f(x u y) + f(x t y) ≤ f(x) + f(y)

for all x, y ∈ L. Equivalently, f is submodular if a “differential” inequality holds:

∆2f(x, y)
def
= f(x) + f(y)− f(x u y)− f(x t y) ≥ 0.

Section 4.4 discusses the relationship between submodularity and convexity.

1892 D. STOTT PARKER AND PRASAD RAM

4.2. Submodularity of weighted path-length on the majorization lat-
tice. In this section we show that weighted path-length on the imbalance lattice of
trees (or a logarithmic variant on the majorization lattice of densities) is a submodular
function.

Define the function Gw on the majorization lattice of densities by

Gw(x) = gw(−log2(x)) = −
∑
i

wi log2(xi).

Notice that Gw is convex on <+
n, since its Hessian

∇2Gw =

(
∂2Gw(x)

∂xi∂xj

)
=

1

ln(2)
diag

(
wi
x2
i

)
is positive semidefinite there [27, p. 448]. (Recall that we are assuming all weights
are positive.)

Gw is actually also submodular on the majorization lattice. We prove this directly
now and show later how submodularity can be established using only vector calculus.

Theorem 4.2. Assuming w is a descending positive sequence of length n, Gw is
submodular on the majorization lattice. That is, for all nonnegative sequences x, y
of length n,

Gw(x u y) + Gw(x t y) ≤ Gw(x) + Gw(y).

Proof. By induction on n. For n = 1, the inequality is satisfied with equality.
Let an and bn be the nth entries of (x u y) and (x t y), respectively. The theorem
follows by induction if we can show that

wn · (−log2(an)) + wn · (−log2(bn)) ≤ wn · (−log2(xn)) + wn · (−log2(yn)).

Recall that x u y = ∂ ((
∫

x) minvec (
∫

y)) and x t y = ∂ ((
∫

x) maxvec (
∫

y)).
There are four cases, depending on X =

∫
x and Y =

∫
y and specifically on the final

values

Xn−1 =
n−1∑
i=1

xi, Xn =
n∑
i=1

xi, Yn−1 =
n−1∑
i=1

yi, Yn =
n∑
i=1

yi

as follows:
1. if Xn−1 ≤ Yn−1 and Xn ≤ Yn, then an = xn, bn = yn;
2. if Xn−1 ≥ Yn−1 and Xn ≥ Yn, then an = yn, bn = xn;
3. if Xn−1 ≤ Yn−1 and Xn ≥ Yn, then xn ≥ yn, an = Yn − Xn−1 = yn + ε,
bn = Xn − Yn−1 = xn − ε, where ε = (Yn−1 −Xn−1) ≥ 0 and ε ≤ xn − yn =
(xn max yn) − (xn min yn);

4. if Xn−1 ≥ Yn−1 and Xn ≤ Yn, then yn ≥ xn, an = Xn − Yn−1 = xn + ε,
bn = Yn −Xn−1 = yn − ε, where ε = (Xn−1 − Yn−1) ≥ 0 and ε ≤ yn − xn =
(xn max yn) − (xn min yn).

Each case satisfies wn · (−log2(an)) + wn · (−log2(bn)) ≤ wn · (−log2(xn)) + wn ·
(−log2(yn)) as needed; the first two cases satisfy it with equality, and in the last two
we have

an = (xn min yn) + ε, bn = (xn max yn) − ε,

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1893

but then assuming that xn, yn ≥ 0,

log2(an) + log2(bn) = log2(an bn) = log2(xn yn + η) ≥ log2(xn) + log2(yn),

where η = ε ((xn max yn)− (xn min yn)− ε) ≥ 0 and multiplying by −wn gives the
theorem.

4.3. Submodularity of weighted path-length on the imbalance lattice.
Theorem 4.3. Assuming that w is a descending positive sequence of length n,

gw is submodular on the imbalance lattice. That is, for all path-length sequences s, t
of length n,

gw(s ∧ t) + gw(s ∨ t) ≤ gw(s) + gw(t).

Proof. The proof is also by induction on n. The theorem holds with equality
for n ≤ 6, since then the lattice of path-length sequences is totally ordered. We
sketch the induction step from n−1 to n, showing ∆2gw(s, t) = (gw(s) + gw(t)) −
(gw(s∧ t) + gw(s∨ t)) ≥ 0 follows from ∆2gw(s−, t−) ≥ 0—where gw, when
applied to sequences of length (n−1), uses only the first (n−1) entries of w.

Recall that 2k is the suffix length of the path-length sequence

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,
and j is its suffix increment. The suffix increment is 1 when (`−)+ = `, so

gw(`) =

{
gw(`−) + (wn−1 + q · wn) if ` = (`−)+ (i.e., k = 1),
gw(`−) + (wn−2k+1 + q · wn) if ` = (`−)+ (i.e., k > 1).

Thus gw(s) > gw(s−) and gw(t) > gw(t−) in all cases.
However, it can happen that gw(s∧ t) < gw(s− ∧ t−) or gw(s∨ t) < gw(s− ∨ t−)

because it is possible either that s− ∧ t− 6= (s∧ t)− or that s− ∨ t− 6= (s∨ t)−. Specif-
ically, it is possible that

s∧ t = 〈 · · · (q−j) (q−j)
2k︷ ︸︸ ︷

q · · · q 〉
and

s− ∧ t− = 〈 · · · (q−j−1)

2k︷ ︸︸ ︷
q · · · q 〉,

i.e., s∧ t = (s− ∧ t−)+ and s∧ t has suffix increment j > 1, in which case

gw(s∧ t) = gw(s− ∧ t−) + (wn−2k+1 − j · wn−2k + q · wn)

and the parenthesized expression can be negative.
From Theorem 3.19, the final pairs of entries of s and t are always the same as

the final pairs of entries of s ∧ t and s ∨ t, and the suffix lengths for each of s and
t cannot be less than those for each of (s∧ t) and (s∨ t). We now consider the same
four cases addressed in the proof of Theorem 3.19.

In the case where both s is the upper expansion of s− and t is the upper expansion
of t−, then by Theorem 3.19, s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+, so

∆2gw(s, t) = (gw(s) + gw(t)) − (gw(s∧ t) + gw(s∨ t))
= (gw(s−) + gw(t−)) − (gw(s− ∧ t−) + gw(s− ∨ t−)) + 0
= ∆2gw(s−, t−),

1894 D. STOTT PARKER AND PRASAD RAM

with the analysis above for gw(`) with k = 1. In this situation only the final pairs
of entries of s, t and of s∧ t, s∨ t can cause the two differences to be unequal, but
we now know them to give the same two pairs. Therefore in this case the theorem
follows by induction.

It remains to treat the cases where s is the lower expansion of s− or t is the
lower expansion of t−. In these cases it can happen that gw(s∧ t) < gw(s− ∧ t−) or
gw(s∨ t) < gw(s− ∨ t−) as noted above.

In the case where either s is the lower expansion of s− or t is the lower expan-
sion of t−, but not both, then by Theorem 3.19, either s∧ t = (s− ∧ t−)+ and
s∨ t = (s− ∨ t−)+, or s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+. The lower ex-
pansions among these two cannot yield as large a gw increase as the lower expansions
giving s and t, because they expand higher-indexed positions (their suffix lengths are
never longer), and the suffix increment of s− ∧ t− or s− ∨ t− can be greater than 1.
Therefore ∆2gw(s, t) ≥ ∆2gw(s−, t−).

In the final case where s is the lower expansion of s− and t is the lower expansion of
t−, then s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+ (see Theorem 3.19). Moreover,
the lower expansions giving s∧ t and s∨ t cannot yield as large a gw increase as the
lower expansions giving s and t, so again ∆2gw(s, t) ≥ ∆2gw(s−, t−).

To see an example, the submodularity of gw can be verified on the lattice for
n = 9 and the weight sequence shown in Figure 5.1.

4.4. Submodularity as a discrete analogue of convexity. Although it is
very simply defined, submodularity is difficult to appreciate. Using only standard
vector calculus, we now clarify some basic relationships between submodularity and
notions of convexity. We have not seen this done elsewhere.

There are several reasons why submodularity plays an important role here, at the
crossroads between information and coding theory. First, submodularity is directly re-
lated to the Fortuin–Kasteleyn–Ginibre (FKG) “correlation” inequalities, which gen-
eralize a basic inequality of Tchebycheff on mean values of functions (hence expected
values of random variables). A fine survey of results with FKG-like inequalities is
[15].

Second, submodularity is closely related to convexity. Book-length surveys by
Fujishige [9] and Narayanan [28] review connections between submodularity and op-
timization (and even electrical network theory). The relationship between convexity
and submodularity was neatly summarized by Lovász with the following memorable
definition and result.

Definition 4.4. Given a finite set S of cardinality n, we can identify a {0, 1}-
vector t ∈ <+

n with any subset T ⊆ S specifying the incidence in T of the elements
in S (indexed in some fixed order).

Any nonnegative vector x ∈ <+
n can be decomposed uniquely into a sum of posi-

tive real values multiplied by “decreasing” {0, 1}-vectors. Specifically, x ∈ <+
n deter-

mines an integer k (0 ≤ k ≤ n) such that x has a unique greedy decomposition

x =

k∑
i=1

λi si,

where λi > 0, S1 ⊃ · · · ⊃ Sk are distinct subsets of S, and si is the {0, 1}-vector

identified with Si. For any function f : S → <+, its greedy extension f̂ : <+
n → <+

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1895

to nonnegative vectors is then defined by

f̂(x) = f̂

(
k∑
i=1

λi si

)
=

k∑
i=1

λi f(Si).

In fact, λ = ∂ (sort↑ (x)), using our notation.
Theorem 4.5 (see Lovász [25, p. 249]). f : S → <+ is submodular iff its greedy

extension f̂ : <+
n → <+ is convex.

Proof. The essence is that for positive constants λ ≤ κ and sets T 6= U ,

f̂(λ t+κu) = λ f(T∪U) + (κ−λ) f(U) ≤ λ f(T) + κ f(U) = f̂(λ t) + f̂(κu),

where t and u are the {0, 1}-vectors corresponding to T and U . The central inequality

is due to submodularity. Resisting 0 < λ < 1 and κ = (1 − λ) shows f̂ is convex.

Lovász goes on [25, p. 250–251] to point out that

min { f(X) | X ⊆ S } = min { f̂(x) | x ∈ [0, 1]n }
and that as a consequence there is a polynomial-time algorithm to minimize f .

The vector lattice 〈<+
n,≤vec,minvec,maxvec〉, is exactly the extension of the set

lattice to nonnegative vectors. Vector lattices, also called Riesz spaces, can be more
“natural” than set lattices in some ways. For example, submodularity has a natural
characterization.

Theorem 4.6 (see Lorentz [27, p. 150]). When twice differentiable, f is submod-
ular on the vector lattice 〈<+

n,≤vec,minvec,maxvec〉 iff

∂2f

∂xi∂xj
≤ 0 (i 6= j, 1 ≤ i, j ≤ n).

Proof. The proof is essentially by definition. Using the shorthand f〈 u v 〉 to
denote the expression f(〈 x1 . . . xi−1 u xi+1 . . . xj−1 v xj+1 . . . xn 〉) gives

∂2f

∂xi∂xj
= lim
εi,εj→0

f〈 (xi+εi) (xj+εj) 〉 − f〈 (xi+εi) xj 〉 − f〈xi (xj+εj) 〉+ f〈xi xj 〉
εi εj

≤ 0,

where the inequality comes from the fact that f is submodular, since with respect
to ≤vec, the points x = 〈 (xi+εi) xj 〉 and y = 〈 xi (xj+εj) 〉 have the upper and
lower bounds x maxvec y = 〈 (xi+εi) (xj+εj) 〉 and x minvec y = 〈 xi xj 〉. For
the converse, if f is not submodular on a rectangle defined by x = 〈 (xi+a) xj 〉
and y = 〈 xi (xj+b) 〉, Lorentz pointed out we can find a subrectangle on which
∂2f/∂xi∂xj > 0.

Note: the derivatives ∂2f
∂x2
i

can still be positive. In fact, the Hessian∇2f = (∂2f
∂xi∂xj

)

still can even be positive semidefinite (hence f can be convex), or be an M-matrix [3,
Chap. 6].

Theorem 4.7. When twice differentiable, F is submodular on the majorization
lattice 〈<+

n,�,u,t〉 iff for all i 6= j between 1 and n− 1,

∂2F (z)

∂zi∂zj
− ∂2F (z)

∂zi+1∂zj
− ∂2F (z)

∂zi∂zj+1
+

∂2F (z)

∂zi+1∂zj+1
≤ 0.

1896 D. STOTT PARKER AND PRASAD RAM

Proof. Theorem 3.16 shows that the Möbius transformation ∂ gives a bijection be-
tween the majorization lattice 〈<+

n,�,u, t〉 and the vector lattice 〈<+
n,≤vec,minvec,

maxvec〉. Thus f(x) = F (∂ x) is submodular on the vector lattice when F is sub-
modular on the majorization lattice. Expanding the inequality

∂2

∂xi∂xj
(F (∂ x)) =

∂2

∂xi∂xj
(f(x)) ≤ 0

(which follows from the previous theorem) with the chain rule gives the stated result,
because z = ∂ x = 〈x1 (x2−x1) (x3−x2) · · · (xn−xn−1) 〉.

Revisiting Theorem 4.2, Gw(z) = −∑n
i=1 wi log2(zi) satisfies

∂2Gw(z)

∂zi∂zj
− ∂2Gw(z)

∂zi+1∂zj
− ∂2Gw(z)

∂zi∂zj+1
+

∂2Gw(z)

∂zi+1∂zj+1

=
1

ln(2)


0, |i− j| > 1,
−wi/z2

i , i = j + 1,
−wi+1/z

2
i+1, j = i+ 1,

wi+1/z
2
i+1 + wi/z

2
i , i = j,

and, e.g., Gw(∂ x) = − w1 log2(x1) − ∑n−1
i=1 wi log2(xi+1 − xi) satisfies

∂2

∂xi∂xj
(Gw(∂ x)) =

1

ln(2)

−wi+1

(xi+1 − xi)2 ≤ 0 when j = i+ 1.

This gives two alternative proofs of Theorem 4.2, showing how such results can be
derived more easily.

Definition 4.8. A function F : <+
n → < is Schur convex if it preserves the

majorization ordering, i.e., x�y implies F (x) ≤ F (y).
Theorem 4.9. F is Schur convex on the majorization lattice iff f(x) = F (∂ x)

is monotone on the vector lattice.
Proof. Again a direct result of the bijection between the two lattices. If f is differ-

entiable, f is monotone on the vector lattice iff∇f(x) = 〈 ∂f/∂x1 · · · ∂f/∂xn 〉≥vec 0,
which implies

∂F

∂xi
(∂ x) − ∂F

∂xi+1
(∂ x) =

∂

∂xi
(F (∂ x)) =

∂

∂xi
f(x) ≥ 0 (1 ≤ i ≤ n−1).

This rederives the result that ∂F/∂zi ≥ ∂F/∂zi+1 when F is Schur convex [34].
Since monotonicity and convexity are related, Theorems 4.5, 4.6, 4.7, and 4.9

connect convexity, submodularity, Schur convexity, and majorization. There are ac-
tually many connections. See the survey [27, Chap. 6], in which submodular functions
are called L-subadditive functions. Just as Lovász showed for submodular functions
[25], Schur convex functions [37, 29] are closed under various operations: min, max,
convolution, composition with convex functions, etc. [27, Chap. 3]. Theorem 4.5 is
also reminiscent of symmetric gauge functions, which are Schur convex; see [27, p. 96].

5. Huffman coding as submodular dynamic programming. The results
of the previous sections can now be applied to Huffman coding.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1897

5.1. Nonmonotonicity of weighted path-length over the lattices. It is
important to realize that weighted path-length is not monotone on the imbalance lat-
tice, so greedy search may not always find its way to an optimal solution. This is illus-
trated by the example in Figure 5.1. For this problem the sequence 〈 2 2 3 3 4 4 4 5 5 〉
with cost 1298 is a local minimum: each of the 7 sequences reachable from it by
imbalancing exchanges and each of the 3 sequences reachable from it by balancing
exchanges have greater weighted path length. The diagram shows only the transitive
reduction of the imbalance lattice, omitting many balancing exchanges (because they
would clutter the picture), but it conveys the general situation for larger Huffman
coding problems. It shows that, even though it may do very well in practice, simple
hill-climbing along ternary exchanges is not guaranteed to find the optimum sequence.

Although weighted path-length gw is not monotone on the imbalance lattice of
trees, a monotone summary of weighted path-length gw

mon has the properties we
need.

In [25, p. 241], Lovász stated the following definition and theorem for set lattices
(easily proved for general lattices) about the “monotonization” of a function f .

Definition 5.1. If f : L → <+ is a real-valued function on a lattice L with
ordering relation v, define

fmon(x) = min { f(x′) | x′ v x }.

Theorem 5.2. If f is submodular, then fmon is also submodular.
Proof. From the definition of fmon, for all x, y in L, there exists a x′ v x such that

fmon(x) = f(x′) and a y′ v y such that fmon(y) = f(y′). But then (x′uy′) v (xuy)
and (x′ t y′) v (x t y), so

fmon(x u y) ≤ fmon(x′ u y′) ≤ f(x′ u y′),
fmon(x t y) ≤ fmon(x′ t y′) ≤ f(x′ t y′).

fmon(x u y) + fmon(x t y) ≤ f(x′ u y′) + f(x′ t y′)
≤ f(x′) + f(y′) (as f is submodular)
= fmon(x) + fmon(y).

Thus gw
mon is both submodular and monotone on the tree imbalance lattice.

5.2. Dynamic programming reconstruction of the Huffman algorithm.
Based the analysis above, we can derive Huffman codes by using a simple recursion.

Definition 5.3. The Huffman contraction w_ of a descending weight sequence
w = 〈w1 · · · wn 〉 is

w_ = sort↓ (〈 w1 · · · wn−2 (wn−1+wn) 〉).

Parenthetically, note that `− = − log2((2−`)_) for path-length sequences `. If
n ≥ 1 is the length of w, then the (most balanced) Huffman code for w is defined by

Huffman(w) =

{ 〈 0 〉 if n = 1,

better expansion(Huffman(w_) ,w) if n > 1;

better expansion(` ,w) =

{
`+ if gw(`+) ≤ gw(`+),

`+ otherwise.

1898 D. STOTT PARKER AND PRASAD RAM

e
e
e

e
ee

b
b
b
b
bb

"
"
"
"
""

b
b
b
b
bb

b
b
b
b
bb

e
e
e
e
e
ee

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

e
e
e
e
e
ee

b
b
b
b
bb

"
"
"
"
""

b
b
b
b
bb

"
"
"
"
""

124555555

124455566

124446666

123556666

123555677

123466677

123457777

123456788

144444444

134444455

133445555

133444566

133355566

133346666

133345677

124445677

223335555

222445555

222444566

222355566

222346666

333333344

222345677

233334444

223444444

223344455

223334566

233333455

1386

1325

1341

1362

1351

1324

1340

1329

1433

1348

1314

1303

1276
f

1292

1281

1330

1314

1335

1324

1297

1313

1510

1302

1360

1359

1298

f

1303

1349

Code Cost
Path-length Weighted

Sequence Path-length
` gw(`)

123456788 1329
123457777 1340
123466677 1324
123555677 1351
123556666 1362
124445677 1330
124446666 1341
124455566 1325
124555555 1386
133345677 1281
133346666 1292

133355566 1276

133444566 1303
133445555 1314
134444455 1348
144444444 1433
222345677 1302
222346666 1313
222355566 1297
222444566 1324
222445555 1335
223334566 1303
223335555 1314
223344455 1298
223444444 1359
233333455 1349
233334444 1360
333333344 1510

s
s
s
s
s
s
s
s

s
s
s
s
s
s
s
s

s
s
s
s
s

s

s

s
s
s

s

s
The transitively reduced imbalance lattice for n = 9 showing,
for w = 〈 189 95 73 71 23 21 18 9 1 〉, the code cost gw(`) for
each path-length sequence `. The Huffman code 133355566,
with cost 1276, is the global minimum. The code 223344455,
with cost 1298, is a local minimum. (Because the graph shows
only the transitive reduction of the lattice, it omits some edges
corresponding to exchanges, but the minimum is localized.)

Fig. 5.1. Costs of all possible codes for the weights w = 〈 189 95 73 71 23 21 18 9 1 〉.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1899

For example, the example in Figure 5.1 can be traced through Figure 3.3 and
Table 2.2:

Huffman(〈 189 95 73 71 23 21 18 9 1 〉) = 〈 1 3 3 3 5 5 5 6 6 〉,
Huffman(〈 189 95 73 71 23 21 18 10 〉) = 〈 1 3 3 3 5 5 5 5 〉,
Huffman(〈 189 95 73 71 28 23 21 〉) = 〈 1 3 3 3 4 5 5 〉,
Huffman(〈 189 95 73 71 44 28 〉) = 〈 1 3 3 3 4 4 〉,
Huffman(〈 189 95 73 72 71 〉) = 〈 1 3 3 3 3 〉,
Huffman(〈 189 143 95 73 〉) = 〈 1 2 3 3 〉,
Huffman(〈 189 168 143 〉) = 〈 1 2 2 〉,
Huffman(〈 311 189 〉) = 〈 1 1 〉,
Huffman(〈 500 〉) = 〈 0 〉.

This dynamic programming definition is similar to the standard Huffman algo-
rithm, but it differs in a few ways. First, it considers only upper and lower expansions
of Huffman(w_); we prove momentarily that this is sufficient. Second, it produces a
unique Huffman code, which is the most balanced possible because it uses lower expan-
sions whenever possible. (This avoids the issue of multiplicity of solutions that arises in
implementation of the standard Huffman algorithm. For example, if w = 〈 3 2 2 1 〉,
then 〈 1 2 3 3 〉 is a Huffman code, but the more balanced sequence 〈 2 2 2 2 〉 is also
and will be produced by the algorithm above.)

Actually, the definition of Huffman(w) can be “simplified” somewhat. Note that
when

` = Huffman(w_) = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉

with suffix length 2k and suffix increment j, the condition on better expansion(`,w)
is

gw(`+) ≤ gw(`+)
⇔ gw(`) + wn−2k−1 − (j−1)wn−2k + q wn ≤ gw(`) + wn−1 + (q + 1)wn
⇔ wn−2k−1 − (j−1)wn−2k ≤ wn−1 + wn.

Going further, the proof of Theorem 5.5 below implies that this condition actually
can be simplified to take j = 1, so that better expansion(`,w) = `+ if wn−2k−1 ≤
wn−1 + wn.

Theorem 5.4. Huffman(w) is the most balanced optimal code for w.
Proof. Let s = Huffman(w), so that s is the cheaper of Huffman(w_)+ and

Huffman(w_)+, or is the former (which is more balanced) if they have equal cost.
Only these two expansions need be considered. Like the usual Huffman algorithm,

this algorithm assigns wn−1 and wn maximal path length. Therefore (wn−1 + wn)
must appear in the “suffix” of w_, i.e., among the 2k + 1 final entries, where 2k is
the suffix length of ` = Huffman(w_); and so it has path length either (q − 1) or q,
corresponding to the two possible expansions. Thus only Huffman codes are derived
with the algorithm above.

Submodularity of gw
mon now proves that there is a unique most balanced Huff-

man code (and thus greedy search will find this code). Suppose that s and t are
maximally balanced Huffman codes that are noncomparable in the balance ordering.
Then gw

mon(t) = gw(t) = gw(s). Because t is optimal gw
mon(s∨ t) = gw

mon(t).

1900 D. STOTT PARKER AND PRASAD RAM

Submodularity of gw
mon then implies that gw

mon(s∧ t) ≤ gw
mon(s). By the defini-

tion of gw
mon, gw

mon(s∧ t) = gw
mon(s). But then s∧ t is optimal—hence a Huffman

code—and it is more balanced than both s and t. This gives a contradiction.
Theorem 5.5. Huffman(w_) = Huffman(w)−.
Proof. We prove this by induction on the length n of w. The base case n = 2 is

trivial.
For the induction step, let s = Huffman(w), so by the previous theorem s is the

most balanced optimal code for w. Let ` = Huffman(w_). Since w_ has length
(n− 1), ` is the most balanced optimal code for w_ by the induction hypothesis. By
definition s is the better (cheaper or more balanced if equally cheap) of `+ or `+. We
consider two possibilities.

First, if s = `+, then ` = s− as required, because ` = (`+)− by Theorem 3.9.
Second, if s = `+, then wn−2k−1 − (j−1)wn−2k ≤ wn−1 + wn, where 2k is

the suffix length of `, j is its suffix increment, and by Theorem 3.1, j ≤ log2(2k) or
equivalently 2j−1 ≤ k. If j = 1 we find again ` = s− as required.

We now claim that j > 1 cannot arise in this second possibility where s = `+.
Let us first understand intuitively why this is so. When the suffix length j > 1,
` = 〈 · · · (q−j) q · · · q 〉 describes a tree that is perfectly balanced over its suffix,
but the rest is at least j levels shorter. The Huffman algorithm will construct such
a tree only when the final 2k weights of w_ are all of similar size, but wn−2k−1

is much larger. Specifically, wn−1 + wn < wn−2k−1, and wn−2k−1 is constrained to
be 2j−1 larger than the sum of the subsequent weights, or the Huffman algorithm
would construct a different tree. But wn−2k−1 is also constrained to be small by the
inequality in the definition of the Huffman algorithm; if it becomes too large, we get
s = `+ instead of s = `+. These two constraints turn out not to be simultaneously
satisfiable when j > 1.

Suppose that j > 1 and s = `+; then, since wn−1 + wn < wn−2k−1 we have two
cases.

1. wn−3 ≥ wn−1 + wn.
Let W = wn−3. Then wn−2k−1 > wn−2k+(2j−1−1)W and 2W ≥ wn−2k ≥
W , since j > 1 implies 2k ≥ 4 by Theorem 3.1, `n−2k−1 = (q − j), and
` = Huffman(w_) is constructed by the Huffman algorithm. These give the
first bound

wn−2k−1

wn−2k
> 1 + (2j−1 − 1)/2 = 2j−2 + 1/2.

However, from wn−2k−1 − (j−1)wn−2k ≤ wn−1 + wn it follows that

wn−2k−1 > wn−2k + (2j−1 − 1)W
≥ wn−2k + (2j−1 − 1) (wn−1 + wn)
≥ wn−2k + (2j−1 − 1) (wn−2k−1 − (j−1)wn−2k).

When j = 2, this simplifies to wn−2k−1 > wn−2k−1, a contradiction. When
j > 2, it gives the second bound

wn−2k−1

wn−2k
<

(j−1) − 1/(2j−1 − 1)

1 − 1/(2j−1 − 1)
.

However this contradicts the first bound for all j > 2.
2. wn−2k−1 > wn−1 + wn > wn−3.

This is like the previous case, but this time when W = wn−3 we can derive

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1901

only the weaker condition W > (wn−1 +wn)/2, because wn−3 ≥ wn−1 ≥ wn.
Still, the same first bound, essentially the second bound (with (2j−1 − 1)
divided by 2), and the same contradictions, are derivable.

Thus all cases reach a contradiction, implying as required that, in the second possi-
bility, j = 1 and ` = s−.

5.3. The importance of submodularity in dynamic programming. To-
gether, Theorems 5.4 and 5.5 show that Huffman coding (finding the most balanced
code that minimizes gw

mon) is a dynamic programming problem that can be solved
in various ways, because the problem enjoys elegant recursive properties.

Huffman coding gives another example of a dynamic programming problem that
can be sped up considerably because the objective function is submodular over the
solution space. Lawler [24] remarked:

If a discrete optimization problem can be solved efficiently, it is quite
likely that submodularity is responsible. In recent years there has
been a growing appreciation of the fact that submodularity plays a
pivotal role in discrete optimization, not unlike that of convexity in
continuous optimization.

Submodularity has a long history in dynamic programming. By 1781, Monge had
found a form of submodularity to be important in simplifying the transportation
problem [17]. In 1970, Edmonds [6] related submodularity to matroids and greedily
solvable optimization problems. In 1980, Yao [42] generalized upon Knuth’s famous
O(n2) algorithm for optimum binary search trees [21] by giving an O(n2) algorithm
for the dynamic programming problem

c(i, i) = 0,
c(i, j) = w(i, j) + min i<k≤j (c(i, k − 1) + c(k, j)) (i < j);

w(i, j) ≤ w(i′, j′) (i′ ≤ i ≤ j ≤ j′),
w(i, j) + w(i′, j′) ≤ w(i′, j) + w(i, j′) (i ≤ i′ ≤ j ≤ j′).

Yao called the final constraint the quadrangle inequality, noting that it implies the
(inverse) triangle inequality. Writing I = [i, j] and J = [i′, j′], defining a lattice of
intervals of indices in the dynamic programming array, these two constraints require
the function W ([a, b]) = −w(a, b) to be monotone decreasing (W (I) ≥W (J) if I ⊆ J)
and submodular (W (I) + W (J) ≥ W (I ∩ J) + W (I ∪ J)). Results from exploiting
the quadrangle inequality in dynamic programming appear in [2, 7, 35] for problems
ranging from DNA sequencing to minimum cost matching.

Mirroring Theorem 4.7, the Monge condition wi,j + wi+1,j+1 ≤ wi+1,j + wi,j+1

on an n × n weight matrix W is also equivalent to the requirement that, ignoring
its first column and row, the matrix ∂ W ∂ > is nonpositive. Burkard, Klinz,
and Rudolf [4], compiled a comprehensive survey of many incarnations of the Monge
condition.

Recently Klein [20] explored the connection between dynamic programming and
submodularity. Golin and Rote [14] developed dynamic programming algorithms
for prefix codes when the codeword letters have differing costs, a useful case not
handled by Huffman’s algorithm; they recently extended this work to exploit the
Monge property.

6. Other applications. The results here also can be used to gain further insight
about submodular dynamic programming, the Huffman coding problem, and perhaps

1902 D. STOTT PARKER AND PRASAD RAM

also about the applications of lattice concepts in coding. Almost all of the theorems
proved here admit interesting extensions and/or special cases. For example, a direct
corollary of Theorem 4.3 (using w = 〈 1 · · · 1 〉) is that the function mapping a path-
length sequence to its level of balance is submodular on the imbalance lattice. It
would be interesting to extend the work here for the t-ary codes discussed in [19].

Majorization, we believe, can be exploited further in characterizing optimal codes.
We have established that the imbalance ordering on tree path-length sequences ` is
isomorphic to the majorization ordering on exponentiated tree path-length sequences
x = 2−`. Thus any function that is Schur convex (i.e., “majorization-preserving”:
monotone with respect to the majorization ordering) on exponentiated path-length
sequences and hence monotone on the (continuous) majorization lattice will also be
monotone on the (discrete) imbalance lattice. Negative entropy is an important ex-
ample of such a function; related functions are discussed in [32].

Furthermore, the methods developed above hold out hope for entirely new ap-
proaches to Huffman coding. We sketch two possibilities.

6.1. Continuous approximation of Huffman codes. One possibility is that
we can attack the combinatorial problem of Huffman coding with a continuous, real-
valued optimization problem. Recall that Huffman coding can be expressed as an
optimization problem:

minimize

n∑
i=1

wi `i

subject to

n∑
i=1

2−`i = 1, `i > 0, integer (1 ≤ i ≤ n).

Dropping the integrality constraint gives an interesting continuous relaxation of Huff-
man coding that can be attacked numerically. For example, by treating the constraint
as a penalty function, the problem above can be solved numerically with something like
the system of equations ∂/∂`j

(∑n
i=1 wi `i + 1010 (1 − ∑n

i=1 2−`i)2
)

= 0 (1 ≤
j ≤ n). Using the example weight sequence w = 〈 189 95 73 71 23 21 18 9 1 〉 studied
earlier, a simple program found a unique real solution

` ≈ 〈 1.4 2.4 2.8 2.8 4.4 4.8 4.8 5.8 9.0 〉
for these equations, with objective ≈ 1241. As expected, this solution is near the
optimal Huffman code 〈 1 3 3 3 5 5 5 6 6 〉, with cost 1276.

When the relaxation is faithful to the original, it will be possible to find optimal
solutions quickly. The relaxed solution can be used to jump to the right neighborhood
in the imbalance lattice, from which balancing exchanges will walk to the optimal
code. The penalty function could clearly be varied, and perhaps could be changed to
encourage near-integral solutions.

Interior point methods on the majorization lattice may also be possible. Among
other things, it may be possible to define s ∧ t in terms of −log2

(
2−s u 2−t

)
and

s ∨ t in terms of −log2

(
2−s t 2−t

)
: they are often identical and always satisfy

2−s ∧ t � 2−s u 2−t, 2−s t 2−t � 2−s ∨ t

(because 2−s u 2−t and 2−s t 2−t are the glb and lub with respect to majorization).
For perspective, if α = 7− log2(12) ≈ 3.4150375 and β = (α− 1), the following

set of examples represent the unusual cases with n = 9 where −log2

(
2−s u 2−t

) 6=

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1903

(s ∧ t) or −log2

(
2−s t 2−t

) 6= (s ∨ t).

s t −log2

(
2−s u 2−t

)
s ∧ t

〈 1 2 4 5 5 5 5 5 5 〉 〈 1 3 3 3 4 5 6 7 7 〉 〈 1 3 3 α 5 5 5 5 5 〉 〈 1 3 3 4 4 5 5 5 5 〉
〈 1 2 4 5 5 5 5 5 5 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 2 2 2 α 5 5 5 5 5 〉 〈 2 2 2 4 4 5 5 5 5 〉
〈 1 3 4 4 4 4 4 5 5 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 2 2 β 4 4 4 4 5 5 〉 〈 2 2 3 3 4 4 4 5 5 〉

s t −log2

(
2−s t 2−t

)
s ∨ t

〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 1 4 β 3 4 5 6 7 7 〉 〈 1 3 3 3 4 5 6 7 7 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 4 6 6 6 6 〉 〈 1 4 β 3 4 6 6 6 6 〉 〈 1 3 3 3 4 6 6 6 6 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 6 6 〉 〈 1 4 β 3 5 5 5 6 6 〉 〈 1 3 3 3 5 5 5 6 6 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 4 4 4 5 6 6 〉 〈 1 4 β 4 4 4 5 6 6 〉 〈 1 3 3 4 4 4 5 6 6 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 4 4 5 5 5 5 〉 〈 1 4 β 4 4 5 5 5 5 〉 〈 1 3 3 4 4 5 5 5 5 〉

These examples suggest there may be algorithms that “round up”−log2

(
2−s u 2−t

)
to give s ∧ t, and “round down” −log2

(
2−s t 2−t

)
to give s ∨ t.

6.2. Practical applications in adaptive coding. In many practical situations
it is difficult or impossible to know a priori the weights w used in Huffman coding. A
natural idea, which occurred independently to Faller [8] and Gallager [11], is to allow
the weights to be determined dynamically and to have the Huffman code “evolve”
over time. Dynamic Huffman coding is the strategy of repeatedly constructing the
Huffman code for the input so far and using it in transmitting the next input symbol.
Knuth presented an efficient algorithm for dynamic Huffman coding in [22], and his
performance results for the algorithm show it consistently producing compression very
near (though not surpassing) the compression attained with static Huffman code for
the entire input.

Vitter [40, 41] then developed a dynamic Huffman algorithm that improves on
Knuth’s in the following way: rather than simply revise the Huffman tree after each
input symbol, Vitter also finds a new Huffman tree of minimal external path length∑
i `i and height maxi `i. With this modification Vitter was actually able to surpass

the performance of static Huffman coding on several benchmarks.
A small contribution we can make is to clarify the improvement of Vitter. Basi-

cally, Vitter’s algorithm differs from Knuth’s in constructing the optimal path-length
sequence that is also as balanced as possible. Note that minimizing the external path
length

∑
i `i is identical to maximizing the level of balance. Since there can be more

than one optimal code, and unnecessary imbalance tends to penalize the symbol cur-
rently being encoded, insisting on maximally balanced codes improves performance.

Another contribution of the lattice perspective here is to encourage development
of new adaptive coding schemes. As suggested in section 5.1, a move between ad-
jacent points in the lattice corresponds to minor alteration of codes, and by moving
through the lattice we incrementally modify the cost of a code. Hill-climbing then
gives greedy coding algorithms, and online hill-climbing gives adaptive coding algo-
rithms. Although we have shown that the codes produced by hill-climbing are not
guaranteed to be optimal, lattice-oriented adaptive coding algorithms may still have
a role to play in some coding situations, since the Huffman notion of optimality is not
really what is needed in the (currently popular and enormously important) adaptive
context.

For example, adaptive coding algorithms can start at any point in the lattice, as
long as both ends of the communication know which one. Rather than rely on the
dynamic Huffman algorithm to derive reasonable operating points for the code, or rely
on Knuth’s “windowed” algorithm [22], one can immediately begin with a mutually

1904 D. STOTT PARKER AND PRASAD RAM

agreed upon, “reasonable” initial code (depending on the type of information being
transmitted), and then adapt this code using some mutually agreed upon greedy
algorithm for moving in the imbalance lattice.

Acknowledgments. We are very grateful to Pierre Hasenfratz for insightful
comments that improved this paper. A conversation with Mordecai Golin, who pro-
vided us with an expanded version of [14], inspired us to discuss dynamic programming
explicitly in this paper. He also pointed out the survey [4] to us. Also, we are in-
debted to two anonymous referees for clarifications of the exposition, especially of the
significance of submodularity and of Shannon’s work [38].

REFERENCES

[1] J. Abrahams, Code and parse trees for lossless source encoding, in Proc. Compression & Com-
plexity of Sequences (SEQUENCES’97), Positano, Italy, 1997, IEEE Press, Piscataway,
NJ, to appear.

[2] A. Aggarwal, A. Bar-Noy, S. Khuller, D. Kravets, and B. Schieber, Efficient minimum
cost matching and transportation using the quadrangle inequality, J. Algorithms, 19 (1995),
pp. 116–143.

[3] A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM,
Philadelphia, PA, 1994.

[4] R.E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge properties in optimization,
Discrete Appl. Math., 70 (1996), pp. 95–161.

[5] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University
Press, Cambridge, UK, 1990.

[6] J. Edmonds, Submodular Functions, Matroids and Certain Polyhedra, in Combinatorial Struc-
tures and Their Applications, R. Guy et al., eds., Gordon & Breach, New York, 1970,
pp. 69–87.

[7] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano, Sparse dynamic programming. II.
Convex and concave cost functions, J. ACM, 39 (1992), pp. 546–567.

[8] N. Faller, An adaptive system for data compression, Record of the 7th Asilomar Conference
on Circuits, Systems, and Computers, Pacific Grove, CA, 1973, pp. 593–597.

[9] S. Fujishige, Submodular Functions and Optimization, North-Holland Elsevier, Amsterdam,
1991.

[10] R.G. Gallager, Information Theory and Reliable Communications, John Wiley, New York,
1968.

[11] R.G. Gallager, Variations on a theme by Huffman, IEEE Trans. Inform. Theory, IT-24
(1978), pp. 668–674.

[12] E.N. Gilbert, Codes based on inaccurate source probabilities, IEEE Trans. Inform. Theory,
IT-17 (1971), pp. 304–314. g(N) is analyzed on p. 309.

[13] C.R. Glassey and R.M. Karp, On the optimality of Huffman trees, SIAM J. Appl. Math., 31
(1976), pp. 368–378.

[14] M.J. Golin and G. Rote, A dynamic programming algorithm for constructing optimal prefix-
free codes for unequal letter costs, in Proc. ICALP 95, Z. Fulop and F. Gecseg, eds.,
Springer-Verlag, New York, 1995, pp. 256–267.

[15] R.L. Graham, Applications of the FKG inequality and its Relatives, in Mathematical Program-
ming: The State of the Art, B. Korte, A. Bachem, and M. Grötschel, eds., Springer-Verlag,
New York, 1983, pp. 115–131.

[16] G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge University Press,
Cambridge, UK, 1934.

[17] A.J. Hoffman. On Simple Linear Programming Problems, in Convexity, Proc. Seventh Sym-
posium in Pure Mathematics, Vol. VII, V. Klee, ed., AMS, 1961, pp. 317–327.

[18] D.A. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE, 40
(1951), pp. 1098–1101.

[19] F.K. Hwang, Generalized Huffman trees, SIAM J. Appl. Math., 37 (1979), pp. 124–127.
[20] C.M. Klein, A submodular approach to discrete dynamic programming, European J. Opera-

tional Research, 80 (1995), pp. 145–155.
[21] D.E. Knuth, Optimum binary search trees, Acta Inform., 1 (1971), pp. 14–25.
[22] D.E. Knuth, Dynamic Huffman coding, J. Algorithms, 6 (1985), pp. 163–180.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1905

[23] E. Lawler, Combinatorial Optimization: Networks & Matroids, Holt-Rinehart-Winston, New
York, 1976.

[24] E.L. Lawler, Submodular Functions & Polymatroid Optimization, in Combinatorial Op-
timization: Annotated Bibliographies, A.H.G. Rinnooy Kan, M. O’hEigeartaigh, and
J.K. Lenstra, eds., John Wiley & Sons, New York, 1985, pp. 32–38.

[25] L. Lovász, Submodular functions and convexity, in Mathematical Programming: The State of
the Art, B. Korte, A. Bachem, and M. Grötschel, eds., Springer-Verlag, New York, 1983,
pp. 235–257.

[26] U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.
[27] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,

Academic Press, New York, 1979.
[28] H. Narayanan, Submodular Functions and Electrical Networks, North-Holland Elsevier, Am-

sterdam, 1997.
[29] A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I.

Schur (offert en homage à P. Montel), J. Math. Pures Appl., 31 (1952), pp. 253–292.
[30] J.M. Pallo, Enumerating, ranking and unranking binary trees, Computer Journal, 29 (1986),

pp. 171–175.
[31] J.M. Pallo, Some properties of the rotation lattice of binary trees, Computer Journal, 31

(1988), pp. 564–565.
[32] D.S. Parker, Conditions for optimality of the Huffman algorithm, SIAM J. Comput., 9 (1980),

pp. 470–489.
[33] D.S. Parker and P. Ram, Greed and Majorization, Technical Report CSD-960003, UCLA

Computer Science Dept., Los Angeles, 1996.
[34] D.S. Parker and P. Ram, A Linear Algebraic Reconstruction of Majorization, Technical

Report CSD-970036, UCLA Computer Science Dept., Los Angeles, 1997.
[35] U. Pferschy, R. Rudolf, and G.J. Woeginger, Monge matrices make maximization man-

ageable, Oper. Res. Lett., 16 (1994), pp. 245–254.
[36] G.-C. Rota, On the foundations of combinatory theory I. Theory of Möbius functions, Z.

Wahrscheinlichkeitstheorie, 2 (1964), pp. 340–368.
[37] I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantenthe-

orie, Sitzungsber. Berl. Math. Ges., 22 (1923), pp. 9–20.
[38] C.E. Shannon, The Lattice Theory of Information, Proc. IRE Trans. Information Theory, 1

(1950). Reprinted in Claude Elwood Shannon: Collected Papers, IEEE Press, Piscataway,
NJ, 1993.

[39] N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, New
York, 1995.

[40] J.S. Vitter, Design and Analysis of Dynamic Huffman Codes, J. ACM, 34 (1987), pp. 825–845.
[41] J.S. Vitter, Algorithm 673: Dynamic Huffman coding, ACM Trans. Math. Software, 15 (1989),

pp. 158–167.
[42] F.F. Yao, Efficient dynamic programming using quadrangle inequalities, in Proc. 12th Annual

ACM Symp. on Theory of Computing, Los Angeles, CA, 1980, pp. 429–435.

