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Abstract. Multivariate probability distributions with given marginals are consid-
ered, along with linear functionals, to be minimized or maximized, acting on them.
The functionals are supposed to satisfy the Monge or inverse Monge or some higher
order convexity property and they may be only partially known. Existing results in
connection with Monge arrays are reformulated and extended in terms of LP dual
feasible bases. Lower and upper bounds are given for the optimum value as well as
for unknown coefficients of the objective function based on the knowledge of some
dual feasible basis and corresponding objective function coefficients. In the two-
and three-dimensional cases dual feasible bases are obtained for the problem, where
not only the univariate marginals, but also the covariances of the pairs of random
variables are known.
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1 Introduction

In this paper we consider multivariate discrete probability distributions with given marginals,
along with special linear functionals, to be minimized or maximized, acting on them. In other
words, we consider transportation problems with special objective functions, where the sum
of the marginal values is equal to 1. The latter condition, as not essential, can be dropped
in the general theory.

About the objective functions we assume that they enjoy the Monge or inverse Monge
or some higher order convexity property.

There is a considerable literature on the Monge property and its use in optimization
and other fields of applied mathematics. The papers by Burkard et al. (1995) and Burkard
(2004) provide us with an overview about the classical and more recent results. The notion
of a discrete higher order convex function was introduced and first studied by the second
named author. We elaborate on it in Section 1.1.

The purpose of the paper is the following. First, we reformulate the Monge and inverse
Monge properties in terms of dual feasible bases of the transportation problem and obtain
further results for them. Secondly, we give lower and upper bounds for the optimum value
based on the knowledge of the univariate marginals and the covariances of pairs of bivariate
marginals. The results for the latter case concern the two- and three-dimensional transporta-
tion problems. Thirdly, we look at partially known objective functions and give lower and
upper bounds for entries of the coefficient array. The bounds are based on the knowledge of
the univariate marginals in the general, n-dimensional case and on the additional knowledge
of the covariances in the two- and three-dimensional cases. In particular, we give lower and
upper bounds for the unknown entries of a partially known Monge array.

The linear programming problem:

min(max) ", D70 ciji
subject to
Z?=1l‘z‘j:ai? izl?"'7m (1)

Z;ill’ij:bj, j:17...,n
r; >0, 1=1,....m, 7=1,...,n,

where

Sa=3b, a>0, i=1...m b>0, j=1...n
j=1

i=1
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and the more general problem:

min(max) >, c(it, ... da)x(i1, .. id)
subject to
Zil,...,id,ik:i (i ..y ia) = ax(i),
forall i=1,...,ng, k=1,...,d
x(i1,...,1q) >0,
forall i =1,...,n%, k=1,...,d,

where

da(i) == aqli), a(i)>0, i=1,...n, k=1,....d

are called 2- and d-dimensional transportation problems, respectively.
We can write problems (1) and (2) in the following matrix form:

min(max) c’'x
subject to
Ax=Db
x > 0.
In case of problem (1), we have
_ T
X (T11y -+ Tany e ooy Tandy - -+ s Tinn)
_ T
c = (C11,--,Clny- -y Cmly -+ Conn)
T
b (al,...,am,bl,...,bn)
A = (ally--'aalna-"7am17-"aamn)a
where
aij:ez-—i—emﬂ-, izl,...,m, jzl,...,n,
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and e;, €,4; are unit vectors in E™*" with ones in the i-th and (m + j)-th positions,

respectively. In case of problem (2),

x = (x(1,...,1,1),...,;2(1,...,1,ng),...,
x(ng,...,ng_1,1), ..., x(ng, ..., ng_1,nq))"
c = (e(l,...,1,1),....¢(1,..., 1, ng),...,
cnyy...yng-1,1),...,¢(ny, ..., ng_1,nq)
b = (a1(1),...,a1(n1),...,aq(1),..., aq(ng))*
A = (a(l,...,1,1),...,a(1,...,1,ng),...,

a(ny,...,ng_1,1),...,a(ny,...,ng_1,nq)),

T
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where
a(iy, ..., iq) =€ + -+ €njpoiny +iy, forall 1 <ip<mng, 1<k<d,

and €;,, ..., €y 4 tny  +i, A€ unit vectors in E™* " with ones in the i;-th, ..., (ny +
-+« + ng_1 + iq)-th positions, respectively.

By the definition of a;; in (4) and a(iy, . ..,%4) in (5), the constraints in problems (1) and
(2) can be written in the following compact forms:

Z Z aijxij =b

i=1 j=1
xij Z 0, (6)

forall :=1,...,m, 7=1,...,n,

> aliy,... ia)xlis, ... i) = Db
i1y
x(iy,...,iq) >0, (7)
forall i =1,....nk, k=1,...,d.

The vectors a;; in problem (6) can be assigned to the cells (4, j) in an m x n array. Similarly,

the vectors a;, _;, in problem (7) can be assigned to the cells (i1,...,i4) of an ny X -+ X ng

array in the d-space.

If in problem (1) we have the relation > " a; = 377 b; = 1, then {z;;} is a bivariate
probability distribution, where its univariate marginals are prescribed to be {a;} and {b;}.
Problem (1) can then be reformulated in such a way that we minimize or maximize the
expectation of ¢(X,Y’), where X, Y are random variables with given distributions, P(X =
i)=a,1=1,....m P(Y=j)=b;,j=1,...,nand c(i,j) =¢j,i=1,...,m,j=1,....n
is a given function. Similar is the probabilistic interpretation of problem (2), where there
are d random variables X1i,..., Xy involved and each has a known probability distribution.
Note that we chose the sets {1,...,m}, {1,...,n} as the supports of X and Y, respectively,
but the solution of problem (1) does not depend on the choices of these sets.

In what follows we assume that the sum of each set of marginal values is equal to 1.
We are primarily interested in the probabilistic applications. Our results, however, can be
generalized in a trivial way for the case, where the sum of the marginal values is not 1.

Sometimes the function c¢(iy,...,74) is known, but the joint distribution of the random
variables X7, ..., X is unknown and our purpose is to give lower and upper bounds for the
expectation E(c(X7y,..., X)), i.e., the value of the objective function.
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Sometimes, however, some of the c(iy,...,i4) values are unknown and we want to give
lower and upper bounds for them. We provide such bounds based on the knowledge of the
univariate marginal distributions and the basic components of the ¢ function, corresponding
to dual feasible bases of the above LP’s.

In a linear programming problem of the form (3), where we do not assume that A has
full row rank, a basis B is called dual feasible in the minimization (maximization) problem
if yTA <c! (y"A > c!), where y is any solution of the equation y’B = cg”. The above
inequality holds with equality sign if c is replaced by cg and A is replaced by Ag, i.e.,
yT'Ag = cg?, where cg and Ag are those parts of ¢ and A which correspond to basic
subscripts, respectively. Thus, the knowledge of a dual feasible basis B, together with the
corresponding cg and y, provide us with lower (upper) bound for the unknown components
of the coefficient vector c. At the same time we can obtain lower (upper) bound for the
value of the objective function, given that the univariate marginal distributions are known.
For a brief introduction to linear programming see Prékopa (1996).

To be able to provide us with the above mentioned bounds some special property has
to be assumed in connection with c¢. Our first assumption is that c satisfies the Monge
property or the inverse Monge property. In the paper we briefly review some of the existing
results in connection with Monge arrays, reformulate them in terms of LP dual feasible bases
and obtain new results as well. Other problems that we consider in this paper differ from
problems (1) and (2) in such a way that, in addition to the constraints that prescribe the
univariate marginal distributions, we also prescribe the covariances of pairs of the random
variables involved. While in problems (1) and (2) it is unimportant which are the support sets
of the random variables, in the problems with covariances these sets play important role.
Already the assumption that we impose on the coefficient array of the objective function
depends on them. It is a special higher order convexity that we briefly describe in Section
1.1. In addition, one of the constraints of the problem has the elements of the support sets
in the coefficients of the variables. We use these problems to give lower and upper bounds
for the same values as before, under the modified conditions.

In the further parts of Section 1 we recall some basic notations and facts. Section 2 is
devoted to the study of the bivariate and multivariate cases. Existing results in connection
with Monge and distribution arrays are reformulated and extended in terms of dual feasi-
bility. Bounds on the expectation and the unknown components of ¢ are obtained under
the condition that the univariate marginals of the random vector are known. In Section 3
the bivariate case is considered, where, in addition to the knowledge of the marginal distri-
butions, we assume the knowledge of the covariance of the two random variables involved.
We give bounds for the same values as before. Finally, we present similar results for the
three-dimensional case in Sections 4 and 5.
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1.1 Multivariate Discrete Higher-order Convexity

Let f(z),z € {20,...,%,} be a univariate discrete function, where 2, ..., z, are distinct.
Its divided difference of order 0, corresponding to z;, is f(z;), by definition. The first-order
divided difference corresponding to z;,, 2;, is designated and defined by
f(z,) — f(zi)
[Zimziz;f] = : : ) (8>

Ziyg T Riy

where z;, # z;,. The kth-order divided difference is defined recursively (see Popoviciu 1944,
Jordan 1965, Prékopa 1998) by

[Zi1’2i2’,__’Zikaik+l;f]I [ 129 ) lk+17f] [ 11 ) Zk7f:|, (9)
Rigy1 — i1

where z;,, ..., 2, are pairwise different.

We call the function kth-order convex if zo < --- < z, and its kth-order divided differ-
ences are all nonnegative. First-order convexity means monotonicity; second-order convexity
means convexity of the sequence of function values in the traditional sense.

Let f(2),z € Z = Z; X -+ X Zy be a multivariate discrete function and take the subset

ZIl-.-Id = {Zli,i c [1} X o+ X {Zdi,i c Id} = Z]l X e X ZId’ (10)

where |I;| = k; + 1, j = 1,...,d. Define the (ki, ..., kq)-order divided difference of f on
the set (10) in an iterative way. First we take the kith divided difference with respect to
the first variable, then the koth divided difference with respect to the second variable etc..
These operations can be executed in any order even in a mixed manner, the result is always
the same. Let

[213,4 € Ity . .5 2aiy i € 1g; f] (11)

designate the (ki, ..., kq)-order divided difference. The sum ky + -- - + ky is called the total
order of the divided difference.

We call the function (kq, ..., kg)-order convex if all sequences in all Z;, ..., Z; are in-
creasing and all (ki, ..., kq)-order divided differences are nonnegative.

1.2 Monge Arrays and Distribution Arrays

An m x n 2-dimensional array ¢ = (c¢;;) is called a Monge array if it satisfies the Monge
property:

Cij+Cs <cCis+cy forall 1<i<r<m, 1<j<s<n. (12)
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If the inequality in (12) holds strictly, i.e.,
Cijt+Crs <cCis+ey forall 1<i<r<m, 1<j<s<n, (13)

then it is the strict Monge property and c is called a strict Monge array. 1f the inequalities
in (12) and (13) hold in the reverse direction, then it is the inverse Monge property and
strict tnverse Monge property, respectively, and c is called an inverse Monge array and
strict inverse Monge array, respectively. A comprehensive survey on Monge property was
presented by Burkard et al.(1996).

If we consider ¢;; as the value of a function f on (4, j), i.e., f((¢, 7)) = ¢i;, then the inverse
Monge property is equivalent to that the (1, 1)-order divided differences are all nonnegative,
i.e., fis (1,1)-order convex.

A subclass of Monge arrays can be generated by borrowing an idea from statistics. Let p
be an m x n array with nonnegative entries p;, [ = 1,...,m, k =1,...,n. Then the array
¢ = (c¢;;) defined by

i
Cijzz pie forall 1<i<m, 1<j<n (14)
=1 k=1

is called a distribution array, and p a density array. It is easy to check that if c is a
distribution array, then c is a Monge array and —c is an inverse Monge array (see Bein
et al. 1995). A characterization of 2-dimensional Monge arrays can be given in terms of
distribution arrays, first noted by Bein and Pathak. We recall it below.

Theorem 1.1. (Bein and Pathak 1990) A 2-dimensional array ¢ = {c;;} is a Monge array
if and only if there ezist a distribution array d = {d;;} and vectors u = (w;) and v = (v;)
such that

Cij = U; + Uj + dl]

For d > 2, we define the d-dimensional Monge array due to Aggarwal and Park (1988).
An ny X -+ X ng d-dimensional array ¢ = {c(i1,...,1q)} has the Monge property if for all
entries c(iy, .. .,iq) and c(ji, ..., 7a), 1 <ig, jr < ng, 1 <k < d, we have

C(Sl, RN ,Sd> + C(tl, R ,td) S C(?:l, e ,id) + C(jh e ;,jd); (15)

where for all 1 < k < d, sy = min{ig, ji}, tx = max{iy, jx}. If this inequality holds strictly
for all (s1,...,8q4) # (i1,...,iq) and (s1,...,84) # (j1,---,Ja), then we say that array c has
the strict Monge property. If the inequality in (15) holds in the reverse direction, then it is
called the inverse Monge property and c is called an inverse Monge array. The definitions
of the strict inverse Monge property and strict inverse Monge array are similar.
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1.3 Hoffman’s Result

Hoffman’s (1963) result for the 2-dimensional minimization transportation problem is stated
in terms of Monge sequences, not Monge arrays. Given an m x n array ¢ = (¢;;), an ordering
o of the mn pairs of indices (i, j) of c is called a Monge sequence (with respect to c) if the
following conditions hold true:

()1 <o(i,j) <mnforall 1 <i<m,1<j<n,

(i) o(i1, j1) # o(i2, j2) for any (iy, j1) # (iz, j2),
(iii) whenever o(i,j) < o(i,s) and o(i,j) < o(r,j), forall 1 <i,r <mand 1 < j,s <n,
we have

Cij + Crs S Cis T er' (16)
Hoffman proved that the greedy algorithm, or northwest corner rule:
Step 1.  Set k=1
Step 2. Set x;; = min(a;,b;) such that o(i,j) =k (17)
Step 3. Replace a; by a; —x;;. Replace b; by b; — xy

Step 4.  If k= mn, stop. Otherwise, replace k by k+ 1
and go to Step 2

solves the 2-dimensional minimization transportation problem if and only if ¢ is a Monge
sequence with respect to the cost array c.

Note that ¢ is a Monge array if and only if o(i,j) = (i — 1)n + j is a Monge sequence
with respect to c.

1.4 Dual Feasible Basis

In what follows, we use the notations and definitions in Prékopa (1996). A basis of the

columns of a non-zero matrix A = (ay,...,a,) is a collection of linearly independent vectors
{a;,,...,a; } such that all column vectors of A can be represented as linear combinations of
these vectors. Assuming i; < --- < i,, we also call the submatrix B = (a;,,...,a;.) a basis
and a basis of A. Let I designate the set of subscripts of the vectors in a basis B of A and
K ={1,...,n} —I. Then the column vectors a;, 1 < j < n can be represented as
aj = Z dijal-.
iel

Define z; = > ., d;jc;. A basis B is said to be dual feasible in the minimization (maximiza-
tion) problem (3) if z; —¢; < 0 for all j € K (2; —¢; > 0 for all j € K). The differences
zj — ¢; are called relative costs.
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1.5 Ordered and Inverse Ordered Sequences

We introduce ordered and inverse ordered subsets for 2-dimensional index sets. Given an
m x n 2-dimensional index set S = {(7,7)|1 <i <m,1 <j <n}, we call asubset I of S an
ordered subset if it has the following form:

I = {<17j0)7 M) (le)? (27j1)7 M) (27j2>7 M) (majm—l)v T (m7]m)}7 (18>

where 1 = jp < j1 < jo <+ < Jm-1 < Jm = n. We call a subset J of S an inverse ordered
subset if it has the following form:

J={1,n=7j0),...,(Ln—71),(2,n—j1),...,(2,n — ja),
e mon = gme1), - (myn — gm) b, (19)

where 0 =70 <71 <2< < Jjmo1 < Jm=n—1

For an ordered subset I or inverse ordered subset J of S, the collection B of vectors a;;,
(1,7) € I or (i,7) € J of the matrix A in (4) is called an ordered sequence or inverse ordered
sequence of A.

More generally, we define the ordered subset for d-dimensional (d > 2) index sets. We
call a subset I of the ny X - -+ X ng d-dimensional index set S = {(iy,...,iq)|1 <ix < ng,1 <
k < d} an ordered subset if it has the following form:

I - {(1;---71;1)7---7(17-~~717id,1)7~--;(17---7id71,17id,1);

ceey (il,la cee 7id71,17 Z'd,l)a ey (il,nfla <. 77;d71,n717 id,n71>7
ey (il,nfla cee 72‘d71,n717 id,n)7 ey (il,n717 v 7/L'dfl,n7 id,n)?
) (il,nv s 7id—l,n7 id,n)}a (20)

where 1 <41 < -+ <ippq < igpn = ng, for all 1 < k < d. Similarly, for an ordered subset
I, the collection B of vectors a(iy,...,i4), (i1,...,%q) € I of the matrix A in (5) is called an
ordered sequence of A.

We have the following theorem for 2-dimensional ordered and inverse ordered sequences
and d-dimensional ordered sequence.

Let us assign the cell (7,7), in the m x n transportation tableau, to the column a;; in
the matrix A. Any collection of cells is called a cell graph. A cell graph is a circuit if
its cells can be connected by a closed sequence of lines going alternately horizontally and
vertically. A cell graph is a tree if there is no circuit in it. A tree that has m +n — 1
cells in it is called a spanning tree. The following assertions hold true (see, e.g., Hadley,
1963): A collection of vectors a;;, (i,7) € I is a basis of A iff I is a spanning tree. Let
I = {(i1, jr), (i2, 71), (i2, 32), (i3, J2), - - -, (in—1, Jn), (i1, Jn)} be a circuit. Then we have the
relation

irjy = Qigjy + igjy — Qigjy ++* F Qi _yj,, — @iy, = 0 (21)
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If I is a spanning tree and (p, q) ¢ I, then there exists a subset J such that J U {(p,q)} is a
circuit. In view of (21) we can obtain a unique linear combination of a,,, by the use of the
vectors of a basis a;;, (i,j) € I, in such a way that we add the vectors corresponding to .J
along the circuit using alternately +1, —1 as coeflicients.

Theorem 1.2. A 2-dimensional ordered or inverse ordered sequence of the matriz A forms
a basis of A.

Proof. Any ordered sequence is a spanning tree hence the assertion follows. O

Theorem 1.3. A d-dimensional ordered sequence B of the matriz A in (5) forms a basis of
A.

Proof. 1t is easy to see that the rank of the matrix in (5) isny +---+ng — (d —1). The
proof goes along the same way as the well-known proof for the case of d = 2.

Next, we prove that the vectors in B are linearly independent. Suppose that for some A
numbers we have the equation:

AL L Da(l,. . L) 4+ AL Lig)a(l, . 1 dg)

—+ 4 /\(1, Ce ,id_171, id71)a(1, Ce ,Z'd_171, Z‘d71)
+o A, - ta-11, Gg1)aling, - - ta-1,1, d1)
+o A+ A1y s td—10—1, Gdn—1)A(T1 -1, - - - td—1,0—1, Tdn—1)
+o At s Gde1n-15 fdn) AT -1, - - td—10—1, Tdn)
+ -+ /\<i1,n—17 e 7id—1,n7 idm)a(il,n_l, . 7id—1,n7 id,n)
4+ 4 >\<i1,n7 e 7id71,n7 Z'd7n)a(i1,n, e 7id71,n7 id,n) =0.
In view of the structure of a(iy,...,iq), the left hand side of the above equation can be

written as a linear combination of the unit vectors in E"*™ "4 Then the coefficient of each
unit vector should be equal to 0. If 75, > 1, then since the coefficients of e, 4 .on, ;+1, - - -
Cnytotngrtign—1 are (1., 1, 1), .0 A(1,..., 1,44 — 1), respectively, it follows that

AL 1, 1) == A(L,..., 1,04 — 1) = 0. (22)
Otherwise, a(1,...,1,1) = --- = a(1,...,1,441), which implies (22) too. Similarly, consid-
ering the value of i4_1 1, we obtain A(1,...,1,741) = --- = A(1,...,ig-11 — 1,%41) = 0, and

so on. So all A values are zero, and the vectors in B are linearly independent.
Thus B forms a basis of the matrix A. O
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2 Monge Property and Dual Feasible Bases

In this section we establish relationship between ordered sequences and dual feasible bases
in the 2- and d-dimensional minimization problems (1) and (2), and between the inverse
ordered sequences and the dual feasible bases in the 2-dimensional maximization problem
(1).

The dual of the 2-dimensional minimization problem (1) is:

max Z:r;l a;u; + Z?:l ijj
subject to (23)
ui—i—ngcij, izl,...,m, jzl,,n

Theorem 2.1. In the minimization problem (1), any ordered sequence of the matriz A forms
a dual feasible basis if and only if the cost array c satisfies the Monge property.

Proof. First we prove that if c satisfies the Monge property then any ordered sequence
a;j, (4, j) € I forms a dual feasible basis of A.

Given a cell (p,q) ¢ I, we form the unique circuit J U {(p,q)}, where J C I. Assume
that the cell (p,q) is above the ordered sequence in the transportation tableau. Then in

JU {(pv Q)} = {(p7 Q)a (pnjl), (i17j1)a (ilan)v SRR
(n, jn)s (in, @)}, we have the relations

P> 4> >0
j1>~~~>jh>q. (24)

We want to prove that the reduced cost z,,—¢,, < 0. Relations (24) and the Monge property
imply:

Cpq = Cpjr T Cinjy = Cing =
Ciyqg = Cirjy + Cigjs — Cigg 2
Cip—3q — Cin_ojn—1 T Cin_1jn—1 — Cin_1q =
Cir_1q — Cip_rjn T Cingn — Cing 2
If we add these relations, then ¢;q4, ..., ¢;,_,4 cancel and the sum equals ¢,;, — 2,,. Thus,
Cpqg — %pg = 0.

Similar is the proof if (p, q) is below the ordered sequence of the transportation tableau.
Since ¢,q — 2y > 0 holds for every (p,q) (with equality, if (p,q) is basic), the basis is dual
feasible.
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To prove the other part of the theorem, suppose that any ordered sequence forms a dual
feasible basis. Assume that the cost array ¢ does not satisfy the Monge property. Then there
exist 1 <i<r <mand1l<j<s<nsuchthat ¢;; + ¢4 > ¢;s + ¢,j. Let B be an ordered
sequence which contains a;; and a,;. By the known condition, B is a dual feasible basis. Let
u,1=1,...,m,vj, 3 =1,...,n be the components of the basic solution corresponding to
this dual feasible basis. We have the relations:

Cij = U + Uj,
Crs = Up+ Vs,
Cis 2 u; + Vs,
Crj 2 Up+ ;.

This implies that

Cis + Crj 2 Ui + Vs +Upr + 0 = Cij + Cps

which contradicts the assumption. O]

Since Hoffman’s greedy algorithm gives us an ordered sequence, by Theorem 2.1, a dual
feasible basis can be obtained by the use of Hoffman’s greedy algorithm, i.e., Hoffman’s
greedy algorithm solves the minimization problem (1) if and only if the cost array is Monge.
So, Hoffman’s theorem can be seen as a consequence of Theorem 2.1.

Theorem 2.2. In the minimization problem (1), any dual feasible basis of the matriz A
forms an ordered sequence of A if the cost array c satisfies the strict Monge property.

Proof. Suppose that the cost array c satisfies the strict Monge property, and B is a dual
feasible basis. Assume that the vectors of B do not form an ordered sequence of A. Then
there must exist vectors a;; and a,; in B with 1 <7 <r <m, 1 <j <s <n. Let w,
t=1,...,m,v;, g =1,...,n be the components of the basic solution corresponding to B in
problem (23). This basic solution is feasible, hence

Cis = Ui+ Vg
= Ur +v
U; 4+ Uj

>
Crs 2 Up + Vs

It follows that

Cij + Crs 2 Ui + U + Up + V5 = Cis + Gy

which contradicts the strict Monge property. O]
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By proofs similar to those of Theorems 2.2 and 2.3, we can obtain the following theorems
for the maximization problem (1):

Theorem 2.3. In the mazimization problem (1), any inverse ordered sequence of the matriz
A forms a dual feasible basis if and only if the cost array c satisfies the Monge property.

Theorem 2.4. In the mazimization problem (1), any dual feasible basis of the matriz A
forms an inverse ordered sequence if the cost array c satisfies the strict Monge property.

So, if the cost array of problem (1) satisfies the Monge property, then an ordered sequence
and an inverse ordered sequence of the matrix A will give us the optimal minimum and
maximum values, respectively.

Let ¢j; = cm—it15, Gij = Gm_iy14, A cost array ¢ = (¢;j) is an inverse Monge array if
A
an inverse ordered sequence of A if and only if it is an ordered sequence of A’ = (aj;) =
(A(m—i+1);). (From these properties and theorems 2.1, 2.2, 2.3, 2.4, we can easily get the

and only if ¢’ = (¢};) = (c(m-it+1);) is a Monge array, a collection of vectors of A = (a;;) is

following four corollaries for the inverse Monge property:

Corollary 2.1. In the minimization problem (1), any inverse ordered sequence of the matriz
A forms a dual feasible basis if and only if the cost array satisfies the inverse Monge property.

Corollary 2.2. In the minimization problem (1), any dual feasible basis of the matriz A
forms an inverse ordered sequence if the cost array satisfies the strict inverse Monge property.

Corollary 2.3. In the maximization problem (1), any ordered sequence of the matriz A
forms a dual feasible basis if and only if the cost array satisfies the inverse Monge property.

Corollary 2.4. In the mazimization problem (1), any dual feasible basis of the matriz A
forms an ordered sequence if the cost array satisfies the strict inverse Monge property.

So if the cost array of problem (1) satisfies the inverse Monge property, then an inverse
ordered sequence and an ordered sequence of the matrix A will give us the optimal minimum
and maximum values, respectively.

We summarize all the above results for the minimization (maximization) problem (1) in
the following table:

Min (Maz)
Any o.s. (i.0.s.) forms a d.f.b. iff ¢ is Monge
Any i.0.s. (0.s.) forms a d.f.b. iff ¢ is inverse Monge
Any d.f.b. forms an o.s. (i.0.s.) if ¢ is strict Monge
Any d.f.b. forms an i.0.s. (0.s.) | if c is strict inverse Monge

Table 2.1
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Here ”0.s.” means ordered sequence, "i.0.s.” means inverse ordered sequence, and "d.f.b.”
means dual feasible basis.

Next, we present the relationship between ordered sequences and the dual feasible bases
in the d-dimensional problem (2) (d > 2). So, the vectors x, ¢, b and the matrix A, we use
in the rest of this section, are those in (5).

To prove our results we recall three theorems, where the first two are well-known in linear
programming (see, Prékopa, 1996, Theorem 5 and 3).

Theorem 2.5. If problem (3) has a primal feasible solution and a finite optimum, then there
exists a primal feasible basis that is also dual feasible.

Theorem 2.6. If in problem (3) B is a primal feasible and nondegenerate basis (i.e., the
xp, determined by Bxg = b, has all positive components) and B is optimal, i.e., (XB,XR)
is an optimal solution (xg = 0), then B is a dual feasible basis.

Bein et al (1995) extended the algorithm GREEDY; to the algorithm GREE DY, and
proved the following theorem:.

Theorem 2.7. (Bein et al. 1995) Given a particular nqy X ng X - -+ X ng d-dimensional cost
array c, the algorithm GREFEDY, solves the corresponding d-dimensional transportation
problem for any b if and only if c is Monge.

For d-dimensional minimization problem (2), we prove two theorems.

Theorem 2.8. In the minimization problem (2), any ordered sequence of the matriz A forms
a dual feasible basis if and only if the cost array c satisfies the Monge property.

Proof. For the proof of the ”if” direction, assume that c is Monge. For any given ordered
sequence, write positive numbers in the cells of it and what comes out on the r.h.s., let
it be the b. For this b, the algorithm GREFE DY, produces the same ordered sequence, by
Theorem 2.7, this ordered sequence is a primal non-degenerate, optimal basis to the problem.
By Theorem 2.6, this ordered sequence is dual feasible.

For the proof of the "only if” direction, assume that any ordered sequence of matrix
A forms a dual feasible basis. Then for any b the algorithm GREFE DY, solves the prob-
lem optimally, because the algorithm GREFE DY, produces an ordered sequence. Thus, by
Theorem 2.7, ¢ is Monge. O

To prove the next theorem, we need the dual of the minimization problem (2) which is
given as follows:
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max Zk iy ak (i) w (i)

subject to
wy (1) + -+ wa(iq) < cliy, ..., iq) (25)
for all ikzl,...,nk, :1,...,d.

Theorem 2.9. In the minimization problem (2), any dual feasible basis of the matriz A
forms an ordered sequence of A if the cost array c satisfies the strict Monge property.

Proof. Suppose that the cost array satisfies the strict Monge property, and B is a dual
feasible basis of matrix A. Assume that the vectors of B do not form an ordered sequence,

then there must exist vectors a(iy, . ..,i4) and a(ji, . . ., jq) in B such that if sy = min{ig, ji },
ty = max{iy, ji}, then (s1,...,84) # (i1,...,%q), (S1,.--,8a) # (J1,---,Ja)- Let wi(ix),
ik=1,...,n,, k=1,...,d, be the components of dual vector corresponding to B. Then

ity .oyig) = wiliy) + -+ wy(ig),

c(Jis--da) = wi(j) + -+ waja),

c(s1y...,84) = wi(sy) + - +wy(sq),

c(tr,...,ta) = wi(ty) + -+ walta).
Since

wi (i) + -+ wa(iqg) + wi(g1) + - - +walJa)
_ w1(81) + -4 wd(sd) + w1<t1) + -+ wd(td)a (26)

we have the relation

c(s1,...,8q) ety ... tg) > clin,. .. iq) +c(j1,- -, Ja)-

It contradicts to the strict Monge property, so any dual feasible basis of the matrix A must
be an ordered sequence of A. O

3 The Use of Covariance in The Two-Dimensional Case

In this section we consider the problem:
: m n
min(max) >0, >0 Ty
subject to
ijlxij =a;, 1=1,...,m
m .
Zizlxij :bj, J = 1,...,n
m n .
>ie Zj:l Yizjlij = €

r;>0, i=1,....m, j=1,...,n.

(27)
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The first m + n constraints in problem (27) prescribe that the univariate marginals are
{a;}, {b;}. Since the univariate marginals determine the univariate expectations, the last
constraint in (27) prescribes that the covariance between the two random variables is also
given. Assume that ¢;; is a function of y;, z;: ¢;; = g(vi,25), i =1,....m, 5 =1,...,n
Problem (27) can be written in the following matrix form:

max clx
subject to
: = (28)
Ax=Db
>0,
where A = (@), @j = € + €mij + YiZi€mint1, ¢ = L,...,m, j = 1,...,n, €, €,4; and
€mini1 are unit vectors in E™ ! with ones in the i-th, (m + j)-th a (m +n + 1)-th

positions, respectively, b = < lc) ), and b, ¢ and x are defined in (4).

Theorem 3.1. Consider the minimization problem (27), and assume that {y;} is strictly
increasing and {z;} is strictly decreasing, and the (1,2)-order and (2,1)-order divided dif-
ferences of g(yi, zj) are nonnegative. Then By = {@;,i = 1,...,m,ay;,j = 2,...,n,a1,}
forms a dual feasible basis of A.

Proof. First, let us show that B; forms a basis of A. It is easy to see that the rank of A is
m + n, and there are m + n vectors in B;. To show the linear independence of the m + n
vectors in By, consider the linear combination of the vectors of B;:

m n
E Ainag + E Amj@m; + Aina@in
i=1 j=2
n

- Z >‘i1 (ei + €m41 + yizlem—i-n—‘rl) + Z )‘mj<em + €m+j + ymzjem—i-n—i-l)
i=1 Jj=2

+/\1n<e1 + €Cmtn + ylznem+n+1)

m—1 n m n—1
= (A1 +Ap)er + Z Aire; + (Z Amj)€m + (Z Ail)€m+1 + Z Amj€m+j
1=2 7j=1 =1 j=2

+(/\mn + /\ln)em+n + (Z )\ilyizl + Z )\mjymzj + )\lnylzn)em—i-n—i-l-
i=1 j=2

If it equals 0, then, by the linear independence of the unit vectors, it follows that all \’s
must be 0.
Secondly let us show that this basis is dual feasible. For any nonbasic vector a;;, 1 <14 <
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m, 1 < j <n, we have the equations:

A — A1 + Al — Ay = (Yi — Ym) (2 — 21)€mgns1
E_lij - 5il + 511 - ﬁln + 5mn - 5mj
= [y — ym) (25 — 21) = (Y1 — Ym) (20 — 21)]€mans1-

(From here we derive the expression of aj; as the following linear combination of the basic
vectors:
_ o (yl - ym)(zl - Zn) B (yz - ym)(zl B Zj) — = =
a;; = (yl — ym)(zl — Zn) (azl A1 + am])
i — Ym)\21 — Z5) — — — _

We have to prove that

(Y1 — Ym) (21 — 20) — (Ui — Ym) (21 — Zj)

(1 — ym) (21 — 2n)
_ (yi_ym)(zl_'zj)c e e — ) —
(1 — ) (21 — Zn)( 11 1n + Cmn mj 1) i <0,

or, what is the same,

(i1 — Cm1 + Cmy)

(yi — ym) (21 — 25)
(it = Cm1 + Cmj — ¢i5) <
1 L P |

(Cll — Cm1 + Cmn — Cln)- (29)

Since (y; — yYm)(21 — 2;) < 0, the above inequality is equivalent to
Ci1 — Cm1 — Cij + Cpyj C11 — Cm1 — Cin + Cmn
Y —ym)(21 = 2) (Y1 = ym) (21 = 20)
We have assumed that the (1,2)-order and (2,1)-order divided differences of g(y;, z;) are
nonnegative. The nonnegativity of the (1,2)-order divided difference implies

C11—Cm1—ClntCmn _ €11 =Cm1—C1j+Cmj
(y1=ym)(z1—2n) (y1—ym)(21—25) > 0.
Zn T Zj

Similarly, the nonnegativity of (2,1)-order divided difference gives

C11=Cm1—Clj+Cmj _ Cil—Cml1—Cij+Cmj
(y1—ym)(21—2;) (yi—ym)(21—2;) > 0.
Y1 — Y

Since both z, — z; and y; — y; are negative, the above two inequalities imply

Ci1 — Cm1 — Cij + Cmj _ C11 — Cm1 — C15 + Cmj _ C11 — Cm1 — Cln T Cmn
(i —ym)(21—2) = (1 —yn)(21—2) = (W1 = Ym)(21 — 20)
This completes the proof. n
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The following corollaries follow at once from Theorem 3.1.

Corollary 3.1. Consider the minimization problem (27), and assume that {y;} is strictly
decreasing and {z;} is strictly increasing, and the (1,2)-order and (2,1)-order divided differ-
ences of g(yi, zj) are nonpositive. Then By forms a dual feasible basis of A.

Corollary 3.2. Consider the minimization problem (27), and assume that both {y;} and
{z;} are strictly increasing, the (1,2)-order divided difference of g(y;, z;) is nonnegative, and
the (2,1)-order divided difference of g(y;, z;) is nonpositive. Then By forms a dual feasible
basis of A.

Corollary 3.3. Consider the minimization problem (27), and assume that both {y;} and
{z;} are strictly decreasing, the (1,2)-order divided difference of g(y;, z;) is nonpositive, and
the (2,1)-order divided difference of g(yi, z;) is nonnegative. Then By forms a dual feasible
basis of A.

Corollary 3.4. Consider the mazimization problem (27), and assume that {y;} is strictly
decreasing and {z;} is strictly increasing, and the (1,2)-order and (2,1)-order divided differ-
ences of g(yi, zj) are nonnegative. Then By forms a dual feasible basis of A.

Corollary 3.5. Consider the mazimization problem (27), and assume that {y;} is strictly
increasing and {z;} is strictly decreasing, and the (1,2)-order and (2,1)-order divided differ-
ences of g(yi, zj) are nonpositive. Then By forms a dual feasible basis of A.

Corollary 3.6. Consider the maximization problem (27), and assume that both {y;} and
{z;} are strictly increasing, the (1,2)-order divided difference of g(yi, zj) is nonpositive, and
the (2,1)-order divided difference of g(yi, z;) is nonnegative. Then By forms a dual feasible
basis of A.

Corollary 3.7. Consider the maximization problem (27), and assume that both {y;} and
{z;} are strictly decreasing, the (1,2)-order divided difference of g(y;, z;) is nonnegative, and
the (2,1)-order divided difference of g(y;, z;) is nonpositive. Then By forms a dual feasible
basis of A.

If we use the reasoning in the proof of Theorem 3.1, we can obtain a variety of dual fea-

sible bases for problem (27) under different conditions. Let By = {@;,,i =1,...,m,ay;,j =
17 s 7n_175m1}7 B3 = {E_lilui = ]-7 s 7m>51j)j = 27 s 7n75mn}7 B4 = {E_l’bnal = ]-7 s 7maa_lmj7j =
1,...,n—1,ay;}, the cells corresponding to the vectors in By, B, Bs and By are designated

by boldface points in Figures 3.1, 3.2, 3.3 and 3.4, respectively.
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We summarize all the results for the minimization (maximization) problem (27) in the

following table:

vi | z; | (1,2)-order d.d. | (2,1)-order d.d. | d.fb. of min | d.f.b. of max
N\ >0 >0 By B,
NS <0 <0 By B,
e va >0 <0 By B;
NN\ <0 >0 B, B,
N <0 <0 By By
NS >0 >0 B, By
NS <0 >0 B, By
N\ >0 <0 B, By
N <0 >0 Bs By
NS >0 <0 Bs By
SN S <0 <0 Bs By
NN >0 >0 Bs By
N >0 <0 By Bs
NS <0 >0 By Bs
SN S >0 >0 B, Bs
NN <0 <0 B, Bs
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Table 3.1

The sign " means strictly increasing, while \, means strictly decreasing. ”d.d.” means
divided difference, and ”d.f.b.” means dual feasible basis.

4 The Three-Dimensional Case

In this section we look at the 3-dimensional transportation problem:

min(max) > 7, 2?11 > kst CijkTijh

subject to
na n3 s
Zj:l k=1 Lijk = Qiy = ]-7 4] 30
Zm n3 b =] ( )
i=1 k=1 Lijk = 05, ] =1,...,N2
ni n2 _ —
ZZ‘:1 Zj:l Tijk =k, k=1,...,n3
xiijO, izl,...,nl, jzl,...,ng, /{Z:]_,...,ng.
We can write problem (30) in matrix form if we let
X = (xllla"'7x11n37"'7x1n217"'7x1n2n37"'7
T
x’n1117"' >xn11n3>'"7xn1n21>-"7xn1n2n3)
cC = (01117"'7clln37---acln217'"7cln2n37"'7
T
Cn1117"'7cn11n37"'7cn1n217"'7cn1n2n3) (31)
T
b = (ai,...,an,b1, .., b0y, 1y Cny)
A— — (alll7~”7a11n37"'7a1n217'”7a1n2n37”'7
T
an1117-"7an11n37‘"7an1n217'-’7an1n2n3) )

where a;j; = €; + €5, 4 + €5, 4nytk and €;, €,,1; and €, 1,4+, are unit vectors in Em1+m2+ns,
with ones in the ith, (n;+7)th and (n;+ns+k)th positions, respectively, foralli =1,...,ny,
j=1,...,n9, k=1,... ng. With these definitions problem (30) takes the form (3).

For this problem, we can get the following theorem:

Theorem 4.1. Consider the minimization problem (30), and assume that the cost array

satisfies the Monge property. Then each of the following six sequences of vectors forms a
dual feasible basis of the columns of the matriz A:

(S1) {an1,i=1,...,n1,85,1,) = 2,..., N2, Qnynok, kK =2, ..., 03},
(S2) {an1,i=1,....,n1, 8016,k =2,...,03, 8, jny. ] = 2,...,N2},
(Sg) {aljl,j = 1, e ,ng,am21,i = 2, Ce ,nl,ammk,kz = 2, e ,ng},
(S4> {aljl,j = 1, Ce ,ng,aank,k} = 2, e ,ng,amzng,i = 2, e ,nl},
(S5) {ank,k: = 1, e ,n3,ai1n3,i = 2, Ce ,’I’Ll,anljn37j = 2, Ce ,TLQ},

(SG) {ank,kz = 1, e ,ng,aljng,j = 27 cu ,nQ,aanS,i = 2, e 7711}.
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Proof. Theorem 4.1 can easily be derived by the use of Theorem 2.8. In fact, each of (S7)-
(Sg) is an ordered sequence. A direct proof, however, may be instructive and below we

present one.

First let us show that the vectors of S are independent. Consider the linear combination

of these vectors:
ni n2 n3
g At + g Anijl@n, i1 + g Aninok@nnak
i=1 j=2 k=2

ni n2
= E Ai1(€; + €y 1+ €y ynyr1) + E Anji(€ny + €0y 15+ €nyinyi1)
i—1 =2

n3
+ § /\nank(em + €ny4ny T en1+n2+k)

k=2
ni—1 na ns ni

= Z Aiti€; + (Z Anij1 + Z Aningk)€ny + (Z Ai11)€ny+1
=1 j=1 k=2 i=1

no—1

n3
+ E )\nljle”1+j + (E >‘n1n2k)en1+n2
=2 k=1

no—1

n1 n3
+(§ i1 + E )‘n1j1)en1+n2+1 + E Aninak€ny tny k-
i=1 j=2 k=2

We can see that if it equals 0, then all A’s must be 0.

Next we show that any vector a;;; of the matrix A can be expressed as a linear combi-

nation of these vectors, 1 <i < n;, 1 <j < no, 1 <k <ngs. In fact,

QA1 — Apyj1 T Anyjk

= €+ Cnitj T €nytngtl — (enl + Cnitj + en1+n2+1)
ten, +€ni1j t €nytnytk

= €+ €n4j Tt Cnipnytk

= Qgjk,
Q;51 = ;11 — Apg11 T Apgj,
anljk = anljl - anlngl + an1n2k>
S0,
Ak = A11 — Apq11 T Anyj1 — Apgnal T Angnok,

where a;11, an 11, @nyj1, Aningls Anyngk € S1. Thus Sy forms a basis of matrix A.

(32)
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Finally, let us show that this basis is dual feasible. According to the definition of dual
feasible basis and equation (32), we need to check the nonpositivity of the following value:

Ci11 — Cnq11 + Cn1j1 — Cninsl + Cningk — Cijk:- (33)

It can be written as

(Ci11 — Cny11 + Cnyj1 — Cij1) + (Cnyj1 — Cnynot + Coyngk — Cnyjk)

+(Cij1 = Cnyj1 + Cnyjk — Cijk)- (34)

Since the cost array satisfies the Monge property, the values in the parentheses are nonpos-
itive. Thus the sequence of vectors S; forms a dual feasible basis of the matrix A. O]

The vectors of S;, i = 1,...,6 are illustrated in Figures 4.1, ..., 4.6, respectively. They
are represented by the points of the boldface lines.

alnzng an1n2n3 alngng anlnzng
Aling : A 1ng Allng : Aping
gal 1 Aningl §aln1 Aninsyl
B S U 112 Goeennes FSRNNRUR I 172
aril an; 11 all an;11
Figure 4.1. (5) Figure 4.2. (5))
alngng an1n2n3 aln2n3 anlngng
Allng : Ap1ng Allng Apiing
alngl an1n21 alngl an1n21
aril an; 11 arl An; 11

Figure 4.3. (S;) Figure 4.4. (S,)
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alngng anlngng al?}z’ng an1n2n3
Al1ng Ap1nfk Aling apn, 1n
@alnﬂ ,,,,,,,,,,,,,,,,, Aninal dalnﬂ aaaaaaaaaaaaaaaaa Aninol
a An11 an an, 11
Figure 4.5. (S5) Figure 4.6. (Sp)

Theorem 4.2. Consider the mazximization problem (30). If the cost array satisfies the
Monge property, then each of the following sequences of vectors forms a dual feasible basis
of the matrix A:

/ ; N _
(Sl) {a’illaz - 17"'7n17a1j17] - 27"'7”27a11k7k - 27"'7”3}7
/ . -
(Sg) {a’inz’rLg?Z - 17' c . 7nl>an1jn37j - 17 N 1 17
anank,k‘ = 1, N 1 N 1}

Proof. We prove the assertion for S]. The proof for the other one can be carried out similarly.
First we show that these vectors are independent. Consider the linear combination of the

vectors of Si:

ni na ns3
E Ait1@1 + E Ajnagj + E AMik@iik
i=1 j=2 k=2

ni n2
= E Ait1(€i + €ny41 + €nyinot1) + E Aji(er + €nytj + €nytngt1)
i1 =2

n3
+ E Mik(€1 + €nyt1 + €nytnotk)
k=2

no ns3 ni ni n3
= (Z A1+ Z Aik)er + Z Ai11€; + (Z it + Z AM1k)€n+1
Jj=1 k=2 i=2 i=1 k=2
n9 ni n2 n3
+ Z Aj1€n 45 + (Z it + Z A1j1)€n; 4nat1 + Z AM1k€n; +notk-
j=2 i=1 j=2 k=2

We can easily see that if it is 0, then all \’s are zero.
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Secondly we show that any vector a;;, of the matrix A can be expressed as a linear
combination of the vectors in S7. In fact, we have the relations:

;1 — ;11 + A1k
= €+ €ny+j + €ny4ng+1 — (ei + €ny+1 + en1+n2+1)
t€; + €n 11+ €nyfnytk

€ + €ny1j T €nytnatk

= Qjk,
;51 = a1 — ainn + ag,
A = ;11 — arnn + ank-
Then
Q;jr = ;11 — a1 +ang — ag + ay, (35)

where a;11, a1, ang, a;n € 7. So S| forms a basis of the matrix A.

Thirdly we show that this basis is dual feasible. According to the definition of the dual
feasibility of a basis for the maximization problem and equation (35), we need to prove the
nonnegativity of the following value:

Ci11 — €111 + C11x — C111 + C1j1 — Cijk- (36)
The value (36) can be written as

(ci1 — c111 + ik — ciaw) + (G — cijn + ciji — i)

+(cik — cinn + i — Cijr).- (37)

Since the cost array satisfies the Monge property, the values in the three parentheses are
nonnegative. Thus the sequence of vectors 57 forms a dual feasible basis of the matrix A in
the maximization problem (30). O

The vectors of S] and S are illustrated in Figures 4.7 and 4.8, respectively. They are
represented by the points of the boldface lines.
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alngng r)anlngng alQQng an1n2n3
Allng : Aping Allng : Apiink
aln21 an1n21 éalngl an1n21
aaaaaaaaaaaaaaaaaaaaaaaaaa Opecccccccoccccccccotoocooccoclh
&
aril an; 11 arll an; 11
Figure 4.7. (57) Figure 4.8. (5))

5 The Use of Covariances in The Three-Dimensional
Case

In this section we supplement the covariance constraints to the constraints of problem (30).

The new problem is the following:

min(max) > % > 72 D00 i
subject to
Dot D Tk =ai, i=1,,m
S wige=0b;, j=1,...,n9
Dol > T =k, k=1,...,n3 (38)
Doiml Do Doy TiSTigh = da
Doty DR DR sitkije = do
> i Zyil >kl TitnTije = ds

.Z'ijkzo, izl,...,nl, jzl,...,ng, kzl,...,ng.

Assume that there is a map between r;, s;, t and ¢, i.e., ¢ = g(rs, S5, 1), for i =
1,...,n1,7=1,...,n9, k = 1,...,n3. Problem (38), can be written in the compact form
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(28), where
A
— rs
A — (@)=
( Uk‘> st
rt
— b
b = d
IS = (7181, 37181y« T18ngy -« s T1Sngy -« - 5
TrySlye vy TnySty vy TnySngs -« s TnySny)
st = (sif1,...yS1t1ye ey Sitngy ooy Sitngy .- -y
Snatls vy Sngtly ooy Snatngy -« s Snatng) (39)
rt = (Tlth...,Tltl,...,Tltn3,...7T1tn37...,
Tty e ooy Toglly ooy Py tngs - oo s oy bng)

d = <d17d27d3)T7

and A, b, ¢, x are the same as in (31).

Let S; be the collection of those vectors a;j; which have the same subscripts as those in
S1 in Theorem 4.1. We prove

Theorem 5.1. Consider the minimization problem (38). If r;, s; and ty are strictly in-
creasing, all (1,2,0)-order, (1,0,2)-order, (0,1, 2)-order divided differences of g(ri, s;, ti) are
nonnegative, and all (2,1,0)-order, (2,0,1)-order and (0,2, 1)-order and (1,1,1)-order di-
vided differences of g(r;, s;,tx) are nonpositive, then S1 U {&,, 10y, Ainy1, At1ng } forms a dual
feasible basis of the matriz A.

Proof. First let us show that vectors of the sequence S; and the vectors Ap,1ng, Alny1 and
Aj1,, form a basis of A. By Theorem 4.1 S; forms a basis of A, and the basis of A has at
most three more vectors than the basis of A. So, we only need to prove that these vectors are
linearly independent. It is, however true, because we have the equation (for n; +ng+mns3+ 3-
dimensional vectors)

ni — no — n3 —
Z¢:1 it + ijz Anyj1@ny51 + Zkzg Anynak@nyngk

F Ay 1n3@n 1ng T Ang1@ins1 + MingQiing
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A111 + Ayt + Aing
X211

A(ni—1)11
)‘n111 +oe 4+ )‘n1n21 +oeee )‘n1ﬂ2n3 + >\n11n3
A1+ + )\nlll + >\n11n3 + )\1117,3
)‘n121

Anl(n2*1)1
)\nan]- +ot >\n1n2n3 + >\1n21
= )\111 + -+ )\nlll + -+ )‘n1n21 —+ )\1n21
)‘n1n22

)\nlnz(ng—l)
)\nlngng, + )\n11n3 + A11713

F701 51 A0 1ng F T18na A ing1 + 7151 A 1ng

+518n3 A0 1ng + Snat1Ang1 + S1tng A iing

+rn1tn3)\n11n3 + r1t1>\1n21 + rltng )\11713

and if it equals 0, then all A\’s must be 0.

Tlsl)\lll + - Tn151)\n111 + -+ Tnlsng)\nlnzl + -+ rn13n2>\n1n2n3
sttidin + s st A T SnotiAn gt T Snotng Aiinons

Tltl)\lll + -+ TnltlAnlll + -+ Tnltl/\nﬂml + -+ Tnltng/\n1n2n3
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Secondly, let us show that this basis is dual feasible. Assume that all {r;}, {s;} and {t;}
sequences are strictly decreasing. The proof for the case where all r;, s; and ¢, are strictly
increasing can be carried out the same way. For any nonbasic vector a;jz, 1 < i < ny,

1 <j <ng, 1 <k <ng, we have the following four equations:

Ak — ;11 T 11 — Ay j1 T Apynol — Angnok
0
| (=) (s —s1)
(s Snz)(tk - tl) ’
)

( Ty — Tny (tk _tl)

Ak — ;11 T Any11 — Anynok T Anynong — Anqing T Ang11 —

0
(ri = 7n,) (55 — 1)
(85 = Sna) (e — 1) — (81 = 8ng)(tng — 1) |’
(ri = 7ny) (te — 1)

a1
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Ak — Apyj1 + Angngl — Angnok T Anqing — Allng + A111 — 11
0

(ri = 7y ) (85 — 51)
(35 = 50)(tx — 1) ’ “2)
(i = Ty )tk — 1) — (11— 70y ) (B0 — t1)

Ak — ;11 T 111 — Alpy1l T Anyngl — Ayl T Aninol — Anynok
0

(ri =Ty ) (85 — 81) = (11— 70y ) (80, — 51)
(5 — 50a) (tx — 1) ’ (43)
(ri = 7y ) (te — 1)

where 0 is a zero vector in R™*"2%"3  For simplicity, let
A= ( )
Ay = (s )

As = (ry — 1) (ty — t1),
= )
( )
( )

B 1 — Ty ) (Sny — 51),
BQ S1 — Sny (tng - t1)7
B3 - ™ —Tny (t’n,g - t1)7
0 0 0
a a Ay a 0
13 = 12 = 23 =
3 0 ; A2 ) 3 AQ
As 0 As
;From (40) and (41) we obtain
Ay — By ,_ _ _ _ _ _
A—<aijk — Q11 + Apy11 — Angjt + Anyngl — Angngk — A13)
2
= @k — 11 T Any11 — Anynok T Aninong — Anying T Any11 — Anyj1 — A13.
Thus,
Qe = (A1 — Any11 + Angjt — Angnol + Angnok + A13)
Ay
_E(anlnzng - an11n3 + an111 - anlngl)- (44)
2

Equations (40) and (42) imply

A = (A1 — @11 + Anyjt — Angnot + Angnok + A12)

Az _ _ _
_ES(anllng — Ay1ny + A111 — Any11)- (45)
3
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Similarly, equations (40) and (43) imply

Qe = (A1 — Apy1 + Anyjt — Anynot + Anyngk + A23)
Ay
_E(alll — Aot + Apyngt — Any11)- (46)
1

Finally, from the definition of a3, aja, a3 and (38), we derive the relation:
ars + ajo + ag = 2(Qk — Ai11 + Any11 — Anyjl + Angnol — Anynok)-

Summing up (41), (42) and (43), we find that

Ak = A1 — Apy11 T Apyjl — Apynol T Anynok

Ay _ _ _

__(an1n2n3 - an11n3 + an111 - an1n21)
By
As

——(@ny1ns — Al1ing + @111 — Apy11) (47)
Bs
Ay _

——(A111 = Apy1 + Anypg1 — Any11)-
To prove the dual feasibility, we need to prove that

Ci11 — Cny11 T Cnijl — Cnynal + Crynok

Ay
__(Cnlngng - Cn11'n3 + Cn111 - Cnlngl)
By
As
——=(Cnying — Ciing + €111 — Cny11)
Bs
Ay
_E(Clll — Clng1 + Cnynpt — Cny11) — Cijie < 0,
1

or, what is the same,

(€11 — Cny11 + Coyjt — Cij1)
+(Cij1 — Cnyj1 + Cnyjk — Cijk)

+(cn1j1 - Cn1n21 + cnlngk - Cn1jk)

Ay
S g(cn1n2n3 - Cn11n3 + Cnlll - Cnlngl) (48)
2
As
+E(Cn11n3 — Cling + C111 — Cny11)
3

+—(C111 — Ciny1 + Cnynyl — Cny11)
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If we fix one of the 4, j, k subscripts in ¢;;x, then, in view of Corollary 2.6, (29) will hold
for the remaining two subscripts. Thus we can obtain the following inequalities:

Ay

Ci1l — Cny11 + Cnyj1 — Cij1 < B#(Cnl — Clngl + Cnyngl — Cny11), (49)
1
Ay
Cn1j1 - C?’L1n21 + Cnlnzk - Cnljk: S E(Cn1n2n3 - Cn11n3 + Cn111 - Cnlngl)a (50)
2
As
Cijt = Cujt + Cank = Cigh S = (Cnajng = Cljng + C1j1 = Canjn)- (51)
3

Also, from the nonpositivity of the (1,1,1)-order divided difference of g(r, s;,tx), we obtain

€111 —=Cny11—Cllng+Cnjlng €151 =Cnyj1—Cljng +Cnyjng

(Tl—rnl)(tl _tns) (r _Tn1)(t1_t"3) <0

(51— 55)

)
where 51 —s; <0, 11 — 1y, <0, t; —t,, <0. This implies
C1j1 = Cnyj1 — Cljng T Cnyjng < €111 = Cny11 — Cling + Cnying-
By (51) and the inequality %z > 0, we have
3
Cij1 = Cnyj1l + Cnyjk — Cijk < 5(0111 — Cny11 — Cling + Cnyling)- (52)
3

Summing up (49), (50) and (52), we can obtain (48). Thus the basis is dual feasible.
[l

By the similar proof, we can obtain the following theorem

Theorem 5.2. Under the same conditions with Theorem 5.1 except that (1,1,1)-order di-
vided differences of g(ri, 85, t1.) are nonnegative, then S1U{@n,1ns, Aingls Alngns } forms a dual
feasible basis of the matriz A.
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Define S, ..., Sg, S'1, S’ the same way as we have defined S;. Let

gl U {5n11n3751n217511n3}7

31 U {5n11n3751n21751n2n3}7
§2 U {511n375n1n21751n21}7

32 U {E_‘lln:s»amnzlvalnzng}a
S3 U {@n,11, Alngng, Aling

33 U {5711 11, 51712n3 ) 5”1 1713}7
§4 U {511n375n1n2175n111}7

§4 U {e_lllnsvamnzl?amlns}a
§5 U {5n1117§1n2n3751n21}7

35 U {amlbﬁlnznsvﬁnmzl}a
§6 U {517121757111713757”11}7

§6 U {5171217§n11n375n1n21}7
gl U {§n1n21’ 5711 1ng» 5lnzna }7
§1 U {E_lmml’ §n11n375n1n2n3}7
?1 U {E_lmmlﬂ 5‘TL1712TL37§17L27L3}7
gl U {§n1n2n375n11n37§1n2n3}7
S’y U {@5,11, Bing1, Alng |

S5 U{@n,11, Arny1, @111}

S’y U{@,,11, 8111, At1ny }

S’y U {111, A1yt Ating |-
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Then we can derive results for the three-dimensional problem (38), we present them in Tables
5.1-5.8. In the following tables, " means strictly increasing, “\, means strictly decreasing,
(1,7, k) means (i, j, k)-order divided difference, 0 < 4, j,k < 2, ’d.f.b. of min’ and ’d.f.b. of
max’ mean 'dual feasible basis of the minimization problem (38)” and 'dual feasible basis of

the maximization problem (38)’, respectively.
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ri NN N NN
Sj A V4 Y VA N A B B
t AN NI N L SN
1,200 [ >0 >0>0|<0[>0|<0[<0|<0
(2.1,0) [ <0 <0 >0|<0[>0|<0[>0|>0
(1,0,2) | >0 >0|>0|<0|>0|<0]<0|<0
(2,0,1) | <0|>0<0|<0]>0|>0[<0|>0
0,1,2) | >0 >0[<0|>0|<0|>0]<0|<0
(0,2,1) [ <0 >0 <0|<0[>0[>0[{<0[>0
(1,1,1) <0 >0
(=0) (£0)
d.fb. Su
of min (S12)
d.fb. Se2
of max (Se1)
Table 5.1
ri SN IN TN NN
A rARN AR AR R
ty AN NI LN
1,20) | <0 <0 <0|=0|<0[>0>0]=0
(2.1,0) >0 >0 <0|>0]<0|>0[<0|<0
(1,0,2) [<0| <0 <0|>0[<0|>0[>0|>0
(2,0,1) | >0 <0[>0|>0|<0|<0]>0|<0
0,1,2) <0 <0[>0|<0|>0]<0[>0|>0
0,21)[>0|<0|>0[>0|<0[<0[>0]|<0
(1,1,1) <0 >0
C0) =0
d.fb. Se1
of min (Se2)
d.f.b. S
of max (S11)

Table 5.2

RRR 27-2005
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T AN L NN N
Sj LN N NN
th AN L NN SN
(1,2,0) | >0 >0]|>0[<0|>0|<0[<0|<0
(2,1,0) | <0 <0|>0[<0[>0|<0|>0]2>0
(1,0,2) | >0[>0|>0[<0[>0|<0|<0]<0
(2,0,1) | <0[>0|<0[<0[>0|>0|<0]>0
(0,1,2) | <0 <0[>0[<0|>0|<0[>0]>0
(0,2,1) | >0 <0|>0[>0|<0|<0[>0]<0
(1,1,1) <0 >0
(>0) (<£0)
d.f.b. Sa1
of min (S22)
d.f.b. S
of max (S4)
Table 5.3
T AN NN N
Sj 0NN NN N
th JAINT L NN N
(1,2,0) | <0 (<0 <0[>0[<0|>0|>0]2>0
(2,1,0) | >0(>0|<0[>0[<0|>0|<0]<0
(1,0,2) | <0 <0[<0[>0|<0|>0[>0]>0
(2,0,1) | >0 <0[>0[>0|<0|<0[>0]<0
(0,1,2) | >0 >0[<0[>0|<0|>0[<0|<0
(0,2,1) | <0 >0[<0[{<0|>0|>0[<0]|>0
(1,1,1) <0 >0
(>0) (£0)
d.f.b. San
of min (S42)
d.f.b. So
of max (S21)

Table 5.4
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T SN0 N N NN
Sj LN N NN
th AN L NN SN
(1,2,0) | <0 <0[<0|>0|<0|>0(>0]2>0
(2,1,0) | >0[>0|<0[>0]<0|>0|<0]<0
(1,0,2) | >0[>0|>0[<0[>0|<0|<0]<0
(2,0,1) | <0[>0|<0[<0[>0|>0|<0]>0
(0,1,2) | >0|>0[<0[>0|<0|>0[<0|<0
(0,2,1) | <0|>0[<0[<0|>0|>0[<0]|>0
(1,1,1) <0 >0
(>0) (<£0)
d.f.b. S31
of min (S32)
d.fD. Ssa
of max (S51)
Table 5.5
T SN0 N N NN
Sj 0NN NN N
th AN NN SN
(1,2,0) | >0(>0|>0[<0][>0|<0|<0]<0
(2,1,0) | <0[<0|>0[<0[>0|<0|>0]2>0
(1,0,2) | <0 <0[<0[>0|<0|>0[>0]>0
(2,0,1) | >0 <0[>0[>0|<0|<0[>0]<0
(0,1,2) | <0 <0[>0[<0|>0|<0[>0]2>0
0,21) [>0|<0|>0[>0[<0[<0[>0|<0
(1,1,1) <0 >0
(>0) (£0)
d.f.b. Ss1
of min (Ss2)
d.f.b. S'39
of max (S31)
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T SN0 NN N N

Sj 0L 0IN TN LN N

tr JAINT L N IN LN
(1,2,0) <01 <0 <0200 202020
(2,1,0) <01 <0200 2010]>20120
(1,0,2) <01 <0101 200120120120
(2,0,1) <0200 L0201 2>20(<0|2>20
(0,1,2) <01 <0201 L0]201L0|>20|20
(0,2,1)[<0[>0|<0[<0[>0[>0[<0]|>0
(1, 1, 1) >0 <0

(£0) (>0)
d.f.b. S’
of min (S"12, S'13, or S'14)
d.f.b. ?22, ?23, or ?24
of max (S'31)
Table 5.7

r; N0 NN NN

Sj LN TN N N

bk JANTL L NI N
(1,2,0) >01>20]120]L0]20]L0|<0|K0
(2,1,0) | >0 >0|<0|>0[<0]>0/<0|<0
(1,0,2) >0]>20]>20]<0|>20]<0|>0|<K0
(2,0,1) >0 <0|>20]>20|<0]<<0|>0|K0
(0,1,2) >0]12>20|<0]>20]|<0]>20]<L0L0
(0,2,1) >0 <0 201200 <0]2>201K0
(1, 1, 1) <0 >0

(=0) (<0)

d.f.b. ?22, ?23, or ?24
of min (5"21)
d.f.b. S'11
of max (5,12, S,13, or 5,14)

Table 5.8
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6 Applications and Illustrative Examples

Monge and inverse Monge arrays came up in many practical applications. A collection of
them is presented in Burkard et al. (1996). In this section we present three more applications
which, at the same time, illustrate the ways that we can make use the results of the present

paper.

6.1 Bounding Unknown Entries in Partially Known Arrays

As we have mentioned in the Introduction, any dual feasible bases in an LP may serve
for bounding and approximation of unknown components of the coefficient vector of the
objective function. If By (Bj) is a dual feasible basis in a minimization (maximization)
problem such that cg, (cg,) is known, then we have the bound for any unknown c¢:

ylay, < ¢ (53)
(v ay > ),

where y is any solution of the equation y"By = cf, (y"B; = cf,). The best theoretical
bound is the largest (smallest) of all these bounds.

In Sections 2 and 4 we have presented dual feasible bases for LP’s with Monge arrays in
the objective function. We have done the same in Sections 3 and 5 for some higher order
convex objective function coefficient arrays. Thus, we have created methods for bounding
the entries of the above-mentioned arrays, if they are only partially known. If both the lower
and upper bounds can be given for ¢, and the bounds are close, then they may be used for
the approximation of that value.

The dual feasibility of a basis, however, does not depend on the right hand side values in
the equality constraints. Therefore, the bounds presented in Sections 2-5 may not be close
enough to the unknown value. There are two possibilities to improve on them.

The first one is to carry out steps according to the rules of the dual method. Any time
when a dual step is carried out, first we decide on the vector that leaves the basis B and the
right hand side values in the constraints, to do that. As regards the entering vector, we can
find one as long as there is an a; such that ¢, is known and a; can enter the basis according
to the rules of the dual method. Whenever no further a, can be included into the basis,
either because primal feasible basis has been found or the corresponding ¢, is unknown, then
we take the best bound so far as our final (lower or upper) bound.

The second one is the reduction of the size of the problem. This can be done only in
connection with the problems discussed in Sections 2 and 4, unless the available information
allows for applying it to problems in Sections 3 and 5.

In the problems of Sections 2 and 4 the right hand side values, i.e., the univariate marginal
distributions are fully known, by assumption, so are the univariate marginal conditional
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distributions, given that the univariate random variables are restricted to some subsets of
the support sets. The new problem, written up with the conditional probabilities on the right
hand side, becomes smaller and the bounds for the unknown entries of the Monge array in
the objective function may be better. This method can be applied for problems described
in Sections 3 and 5 only if the conditional covariances are also known.

Any distribution array is a Monge array and the entries of a distribution array are values
of a probability distribution function. Hence, the methodology of Sections 2, 4 provides us
with a methodology for bounding and approximation of unknown values of a multivariate
discrete p.d.f.. The results of Sections 3 and 5 improve on the bounds. In those cases
the distribution functions must have the special property: nonnegativity of some divided
differences.

Example 6.1 In the problem (1), the known ¢;; and a;,b; values are given in the

following table:

a4 = 14 Cq1 — 22 Cyo — 20 Cq3 — 20 Cyq — 16 Cy5 = 12 Ch6 — 13
a3 =39 | c31 = 17 C32 33 C34 35 C36 = 12
ag =22 | co1 =17 C22 C23 Co4 Ca5 o6 = 20
a; — 18 C11 — 8 Ci9 — 10 C13 — 13 Clqg — 11 Cl5 — 14 Cig — 23
b1:10 b2:11 b3:13 b4:20 b5:24 b6:15

Table 6.1

To find the lower bounds for the unknown values of ¢;;, we choose

L, = {ai1,a12, a13, a14, 15, A1, 26, A36, 46 }
as the initial dual feasible basis. Carrying out the dual method, no more dual feasible basis
can be obtained. Since the solution of the equation yIL; = c{l is y?' = (23,20,12,13, —15, —13, —10,
the lower bounds for the unknown c¢;; obtained from the dual feasible basis L, are as follows:
Cop > 17,
C32 Z _17

Ca3 Z ]-07
C33 > 2,

Coq > 8,
C34 Z 07

C25 Z 1]-7
c35 > 3.

Again we can choose
Ly = {a11, 01, a31, @41, 42, A43, A4q, 45, A4}

as the initial dual feasible basis. Carrying out the dual method, no more dual feasible basis
can be obtained. Since the solution of the equation yI Ly = c{z isy? = (-1,8,8,13,9,7,7,3,—1,0),
the lower bounds for the unknown ¢;; obtained from the dual feasible basis L, are as follows:
Co2 > 15,
C32 Z 157

Ca3 Z 157
c33 > 15,

Coq 2> 11,
C34 Z 1]-7

C25 Z 77
c35 > 1.

—12, -
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So the final lower bounds for the unknown c¢;; are as follows:

Co2 2 15, 23 2 15, ¢ 2 11, 95 > 11,
c32 > 15, ¢33 > 15, ¢34 > 11, c35 > 7.

To find the upper bounds for the unknown values of ¢;;, similarly we choose

U, = {816, ais, Aig, A13, A12, 411, A21, a31,a41}

or

U, = {3167 a6, A36, A46, A45, A44, A43, A42, a41}-

as the initial dual feasible basis. The final upper bounds for the unknown c¢;; are as
follows:

Co2 <19, o3 <22, ¢y <20, 95 <19,
c32 <19, ¢33 <19, ¢34 <15, ¢35 < 1L

Example 6.2 In example 6.1, if one more constraint is given with the form of the last
constraint in problem (27), where

021076, y1=1, y2:2, y3:37 y4:47

271=106, 20=19, 23=4, 24=3, 25=2, 2z5=1,

then we can get a problem with the form of problem (27). It is easy to see that {y;} is
strictly increasing and {z;} is strictly decreasing. Assume that ¢;; = ¢(y;, 2;), then both
the (1,2)-order and (2,1)-order divided differences are nonpositive. According to the results
obtained in Section 3,

By = {311, ajg, a3, A4, A1s, A16, A26, A36, A46, 341},

By = {ay1, a91,a31, Q41, A2, Ag3, Aua, Aus, Asp, A16 )

are the dual feasible bases of the minimization and maximization problems respectively.
.From these two bases, the lower and upper bounds for the unknown ¢;; can be obtained as
follows:

11.3 < 99 < 22,5, 11.6 < 93 < 27.8,
9.07 < ¢y < 24.9, 11.5 < co5 < 21.9,
753 < c30 < 18.7, 5.2 < ¢33 < 21.4,

2.13 < ¢34 < 17.9, 4.07 < ¢35 < 14.5.
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6.2 Bounding Expectations

Let X, Y be two independent random vectors with the same discrete support set. Suppose
that the probability distribution of X is fully known but the distribution of Y is only partially
known. We know all univariate marginal distributions of its components and, if d = 2 or 3,
all covariances of the pairs. Then we can give lower and upper bounds for

P(X <Y). (54)

Each lower or upper bound is based on a dual feasible basis. Any dual feasible basis that
we presented in Sections 2-5 provides us with a bound. If the basis is both primal and
dual feasible, then the bound is sharp, no better bound can be given based on the available
information. If we use our dual feasible bases as initial bases and carry out the lexicographic
dual method, then the last basis is both primal and dual feasible, and the optimum value of

the problem is the sharp bound.

Example 6.3 Suppose that the 2-dimensional random vectors X; = (Y3, 7;) and
Xy = (Y5, Z5) can take on the values (y;,2;), ¢ = 1,...,4, j = 1,...,6, with probabilities
Px, (yi, zj) and Px, (y;, 2j), respectively, where

N = 17y2 = 37?/3 = 4794 = 57

21:18,22:11,23:6,24:3725:2726:1. (55)

If Px,(yi,7;) are unknown or partially known, but all univariate marginal distributions
P(Y; =vy;) = a;, P(Zy = z;) = b; are given as follows

ay = 019, a9 = 0247 as = 042, a4 = 0157

by = 0.11,by = 0.12,b3 = 0.14, b, = 0.21, b5 = 0.26, bg = 0.16. (56)

The probability distribution function of Xy (Fx,(yi, 2;)) denoted as ¢;; is given in the fol-
lowing table:

Since

Cq1 = 0.17 Cqo = 0.34 Cy3 = 0.53 Cqq4 = 0.68 Cy5 = 0.81 Ch6 — 1.00

C31 = 0.12 C3g = 0.23 C33 = 0.36 C34 = 0.47 C35 = 0.57 C36 — 0.72

Co1 = 0.07 Coo = 0.14 Co3 = 0.23 Coy = 0.30 Con = 0.37 Cog — 0.49

C11 — 0.02 Ci2 = 0.05 C13 = 0.09 Clq — 0.12 Cl5 — 0.16 Clg — 0.22
Table 6.2

4 6
P(X1 < Xp) = E[P(X1 < Xo| X)) = > Y i Py (i, %),

i=1 j=1
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the lower and upper bounds for P(X; < Xs) can be obtained by solving the minimization
and maximization problems (1) with the a;, b; and ¢;; values provided in (56) and Table 6.2.
Taking into account that the c¢;; values satisfy inverse Monge property, we choose

L, = {8117312,313731473157316,321,3317841}

as the initial dual feasible basis for the minimization problem. Carrying out the lexicographic
dual method, we obtain a sequence of dual feasible bases. The last one is also primal feasible,
whose subscripts are {33, 34,24, 25, 15, 16,

32,42,41}. Thus the optimum value 0.3232 is the lower bound for P(X; < X5). Similarly,
solving the maximization problem, we obtain a sequence of dual feasible bases The last
one is also primal feasible, whose subscripts are {11,12,22,23,24,34,35,36,46}. Thus the
optimum value 0.4381 is the upper bound for P(X; < Xs). Therefore, the sharp bounds for
P(X, < X3) are as follows:

0.3232 < P(X; < X5) <0.4381.

Example 6.4 In Example 6.3, suppose that the covariance of Y5 and Z5 is —5.003.
Since

E[Ys] = Y1, yia; = 3.34,
E[Z) = 3%, 2;b; = 5.45,

j=1

4 6
EY,Z,] = Z Z YiziPx, (Yi, 7)

= Cosza, Zs) + E[Y2] E[Z,] (57)
= —5.003+ (3.34)(5.45) = 13.2.

Furthermore, the bounding problem can be formulated as the minimization and maximiza-
tion problems (27) with one more constraint described in (57).

Assume that ¢;; = g(v;, z;), then the (1,2)-order divided difference of g(y;, z;) is nonneg-
ative and the (2,1)-order divided difference of g(y;, z;) is nonpositive. Then

By = {3167 Age, A36, A46, A41, A42, A43, A44, A45, a11}
and

By = {311, agy, asy, aq1, A2, 413, A14, 415, A16, a46}

are the initial dual feasible bases for the minimization and maximization problems, respec-
tively. Carrying out the lexicographic dual method, we obtain a sequence of dual feasi-
ble bases for the minimization and maximization problems, respectively. The subscripts
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of the last ones, which are also primal feasible, are {22,26, 25, 35,12, 33,43,44,34,11} and
{11, 21,24, 36,12, 13, 23,

34, 35,46} for the minimization and maximization problems, respectively. Thus the optimum
values are also the bounds for P(X; < X,) as follows:

0.4084 < P(X; < X,) < 0.4337.

These bounds improve the ones in Example 6.3.

6.3 The Wasserstein Distance of Two Probability Distributions

The Wasserstein distance between the probability distributions p and v, defined in R", is

:mf\/// d(z,y)2dn (2, y), (58)

where II is the set of all probability distributions in R™ x R™ with marginals p and v,
respectively, i.e., if m € II, then w(o x R")) = u, 7(R" x o)) = v and d(x,y) is the Euclidean
distance between z and y.

the value:

Let n =1 and pu, v be the discrete distributions with supports {y1,...,ym}, {21,---, 2n}
and corresponding probabilities {a;}, {b;}, respectively. Then

W2(u,v) = min Y " Ly — z)%
subject to
Z?:lxij:az‘, izl,...,m (59)
Yomixiy=0b;, j=1,....n
zi; >0, it=1,....m, j=1,....n

Assume that both {y;} and {z;} are increasing sequences. It is easy to see that the array
1 2 . :
Cijzi(yi_zj)7 Z:L...,m, jzl,...,n

has the Monge property (its (1, 1)-order divided difference is constant, equal to —1).

By Hoffman’s result, the greedy algorithm, described in Section 1.3, solves optimally
problem (59).

By Theorem 2.1 the objective function value, corresponding to any ordered sequence of
the transportation min problem, is a lower bound on W?(yu, v). That ordered sequence which
is also primal feasible, provides us with the exact value of W?2(u, v).
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7 Conclusions

We have presented results in connection with multivariate probability distributions with
given marginals and given covariances of the pairs of random variables involved. We have
also formulated optimization problems, where the coefficient array of the objective function
is supposed to have the Monge, or inverse Monge property, or is a special higher order convex
function.

We have reformulated basic results, obtained in connection with Monge arrays, in terms
of dual feasible bases in the two-, three- and multidimensional transportation problem. We
have also obtained general results in connection with the structures of dual feasible bases in
the two- and three-dimensional cases, where the constraints of the transportation problems
are supplemented by covariance constraints.

Our results allow for creating lower and upper bounds for unknown entries in partially
known Monge and inverse Monge arrays. We have also shown how the results can be used
to obtain lower and upper bounds for the expectation of a function of a discrete random
vector, where the function is a Monge or inverse Monge array and the univariate marginal
distributions are known. In the two- and three-dimensional cases we have obtained improved
bounds under the condition that the covariances of the pairs of the random variables are
also known. In this case the coefficient array of the objective function is supposed to have
some special higher order convexity property.

[lustrative numerical results have been presented and we mentioned some among the
many possible applications of our results.
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