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Abstract. The matrix chain ordering problem is to find the cheapest way to multiply a chain
of n matrices, where the matrices are pairwise compatible but of varying dimensions. Here we
give several new parallel algorithms including O(lg3 n)-time and n/lgn-processor algorithms for
solving the matrix chain ordering problem and for solving an optimal triangulation problem of
convex polygons on the common CRCW PRAM model. Next, by using efficient algorithms for
computing row minima of totally monotone matrices, this complexity is improved to O(lg2 n) time
with n processors on the EREW PRAM and to O(lg2 n lg lgn) time with n/lg lgn processors on
a common CRCW PRAM. A new algorithm for computing the row minima of totally monotone
matrices improves our parallel MCOP algorithm to O(n lg1.5 n) work and polylog time on a CREW
PRAM. Optimal log-time algorithms for computing row minima of totally monotone matrices will
improve our algorithm and enable it to have the same work as the sequential algorithm of Hu and
Shing [SIAM J. Comput., 11 (1982), pp. 362–373; SIAM J. Comput., 13 (1984), pp. 228–251].
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1. Introduction. The design of efficient parallel algorithms for problems with
elementary serial dynamic programming solutions has been the focus of much recent
research. These problems include string editing [2, 5, 30], context-free grammar recog-
nition [35, 37], and optimal tree building [7, 32]. Polylog time parallel algorithms for
solving these problems use new approaches, since straightforward parallelization of
sequential dynamic programming algorithms produce very slow (linear-time) parallel
algorithms. Many efficient parallel algorithms designed to date rely on monotonic-
ity conditions to give divide-and-conquer schemes. By “efficient” we mean that the
processor-time product is within a polylog factor of the best sequential time.

The matrix chain ordering problem (MCOP) is to find the cheapest way to multi-
ply a chain of n matrices, where the matrices are pairwise compatible but of varying
dimensions. This problem can be found in many classic textbooks on parallel and
sequential algorithms, such as [3, 18]. The MCOP is often the focus of dynamic
programming research and pedagogy because of its amenability to an elementary dy-
namic programming solution. There has been significant sequential and parallel work
on the MCOP [11, 17, 19, 20, 21, 25, 26, 27, 28, 29, 38, 40, 41, 39, 42, 43, 44] and a
related convex polygon triangulating problem. However, until recently none of this
work has given an efficient (linear-processor) polylogarithmic-time algorithm for the
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MCOP. (See Bradford [11].) Recently in [40] and [41] Ramanan independently gave
an O(lg4 n)-time and n-processor algorithm for solving the MCOP on the CREW
PRAM. Moreover, in [15] we gave a O(lg4 n)-time and n/lgn processor algorithm for
solving the MCOP on the common-CRCW PRAM.

Algorithm-design paradigms often aid the design of efficient sequential algorithms.
However, some algorithm-design paradigms may not lead to efficient parallel algo-
rithms. In particular, some variations of the greedy paradigm appear to be inherently
sequential [4]. This highlights the significance of research in parallel dynamic pro-
gramming.

1.1. Main results of this paper. Our approach follows [11], recasting the
MCOP as a shortest path problem in a graph modeling a dynamic programming
table. (In fact, this paper is an update of a part of [10] and a revision of [15]; see
also the first author’s dissertation [12].) This graph has O(n2) nodes and with an
all-pairs shortest paths algorithm finding a shortest path in this graph results in a
n6/lgn processor MCOP algorithm. Reducing the number of nodes to O(n) using a
tree decomposition and applying an all-pairs shortest path algorithm gives an n3/lgn
processor and polylog-time algorithm.

In this paper, we convert the successive applications of the brute force all-pairs
shortest paths algorithm to successive applications of parallel partial prefix and bi-
nary search algorithms. As in the n3/lgn-processor algorithm, the applications of
the prefix and binary search algorithms are controlled by a rake-compress paradigm
operating on a tree-based decomposition of the original graph. All of this results
in a polylog-time (O(lg3 n)) and linear-processor (n/lgn) parallel algorithm for the
MCOP on the common-CRCW PRAM. This improves our result of O(lg4 n) time
and n/lgn processors of [15]. In addition, using efficient algorithms for computing
row minima on totally monotone matrices, our algorithm can run in O(lg2 n lg lgn)
time using n/lg lgn processors on a common-CRCW PRAM or in O(lg2 n) time us-
ing n processors on an EREW PRAM. Using the most efficient polylog-time parallel
algorithms for computing row minima on totally monotone matrices, our algorithm
can run in O(lg1.5 n lg lgn) time using O(n

√
lgn) work on a common-CRCW PRAM

or in O(lg2.5 n
√

lg lgn) time using O(n
√

lgn lg lgn) processors on an EREW PRAM.
See Bradford, Fleischer, and Smid [14] for the most efficient polylog-time parallel
algorithms to date for computing row minima in totally monotone matrices.

1.2. Previous results. Elementary dynamic programming algorithms sequen-
tially solve the matrix chain ordering problem in O(n3) time; see [3, 18]. Several
recent textbooks on the design and analysis of parallel algorithms discuss the MCOP;
see [36, 23]. However, the best sequential solution of the MCOP is Hu and Shing’s
O(n lgn) algorithm [28, 29]. (Much work has been done on lower bounds on the
MCOP and related problems; see [38, 39, 13].) Using straight-line arithmetic pro-
grams, Valiant et al. [43] showed that many classical optimization problems with effi-
cient sequential dynamic programming solutions are in NC. Their algorithms require
Θ(lg2 n) time and n9 processors. Using pebbling games, Rytter [42] gave more effi-
cient parallel algorithms for a similar class of optimization problems costing O(lg2 n)
time with n6/lgn processors. In [11], an algorithm was given that takes O(lg3 n)
time and n3/lgn processors, and [20] gave an algorithm that takes O(lg3 n) time and
n2/lg3 n processors. In [40], Ramanan gives an extended abstract of an n-processor
and O(lg4 n)-time CREW PRAM algorithm for solving the MCOP which came after
our buggy version in [10]; his full version appears in [41]. A full version of our n/lgn-
processor and O(lg4 n)-time algorithm described and improved upon in this paper
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appears in [15]. In addition, there are serial and parallel approximation algorithms
for the MCOP [11, 17, 19, 27].

1.3. Structure of the paper. In section 2 we briefly review the interpretation
of the MCOP as a shortest path graph problem from [11] and then summarize the
n3/lgn-processor algorithm. In section 3 we isolate this algorithm’s n3/lgn-processor
bottlenecks. The n3/lgn-processor cost of these bottlenecks is from an all-pairs short-
est paths algorithm. In section 4 we show how to replace the all-pairs shortest path
algorithm with parallel prefix and an all-pairs comparison algorithm. In section 5
we replace the all-pairs comparison algorithm with applications of parallel prefix and
binary search. Finally, it is shown that the key problems solved in section 4, and more
efficiently in section 5, can be solved by finding the row minima of a totally monotone
matrix.

2. An O(lg3 n) time and n3/lgn processor MCOP algorithm. This sec-
tion contains a brief review of the polylog-time and n3/lgn-processor MCOP algo-
rithm from [11].

Let T be an n × n dynamic programming table for the matrix chain ordering
problem. It has entries T [i, k] representing the cheapest cost of the matrix product
Mi • · · · •Mk. For any such T there is a graph Dn where the cost of a shortest path to
node (i, k), denoted sp(i, k), is the same as the final value of T [i, k]. Given a chain of
n matrices, finding a shortest path from (0, 0) to (1, n) in Dn solves the MCOP [11].

The weighted digraph Dn has vertices in the set, {(i, j) : 1 ≤ i ≤ j ≤ n}∪{(0, 0)}
and edges

{(i, j)→ (i, j + 1) : 1 ≤ i ≤ j < n} ∪ {(i, j) ↑ (i− 1, j) : 1 < i ≤ j ≤ n}
∪{(0, 0)↗ (i, i) : 1 ≤ i ≤ n},

known as unit edges, together with the edges

{(i, j) =⇒ (i, t) : 1 < i < j < t ≤ n} ∪ {(s, t) ⇑ (i, t) : 1 ≤ i < s < t ≤ n},

known as jumpers; see the jumper from (1, 2) to (1, 4) in Figure 1. The unit edge
(i, j)→ (i, j+1) represents the product (Mi•· · ·•Mj)•Mj+1 and weighs f(i, j, j+1) =
wiwj+1wj+2, which is taken as the cost of multiplying a wi × wj+1 matrix and a
wj+1 × wj+2 matrix. Similarly, the unit edge (i, j) ↑ (i− 1, j) represents the product
Mi−1 • (Mi • · · · •Mj) and costs f(i− 1, i− 1, j) = wi−1wiwj+1. A shortest path to
(i, k) through the jumpers (i, j) =⇒ (i, k) and (j+1, k) ⇑ (i, k) represents the product
(Mi • · · · •Mj) • (Mj+1 • · · · •Mk), and these jumpers weigh sp(j + 1, k) + f(i, j, k)
and sp(i, j)+f(i, j, k), respectively, where sp(j+1, k) is the cost of a shortest path to
node (j + 1, k) and f(i, j, k) = wiwj+1wk+1. The jumper (i, j) =⇒ (i, t) is of length
t− j. See Figure 1.

Using this model the MCOP can be solved in polylog time with n6/lgn processors
by using an all-pairs shortest path algorithm and exploiting the following theorem.

THEOREM 1 (Duality Theorem [11]). If a shortest path from (0, 0) to (i, k) con-
tains the jumper (i, j) =⇒ (i, k), then there is a dual shortest path containing the
jumper (j + 1, k) ⇑ (i, k).

Furthermore, using a tree decomposition of Dn and an all-pairs shortest path
algorithm, the MCOP was solved in polylog time using n3/lgn processors [11].

2.1. Matrix dimensions as nesting levels of matching parentheses. The
next four subsections show that using the list of matrix dimensions as nesting levels of
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(4,4)(0,0)

(3,4)(3,3)

(2,4)(2,3)(2,2)

(1,4)(1,3)(1,2)(1,1)

FIG. 1. The weighted graph D4.

matching parentheses gives a tree decomposition of Dn that leads to efficient solutions
of the MCOP.

Given an associative product with the level of each parenthesis known, for each
parenthesis find its matching parenthesis by solving the all nearest smaller value
(ANSV) problem [8, 9]: given weights w1, w2, . . . , wn, for each w find the indices,
if they exist, of the nearest proceeding and succeeding weights both less than w. Let’s
call this pair of indices, if they exist, an ANSV match. That is, for each w the problem
is to find the largest j where 1 ≤ j < i, and find the smallest k where i < k ≤ n,
so that wj < wi and wk < wi, if such values exist. In Dn, (i, k) is a critical node if
[wi, wk+1] is an ANSV match.

By solving the ANSV problem we can compute all critical nodes of Dn. The
bottom of Figure 2 depicts a list of matrix dimensions (called weights) and dashed
lines representing four key ANSV matches. The four corresponding critical nodes are
circled in Dn.

In our nomenclature, [8] shows that the following theorem holds.
THEOREM 2. Computing all critical nodes costs O(lgn) time with n/lgn proces-

sors or in O(lg lgn) time using n/lg lgn processors on the common-CRCW PRAM.
In addition, [16, 34] give the following theorem.
THEOREM 3. Computing all critical nodes costs O(lgn) time with n/lgn proces-

sors on the EREW PRAM.
Two critical nodes on the same diagonal are compatible if no vertices other than

(0, 0) can reach both of them by a unit path. Since a path of critical nodes represents
a parenthesization, all critical nodes are compatible. Also, Dn has at most n − 1
critical nodes and there is at least one path from (0, 0) to (1, n) that includes all
critical nodes [11].
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FIG. 2. Two leaf subgraphs inside a band subgraph with critical nodes shown.

2.2. Canonical subgraphs of Dn. In this subsection we investigate the inter-
action between subgraphs containing critical nodes.

All vertices and edges that can reach (i, t) by a unit path form the subgraph
D(i, t). Given D(i, j) if the weight list wi, . . . , wj+1 is monotonic, then D(i, j) is
monotonic. A band canonical subgraph D(i,t)

(j,k) is the subgraph containing the maximal
unit edge-connected path of critical nodes beginning at critical node (j, k) and termi-
nating at critical node (i, t) with the vertex set {(0, 0)}∪(V [D(i, t)]−V [D(j+1, k−1)])
and associated edges. A canonical subgraph of the form D

(i,t)
(j,j+1) is a leaf canonical

subgraph and is written D(i,t); it has the same nodes and edges as D(i, t). The top of
Figure 2 shows two leaf subgraphs nested inside of a band subgraph. Leaf and band
subgraphs are the only two types of canonical subgraphs. Canonical subgraphs are
easily distinguishable by the properties of their critical nodes shown in Theorem 2.
From here on p denotes the path of critical nodes in band or leaf canonical subgraphs.

Given D(i, u) with a monotone list of weights wi ≤ wi+1 ≤ · · · ≤ wu+1, a shortest
path from (0, 0) to (i, u) is the straight unit path (0, 0) ↗ (i, i) → (i, i + 1) →
· · · → (i, u) that costs wi

∑u
j=i+1 wjwj+1. On the other hand, if D(i, t) has no
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(j,k)

(i,t)

FIG. 3. Two angular paths.

critical nodes, then its associated weight list is monotonic. As in [28, 29, 11] let
‖wi : wk‖ =

∑k−1
j=i wjwj+1, which is easily computable using differences of components

of the parallel partial prefixes ‖w1 : wi‖ for 2 ≤ i ≤ n+1. This is useful since the unit
path (i, j)→ · · · → (i, k) costs wi‖wj+1 : wk+1‖ = wi(‖w1 : wk+1‖ − ‖w1 : wj+1‖).

Suppose (j, k) and (i, t) are two critical nodes in a canonical graph such that from
(j, k) we can reach (i, t) by a unit path, that is if i ≤ j ≤ k ≤ t, then the angular
paths of (j, k) and (i, t) are, (see Figure 3)

(j, k) ⇑ (i, k)→ · · · → (i, t) and (j, k) =⇒ (j, t) ↑ · · · ↑ (i, t).

THEOREM 4 (see [11]). In a canonical subgraph the shortest path between any two
critical nodes that contains no other critical nodes is an angular path or edge.

In addition, any shortest path not including critical nodes is a straight path of
unit edges. Thus, any shortest path to a critical node that contains no other critical
nodes is a straight path of unit edges [11].

Now a polylog-time algorithm for finding shortest paths to all critical nodes
in D(1,m) graphs is given. This algorithm takes O(lg2m) time and uses m3/lgm
processors.

First compute the parallel partial prefixes ‖w1 : wi‖ for 2 ≤ i ≤ m + 1. Find all
critical nodes. Now, in constant time using m processors compute the costs of all of
the unit paths to nodes in p. Next compute the cost of the O(m2) angular paths in
constant time with m2 processors. Finally, compute the shortest path to each node in
p by treating every angular path as an edge and applying a parallel all-pairs shortest
path algorithm.

2.3. Combining the canonical graphs for an efficient parallel algorithm.
In this subsection we discuss a tree contraction algorithm that contracts the tree
structure joining the canonical subgraphs to form a shortest path in Dn; see also
[28, 29, 11].

In Dn a canonical tree joins all of the canonical subgraphs. A node in a canonical
tree is critical node, say (i, j), and is written (i, j). Initially, for every leaf D(i,j)

the critical node (i, j) is the tree leaf (i, j). Internal tree nodes are either isolated
critical nodes or (i, t) and (j, k) in the band D(i,t)

(j,k). Tree edges are straight unit paths
connecting tree nodes, and jumpers may reduce the cost of tree edges.

Given an instance of the MCOP with the weight list l1 = w1, w2, . . . , wn+1, cycli-
cally rotating it, getting l2, and finding an optimal parenthesization for l2 gives an
optimal solution to the original instance of the MCOP with l1, [28, 21]. So in the rest
of this paper let w1 denote the smallest weight in any weight list.
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FIG. 4. A tree of canonical graphs (the circles denote tree nodes).

A result of Hu and Shing [28] leads directly to the next corollary.
COROLLARY 1 (Atomicity Corollary [11]). Suppose a weight list w1, . . . , wn+1,

with the three smallest weights w1, wj+1, and wk+1, is given such that 1 < j < k − 1.
Then the critical nodes (1, j) and (1, k) are in a shortest path from (0, 0) to (1, n) in
Dn.

For this corollary to work it is central that if w1, wj+1, and wk+1 are the three
smallest weights; then j+ 1 > 2 and k > j+ 1. This generally means that Corollary 1
cannot be applied in a canonical subgraph. For instance, take the leaf D(1,m) where
we can assume w1 < wm+1 < wi for 1 < i < m+ 1. However, Corollary 1 can be used
to break Dn into a tree of canonical graphs; see Figure 4.

IfDn has fewer than n−1 critical nodes, thenDn may have disconnected canonical
trees and monotone subgraphs. But there is at least one path joining these subtrees,
and at the same time we can discount the monotone subgraphs. There are several
relationships canonical graphs may have; these follow directly from the relationships
of critical nodes that are tree nodes.

The tree edge (i, j) → · · · → (i, v) along row i initially costs wi‖wj+1 : wv+1‖
where wi < wv+1 < wj+1 are the three smallest weights in D(i, v). Let p denote
a shortest path of critical nodes in D(j + 1, v) from (j + 1, v) back to (0, 0). Edge
minimizing the unit path along the ith row to the critical node (i, v) is done as follows.
First let L = wi‖wi+1 : wv+1‖ and W ((i, k) =⇒ (i, u)) = sp(k+ 1, u) + f(i, k, u), then
compute

A[i, v] = min
∀(k+1,u)∈V [p]

{L, wi‖wi+1 : wv+1‖ − wi‖wk+1 : wu+1‖+W ((i, k) =⇒ (i, u))}.

Since the three smallest weights in D(i, v) are wi < wv+1 < wj+1, by Corollary 1 the
cheapest cost to critical node (i, v) is now in A[i, v].

THEOREM 5 (see [11]). When edge minimizing a tree edge (i, j) → · · · → (i, v)
in a canonical subgraph we only have to consider jumpers (i, k) =⇒ (i, t) such that
(k + 1, t) ∈ V [p].

The critical node (i, u) in the band D
(i,u)
(j,k) is the front critical node. In general,

Theorem 5 holds when p is a shortest path through a band from the front critical
node back to (0, 0). Also, Theorem 5 holds for leaves in the canonical tree that, after
raking, have become conglomerates of other leaves, bands, and isolated critical nodes.
Here, jumpers derived from critical nodes in different subtrees are independent so we
can minimize tree edges with them simultaneously.

2.4. Contracting a canonical tree. In this subsection we show how to contract
a canonical tree efficiently in parallel.
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A

B

Min A M
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A

Min B

M
in

B

FIG. 5. Bottlenecks 1, 2, and 3 for the n3/lgn-processor algorithm.

Assume that all critical nodes (i, j) in tree leaves have the minimum cost back to
(0, 0) stored in sp(i, j). Compute these values using an all-pairs shortest path parallel
algorithm. There is an ordering of the leaves that prevents the simultaneous raking of
two adjacent leaves. Given two neighboring leaves D(i,j) and D(j+1,k) with the three
tree leaves (i, j), (j + 1, k), and (i, k), assume wi < wk+1 < wj+1. Then leaf (j + 1, k)
must be raked, since (i, j) is in a shortest path from (0, 0) to (i, k). Use the Euler
tour technique [33] when the raking order is arbitrary.

Given two nested bands, assume D
(i,v)
(j,u) is nested around D

(k,t)
(r,s) , that is, j ≤

k < t ≤ u. Without loss of generality, suppose any trees between D
(i,v)
(j,u) and D

(k,t)
(r,s)

have been contracted. Then joining these bands costs O(lg2 n) time with n3/lgn
processors. To achieve this, first, edge minimize all straight unit paths in D(i,v)

(j,u) with

the shortest paths from critical nodes that are between D(i,v)
(j,u) and D(k,t)

(r,s) back to (0, 0).
Next, take all angular paths connecting these two bands and apply a parallel all-pairs
shortest path algorithm merging the bands. Merging the bands D(i,v)

(j,u) and D
(j,u)
(r,s)

gives a shortest path from the front critical node (i, v) back to (0, 0) through D
(i,v)
(r,s).

Incorporating this band merging with the tree contraction completes the polylog-time
and n3/lgn-processor MCOP algorithm.

3. The structure of shortest paths in canonical subgraphs. In this section
we give the n3/lgn-processor bottlenecks of the algorithm in section 2. In addition,
we give a metric for measuring the relative contributions of angular paths to shortest
paths and some theorems about shortest paths forward from critical nodes in canonical
graphs. From this section on, we only address rows in the canonical graphs; the
arguments for columns follow immediately.

3.1. The n3/lgn processor bottlenecks. In this subsection we give the
n3/lgn-processor bottlenecks of the algorithm sketched in section 2.

Three parts of the algorithm in section 2 use n3/lgn processors. All other parts
of this algorithm use a total of n/lgn processors and take O(lgn) time. The three
bottlenecks are: finding shortest paths from all critical nodes in leaf graphs back to
(0, 0) (see Figure 5a); merging two bands (see Figure 5b); and merging two bands
that have contracted canonical trees between them (see Figure 5c).

In Figure 5c, contracted trees A and B are used to edge minimize the unit paths
marked by “Min-A” and “Min-B.” Edge minimizing the unit paths in the outer
band with the contracted trees gives an instance of the second bottleneck; see Figure
5b. Edge minimizing the unit paths in the outer band with the contracted trees costs
O(lgn) time with n2/lgn processors. In section 5 we will see how to perform such
edge minimization in O(lg2 n) time with n/lgn processors.
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(0,0)

FIG. 6. The dashed path is p and the two black nodes are supercritical nodes.

Finding shortest paths back to (0, 0) from all critical nodes in a leaf graph, as
in Figure 5a, will be done by breaking a leaf graph into nested bands. Therefore,
finding efficient parallel methods of band merging and edge minimization will give an
efficient parallel algorithm for the MCOP. So, the focus of the rest of the paper is
finding efficient ways to get shortest paths from all critical nodes back to (0, 0) by
edge minimization in leaf subgraphs partitioned as bands.

Given the band D
(i,v)
(j,t) , let p(i,v)

(j,t) denote a shortest path from (i, v) back to (0, 0)

totally contained in D
(i,v)
(j,t) ; see Figure 6. When there is no ambiguity, p(i,v)

(j,t) will be

written as p. Given a band D
(i,v)
(j,t) , whenever p = p

(i,v)
(j,t) starts from the front critical

node of the band it is in, the nodes V [p] are supercritical nodes. Considering the
minimal path back from the front critical node in Figure 6, we can see that only the
two black critical nodes are supercritical nodes. Supercritical nodes of any band are
all critical nodes in some minimal path back form the front critical node in the band
back to (0, 0). Any two supercritical nodes in p are connected by supercritical nodes
interspersed with the angular paths shown by Theorem 4.

When a canonical tree of Dn is totally contracted, then the final path p from (1, n)
back to (0, 0) gives the optimal order to multiply the set of n matrices. In addition,
the cost of p is the minimal cost of multiplying the given chain of n matrices.

3.2. A metric for finding minimal cost angular paths. In this subsection
we give a metric for finding minimal cost angular paths by using the equivalence of
angular paths and jumpers along unit paths. This equivalence comes directly from
Theorem 1.

When merging two bands, a unit path has at most one jumper minimizing it,
since all the relevant jumpers are nested. These jumpers get their sp values from
supercritical nodes of the inner band.

The influence of an angular edge can be taken as a jumper in a straight unit path
by Theorem 1. In the case of Figure 5c, notice that any unit edge minimization using



EFFICIENT MATRIX CHAIN ORDERING IN POLYLOG TIME 475

(i,x 1)

(i,y)

(i,s 1)

(i,t)

(i,y)

(i,x 1)

(i,t)

(i,s 1)

a)

b)

FIG. 7. Two different nestings of two jumpers.

sp values from A or B is independent of unit edge minimization using sp values from
the inner band. Therefore, measuring the potential contribution of angular edges to
shortest paths is done by measuring the potential contribution of jumpers to shortest
paths along straight unit paths.

Take a node (s, t) ∈ V [p], where sp(s, t) is the cost of a shortest path back to
(0, 0) with respect to a band; then in row i we want to compare the cost of the jumper
(i, s− 1) =⇒ (i, t) with the cost of the associated unit path (i, s− 1)→ · · · → (i, t).

Given (s, t) ∈ V [p], take row i above p with the jumper (i, s− 1) =⇒ (i, t); define

∆i(s, t) = wi‖ws : wt+1‖ − [ sp(s, t) + f(i, s− 1, t) ].

If ∆i(s, t) > 0, then the jumper (i, s− 1) =⇒ (i, t) provides a cheaper path along row
i than the unit path (i, s − 1) → · · · → (i, t). In particular, take both (s, t) ∈ V [p]
and (x, y) ∈ V [p], and the two possible jumper nestings of Figure 7.

Considering the nesting of the jumpers in Figure 7a, if ∆i(s, t) > ∆i(x, y) > 0,
then the jumper (i, s− 1) =⇒ (i, t) “saves more” than the jumper (i, x− 1) =⇒ (i, y)
along row i because (i, s−1) =⇒ (i, t) doesn’t have to deal with the paths (i, s−1)→
· · · → (i, x − 1) and (i, y) → · · · → (i, t) and ∆i(s, t) > ∆i(x, y) > 0. Similarly, for
the nesting of the jumpers in Figure 7b, if ∆i(x, y) > ∆i(s, t) > 0, then the jumper
(i, x − 1) =⇒ (i, y) “saves more” than the jumper (i, s − 1) =⇒ (i, t) along row i.
Notice that considering the jumpers in Figure 7b, if ∆i(s, t) > ∆i(x, y) > 0, then
the jumper (i, s− 1) =⇒ (i, t) may or may not make row i cheaper than the jumper
(i, x− 1) =⇒ (i, y). On the other hand, in Figure 7b, if (i, s− 1) =⇒ (i, t) makes row
i cheaper than the jumper (i, x− 1) =⇒ (i, y) does, then ∆i(s, t) > ∆i(x, y) > 0.

In D(1,m), if (s, t) ∈ V [p], then above the path of critical nodes p the function
∆i(s, t) is defined for all rows i such that s > i ≥ 1.

Notice that edge minimizing a unit path is only half the game, for we also must
consider the shortest paths forward.

Figure 8 is for the next theorem; also see [28].
THEOREM 6. Let D(i,v)

(r,s) be a leaf graph and let (j, u) and (k, t) be any two critical

nodes in D
(i,v)
(r,s) such that there is a unit path from (k, t) to (j, u). Then a shortest

path from (j, u) to (i, v) costs less than a shortest path from (k, t) to (i, v).
A proof follows inductively by shadowing trivial angular paths without any

jumpers, then showing that any shortest path from (k, t) forward to (i, v) can be
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(i,v)

(j,u)

(k,t)

FIG. 8. (j, u) shadowing (k, t)’s shortest path forward.

“shadowed” by a shorter path from (j, u) forward to (i, v). While in the process we
have taken into account the f values. Naturally, Theorem 6 also holds for shortest
paths forward in leaf graphs.

The next theorem will also be useful.
THEOREM 7. Let (i, s− 1) =⇒ (i, t) be a shortest path forward. Suppose that the

next band merging the value of sp(s, t) decreases due to an edge minimization of row
s or a lower row. Then (i, s− 1) =⇒ (i, t) is still in a shortest path forward.

A proof of this theorem follows directly from the basic notions of shortest paths.
In particular, if the shortest path forward from the critical node (s, t) goes through
(s, t) ⇑ (i, t), then making the path to (s, t) shorter will not affect the jumper (s, t) ⇑
(i, t) or the path from (i, t) to the front node of the present band.

4. A polylog-time and n2/lgn-processor MCOP algorithm. In this sec-
tion we give an O(lg2 n)-time and n2/lgn-processor algorithm for the MCOP. This
algorithm works by using a key induction invariant that allows recursive doubling
techniques to break through the bottlenecks given in the last section.

The basic idea of the algorithm is as follows. All critical nodes know their shortest
paths to the front of the present bands they are in. Only supercritical nodes have their
shortest paths back to (0, 0) through their present bands. When merging two bands,
by Theorem 5, we only have to consider shortest paths from supercritical nodes in
the inner band to any critical node in the outer band. Therefore, all critical nodes
must maintain a shortest path to the front of the band they are in. At the same time,
all supercritical nodes must maintain a shortest path backwards to (0, 0) through the
band they are in. Much of this section supplies the details and correctness of this
algorithm.

Each critical node in Dn has two pointers called front-ptr and back-ptr that rep-
resent angular edges. Back-ptrs are only used by supercritical nodes. With each
front-ptr there are two values, cost-of-front-ptr and cost-to-front; and with each back-
ptr there is one value, cost-to-back. Cost-of-front-ptr is the cost of the angular edge
going forward to the front critical node in the present band, where the value of cost-
to-front is the entire cost to the front critical node of the present band containing
front-ptr. Similarly, the value of cost-to-back is the cost from the supercritical node at
hand back to (0, 0) through the present band. Initially, these pointers connect critical
nodes and tree edges in the canonical tree.
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1. All critical nodes in both bands have their front-ptrs in trees of
shortest paths that eventually go to supercritical nodes. The supercritical
nodes have their front-ptrs form a linked list that goes to the front
(super)critical nodes of their respective bands.

2. In the two bands both shortest paths back to (0, 0) of supercritical nodes
are known. These shortest paths of supercritical nodes are made of linked
lists of back-ptrs from the front (super)critical nodes of each band
back through their respective bands to (0, 0).

FIG. 9. Inductive invariant for band merging.

Let D(i,v)
(j,t) and D

(j,t)
(k,s) be nested bands with paths of critical nodes labeled p

(i,v)
(j,t)

and p
(j,t)
(k,s), respectively. Note (i, v) and (j, t) are the front critical nodes of these

bands. As before, p(i,v)
(j,t) and p

(j,t)
(k,s) are shortest paths from the front critical nodes

back to (0, 0) through the bands D(i,v)
(j,t) and D

(j,t)
(k,s), respectively. Let p(i,v)

(j,t) and p
(j,t)
(k,s)

be made by two linked lists of back-ptrs along supercritical nodes back to (0, 0) in
their bands. It turns out that the shortest paths forward form all critical nodes in
each of these bands and are made up of linked lists of trees of front-ptrs. We will see
that this linked list of trees of front-ptrs is interconnected through the supercritical
nodes as in Figure 10.

Figure 9 gives the induction invariant for merging two bands.
Figure 10 gives an example of the data structures for maintaining the inductive

invariant. In this figure only critical nodes are shown and the supercritical nodes are
black. The solid arrows are front-ptrs and the dashed arrows are back-ptrs.

Now, say (s, t) is a critical node but not a supercritical node, that is (s, t) ∈ V [p]
and (s, t) 6∈ V [p]. There is a unique angular edge (x, y) ⇑ (r, y) → · · · → (r, u) in p
that “goes around” (s, t); see Figure 11. If we consider all rows above p in a given
canonical graph, then wi < wr implies that row i is “above” row r as in Figure 11.
From here on we focus on finding shortest paths above the path p of critical nodes.
The symmetric case of shortest paths below the path p of critical nodes follows.

Once we edge minimize all unit paths in D
(i,v)
(j,k) with jumpers that get their sp

values from supercritical nodes in D(j,k)
(s,t) , then we can find the shortest path from (i, v)

back to (0, 0) through D(i,v)
(s,t) . First, take one processor at each critical node in D(i,v)

(j,k)
that sums the cost of the path back to (0, 0), possibly through an edge-minimized
unit path with the cost of its shortest path forward. Next, find the minimum of all
of these sums, giving the shortest path from (i, v) back to (0, 0) through D

(j,k)
(s,t) .

The basic intuition for the next lemma is that, if the shorter of two nested jumpers
edge minimizes a unit path r, then any unit path above r with both of these jumpers
is not minimized by the longer jumper; see Figure 12. For the next lemma, assume
there is a unit path of critical nodes from (x, y) to (s, t) to (r, u) as in Figure 11.

LEMMA 1. Let (s, t) be a critical node between the supercritical node (x, y) and
the critical node (r, u) and suppose that i < r < s < x and row i is above row r. That
is, wi < wr, where rows i and r are above p. Then

if ∆r(x, y) ≥ ∆r(s, t), then ∆i(x, y) ≥ ∆i(s, t).
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Outer Band

Inner Band

FIG. 10. Solid arrows: forward linked lists of trees; dashed arrows: backward linked lists p.

(s,t)

(x,y)

(r,u)(r,y)

(i,y) (i,u)

FIG. 11. (s, t) 6∈ V [p] and the angular edge (x, y) ⇑ (r, y)→ · · · → (r, u).

Row r

Row i
x-1

x-1

y

y

s-1

s-1

t

t

FIG. 12. Two jumpers in different rows.
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Proof. Suppose ∆r(x, y) ≥ ∆r(s, t). This means

wr‖wx : wy+1‖ − [sp(x, y) + f(r, x− 1, y)] ≥ wr‖ws : wt+1‖ − [sp(s, t) + f(r, s− 1, t)].

Using some algebra we obtain the following (where ‖wi : wi‖ = 0):

wr[ ‖ws : wx‖+ ‖wy+1 : wt+1‖ ] < sp(s, t)− sp(x, y) + wr(wswt+1 − wxwy+1).

Moreover, sp(s, t) − sp(x, y) is always positive because (r, x − 1) =⇒ (r, y) is nested
inside of (r, s− 1) =⇒ (r, t) and f(r, s− 1, t) < f(r, x− 1, y). Therefore, if sp(x, y) >
sp(s, t), then a shortest path p would go through (s, t) to (r, u) and not over (s, t). In
particular, if sp(x, y) > sp(s, t), then since f(r, x− 1, t) > f(r, s− 1, t), it must be the
case that sp(x, y)+f(r, x−1, t) > sp(s, t)+f(r, s−1, t). Therefore, row r would have
been edge minimized by jumper (r, s − 1) =⇒ (r, t) and not by (r, x − 1) =⇒ (r, y);
see Figure 12.

In addition, wswt+1 − wxwy+1 < 0, since both (x, y) and (s, t) are critical nodes
where s ≤ x < y ≤ t. So it must be that wxwy+1 − wswt+1 > 0. Therefore, since

wr[ ‖ws : wx‖+ ‖wy+1 : wt+1‖+ wxwy+1 − wswt+1 ] < sp(s, t)− sp(x, y)

holds, and because wi < wr and the term sp(s, t) − sp(x, y) is independent of i and
r, then ∆i(x, y) ≥ ∆i(s, t) follows.

The next theorem follows from Lemma 1.
THEOREM 8. Let (s, t) be a critical node between the supercritical node (x, y) and

the critical node (r, u). Suppose i < r < s < x and row i is above row r, that is,
wi < wr, where rows i and r are above p. Then

if (r, x− 1) =⇒ (r, y) makes row r cheaper than (r, s− 1) =⇒ (r, t) does,
then (i, x− 1) =⇒ (i, y) makes row i cheaper than (i, s− 1) =⇒ (i, t) does.

A proof follows from Lemma 1 and by the fact that the rows

(i, s− 1)→ · · · → (i, x− 1) and (i, y)→ · · · → (i, t)

are cheaper than the rows

(r, s− 1)→ · · · → (r, x− 1) and (r, y)→ · · · → (r, t),

and the change in f values between (r, x − 1) =⇒ (r, y) and (i, x − 1) =⇒ (i, y) is
greater than the change of f values between (r, s−1) =⇒ (r, t) and (i, s−1) =⇒ (i, t).
That is,

f(r, x− 1, y)− f(i, x− 1, y) > f(r, s− 1, t)− f(i, s− 1, t),

since wx and wy+1 are both bigger than ws and wt+1. In addition, wr > wi; therefore

(wr − wi)[wxwy+1 − wswt+1] > 0.

Consider two nested bands with paths of critical nodes pi for the inner band and
po for the outer band, where pi and po are shortest paths from the front critical nodes
back to (0, 0) in each of these bands. Now, suppose (s, t) is between (x, y) and (r, u)
and (s, t) ∈ V [pi]. If (x, y) ∈ V [pi] and (r, u) ∈ V [po], then Lemma 1 and Theorem 8
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Inner Band

Outer Band

FIG. 13. Conflicting angular paths between two bands being merged.

(a,z)(a,v)

(d,v)

(b,y)(b,u)

(e,u)

(g,t)

(c,x)

D(c,x)
(a,z)

D(g,t)

D(e,u)
(d,v)

FIG. 14. The bands D(a,z)
(c,x) , D(d,v)

(e,u) and the leaf D(g,t).

also hold. This is because sp(s, t)−sp(x, y) is positive by an argument similar to that
in the proof of Lemma 1.

Two angular edges above p, say (x, y) ⇑ (r, y)→ · · · → (r, u) and (i, j) ⇑ (s, j)→
· · · → (s, t), are compatible if they don’t cross each other. Compatibility also holds
for angular paths below p. Theorem 9 shows that when merging two bands and com-
puting shortest paths forward, only compatible angular edges need to be considered.
Figure 13 shows two conflicting angular paths.

Take the canonical graphs D(a,z)
(c,x) , D(d,v)

(e,u) and D(g,t), where D(g,t) is nested inside

of D(d,v)
(e,u) which is, in turn, inside of D(a,z)

(c,x) ; see Figure 14. Furthermore, assume that

D
(a,z)
(c,x) and D

(d,v)
(e,u) are to be merged together. Then, in the next recursive doubling

step, the new band D
(a,z)
(e,u) will be merged with the leaf D(g,t). We can assume D(g,t)

is a leaf or a band.
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The next theorem assumes we have found a shortest path from supercritical nodes
in D

(d,v)
(e,u), through critical nodes in the outer band D

(a,z)
(c,x) ; see Figure 14. We know

(d, v) ∈ V [p(d,v)
(e,u)] and, without loss of generality, we can assume (e, u) ⇑ (d, u) →

· · · → (d, v) is p(d,v)
(e,u). Now, suppose the angular edge (e, u) ⇑ (b, u) → · · · → (b, y) is

in p
(a,z)
(e,u), where p(a,z)

(e,u) is the minimal path from (a, z) back to (0, 0) through D
(a,z)
(e,u).

THEOREM 9 (Main Theorem). In merging two nested bands computing shortest
paths forward from supercritical nodes of the inner band, we only need to consider
compatibly nested angular edges.

Proof. The proof is by contradiction. Suppose (e, u) ⇑ (b, u) → · · · → (b, y) is in
p

(a,z)
(e,u), that is, the angular edge (e, u) ⇑ (b, u)→ · · · → (b, y) is in a shortest path from

(a, z) back to (0, 0) through D(a,z)
(e,u); see Figure 14. Suppose (d, v) is in the band D(d,v)

(e,u).

Therefore (d, v) is between (e, u) and (a, z) in D(a,z)
(e,u). Now, when merging D(g,t) with

D
(a,z)
(e,u) we will show that a shortest path forward to (a, z) that goes through (d, v)

must go through a critical node in row b or a critical node in a row below b.
Now, for the sake of a contradiction, assume otherwise. Suppose after merging

D
(a,z)
(c,x) with D(d,v)

(e,u) there is some shortest path from (0, 0) through (d, v) to (a, z). This

shortest path travels through an angular path connecting the bands D(a,z)
(c,x) and D(d,v)

(e,u)
and this angular path is conflicting with the angular path (e, u) ⇑ (b, u)→ · · · → (b, y).
Say, without loss of generality, this conflicting angular path is (d, v) ⇑ (a, v)→ · · · →
(a, z); see Figure 14. That is, we have conflicting angular paths since the shortest path
from (d, v) forward goes through an angular path that terminates above row b, and
the shortest path forward from (e, u) goes through an angular path that terminates
in row b. But notice in D

(a,z)
(e,u) that the shortest path from (a, z) back to (0, 0) still

goes through the angular edge (e, u) ⇑ (b, u)→ · · · → (b, y).
In D(a,z)

(e,u) the angular edge (d, v) ⇑ (a, v)→ · · · → (a, z) can’t be the shortest path
forward from (d, v).

By Theorem 1, the shortest path to (b, y) through the angular edge

(e, u) ⇑ (b, u)→ · · · → (b, y)

is equivalent to the path

(b, b)→ · · · → (b, e− 1) =⇒ (b, u)→ · · · → (b, y).

Moreover, since p(a,z)
(e,u) goes through (e, u) ⇑ (b, u)→ · · · → (b, y), the jumper (b, e− 1)

=⇒ (b, u) edge minimizes row b. Thus, the jumper (b, d − 1) =⇒ (b, v) saves at
most as much as (b, e − 1) =⇒ (b, u), and (b, d − 1) =⇒ (b, v) is nested around
(b, e− 1) =⇒ (b, u). Thus,

∆b(e, u) ≥ ∆b(d, v).

Also, by Theorem 1, the shortest path from (d, v) to (a, z) that goes through the
angular edge

(d, v) ⇑ (a, v)→ · · · → (a, z)

is equivalent to the path

(a, a)→ · · · → (a, d− 1) =⇒ (a, v)→ · · · → (a, z).
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(a,a) (a,v)

(d,v)

(a,z)(a,e 1) (a,u)

(d,d) (d,e 1) (d,u)

FIG. 15. The two paths A and D.

But, consider the path

(a, a)→ · · · → (a, e− 1) =⇒ (a, u)→ · · · → (a, z),

and we know that the jumper (a, e−1) =⇒ (a, u) is nested inside of (a, d−1) =⇒ (a, v).
In this case, it is possible that d = e or u = v, but not both, since (d, v) is between
(e, u) and (b, y) and a < b and wa < wb, where row a is above row b and they are
both above p. Furthermore, since the appropriate ∆ values are defined, the following
holds by Lemma 1:

if ∆b(e, u) ≥ ∆b(d, v), then ∆a(e, u) ≥ ∆a(d, v).

Therefore,

∆a(e, u) ≥ ∆a(d, v),

which means the jumper (a, e − 1) =⇒ (a, u) saves at least as much as the jumper
(a, d− 1) =⇒ (a, v) in a path to (a, z).

By Theorem 8, since (b, e − 1) =⇒ (b, u) edge minimizes row b, and ∆a(e, u) ≥
∆a(d, v), the jumper (a, e−1) =⇒ (a, u) saves more in row a than (a, d−1) =⇒ (a, v).

Now, take the two paths

A = (a, a)→ · · · → (a, e− 1) =⇒ (a, u)→ · · · → (a, v),

D = (d, d)→ · · · → (d, e− 1) =⇒ (d, u)→ · · · → (d, v) ⇑ (a, v)

as in Figure 15.
A is cheaper than D going from (a, z) back to (0, 0) in D(a,z)

(e,u) by Theorem 8. Now,
if (d, v) ⇑ (a, v) is in a shortest path forward from (d, v), then the shortest path forward
from (e, u) must be through the angular path (e, u) ⇑ (a, u) → · · · → (a, z) and not
the angular path (e, u) ⇑ (b, u)→ · · · → (b, y), which is a contradiction. This follows
by applying Theorem 8 to the jumpers (b, d− 1) =⇒ (b, v) and (b, e− 1) =⇒ (b, u) in
row b and then up to row a, since (b, y) is between (d, v) and (a, z).

Now, suppose D(g,t) is merged with the outer band D(a,z)
(e,u). Then, none of the an-

gular paths connecting supercritical nodes in D(g,t) with paths forward D(a,z)
(e,u) change.

This case is a straightforward application of the proof above and Theorem 7.
It is important to note that Theorem 9 shows that only angular paths starting

from supercritical nodes in the same path back to (0, 0) are compatible. Theorem 9
doesn’t say that all angular paths are always compatible.

Suppose that there is some angular path from a supercritical node in the inner
band, say (s, t), to the outer band that is in a shortest path from the front node
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Row r
x 1

x 1

y

y
Row s

v 1

v 1

z

z

FIG. 16. Two jumpers in different rows.

of the outer band back to (0, 0). Then all supercritical nodes from (s, t) back to
(0, 0) have their shortest paths forward through the angular path starting at (s, t).
On the other hand, by Theorem 9 all supercritical nodes after (s, t) up to the front
supercritical node of the inner band have their shortest paths through nested angular
paths connecting the inner and outer bands. In fact, we can inductively apply this
argument together with Theorem 6 giving the following corollary.

COROLLARY 2. Consider the nested angular paths connecting two bands that are
shortest paths forward from the different supercritical nodes of the inner band. Then,
listing the path containing the outermost such angular path to the path containing the
innermost such angular path gives more and more costly paths forward.

The next lemma assumes we are merging two nested bands to find a shortest path
from the front critical node of the outer band back to (0, 0).

LEMMA 2. Let (s, t) be a critical node and let the ith and rth rows above p be
such that i < r < s and wi < wr. Then ∆i(s, t) < ∆r(s, t).

Proof. The function ∆i(s, t) measures the potential minimizing effect of (i, s −
1) =⇒ (i, t) on the path (i, i) → · · · → (i, u), where (i, u) ∈ V [p] and i < s < t ≤ u.
The cost of the jumper (i, s − 1) =⇒ (i, t) is sp(s, t) + f(i, s − 1, t). Therefore, the
difference ∆i+1(s, t)−∆i(s, t) is

(wi+1 − wi)[ ‖ws : wt+1‖ − wswt+1 ],

where wi+1 > wi. Since the expression ‖ws : wt+1‖ − wswt+1 is independent of the
difference of weights wi and wi+1 and ‖ws : wt+1‖−wswt+1 > 0, because (s, t) ∈ V [p].
Also, when s = t− 1 we have

‖ws : wt+1‖ = wsws+1 + ws+1wt+1.

In addition, since (s, t) ∈ V [p], it must be that max{ws, wt+1} < wu, for s < u ≤ t.
Thus max{ws, wt+1} < ws+1. Therefore,

wsws+1 + ws+1wt+1 > wswt+1

and the proof follows inductively.
The proof of the next lemma is similar to that of Lemma 1. The basic intuition

here is that, if the longer of two nested jumpers edge minimizes a unit path r, then
any unit path below r, with both of these jumpers, is not minimized by the shorter
jumper; see Figure 16.

This next lemma only considers supercritical nodes since we are interested in
merging two nested bands. For the next lemma assume there is a unit path of critical
nodes from (v, z) to (x, y).
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LEMMA 3. Let (v, z) and (x, y) be two supercritical nodes, where r < s < x < v,
and assume wr < ws such that rows s and r are above p. Then

if ∆r(x, y) ≥ ∆r(v, z), then ∆s(x, y) ≥ ∆s(v, z).

Proof. Assume ∆r(x, y) ≥ ∆r(v, z). Then

wr‖wx : wy+1‖ − [ sp(x, y) + f(r, x− 1, y) ]

≥ wr‖wv : wz+1‖ − [ sp(v, z) + f(r, v − 1, z) ].

By Lemma 2 and, since each of these jumpers is of length at least 2, we know that
wrwvwz+1 < wr‖wv : wz+1‖ and wrwxwy+1 < wr‖wx : wy+1‖. In addition, since
wr < ws, we know that f(r, x − 1, y) < f(r, v − 1, z) and wr‖wx : wy+1‖ > wr‖wv :
wz+1‖. Furthermore, the same holds in row s. Therefore, it must be that ∆s(x, y) ≥
∆s(v, z).

THEOREM 10. Suppose we are given two supercritical nodes (v, z) and (x, y),
where r < s < x < v, and wr < ws such that rows s and r are above p. Then

if (r, x− 1) =⇒ (r, y) makes row r cheaper than (r, v − 1) =⇒ (r, z) does,

then (s, x− 1) =⇒ (s, y) makes row s cheaper than (s, v − 1) =⇒ (s, z) does.

A proof of this theorem follows from Lemma 3 and the fact that the change of
the f values between (r, v− 1) =⇒ (r, z) and (s, v− 1) =⇒ (s, z) increases faster than
the change in the f values between (r, x− 1) =⇒ (r, y) and (s, x− 1) =⇒ (s, y).

While merging D(i,v)
(j,t) and D(j,t)

(k,s) to form p
(i,v)
(k,s), the next lemma shows that we only

need shortest path values backwards to (0, 0) from supercritical nodes and we don’t
need shortest path values backwards to (0, 0) from any other critical nodes. Hence,
the back-ptrs will form a linked list between supercritical nodes backwards eventually
to (0, 0), and we can compute the cost-to-back weights using a parallel pointer jumping
partial prefix computation.

LEMMA 4. Suppose we are given p(i,v)
(j,t) and p(j,t)

(k,s) in D(i,v)
(j,t) and D(j,t)

(k,s), respectively.

Consider critical nodes in the outer band, say (u, z) ∈ V [p(i,v)
(j,t) ] and (u, z) 6∈ V [p(i,v)

(k,s)];
then we don’t need shortest paths back to (0, 0).

Proof. Consider the angular path (x, y) ⇑ (q, y)→ · · · → (u, z) between D(j,t)
(k,s) and

D
(i,v)
(j,t) . That is, (x, y) ∈ V [p(j,t)

(k,s)] and (u, z) ∈ V [p(i,v)
(j,t) ]. But, suppose (u, z) 6∈ V [p(i,v)

(k,s)]

is the case. Notice that (u, z) may be a supercritical node in p
(i,v)
(j,t) .

Consider the following cases.
Case i: Suppose D(i,v)

(k,s) is merged with another band nested around it.

Then, since (u, z) is not in V [p(i,v)
(k,s)], by Theorem 5 we do not have to consider any

angular paths starting from (u, z) going forward to critical nodes in the band nested
around D

(i,v)
(k,s).

Case ii: Suppose D(i,v)
(k,s) is merged with a smaller band inside D(k, s).

Node (u, z) could be the terminal node of an incoming angular path contributing
to a shortest path forward for some supercritical node in D(k, s). In this case (u, z)
needs to have a shortest path from (u, z) forward. Of course, in this case (u, z) could
become a supercritical node and would have a minimal path back to (0, 0). On the
other hand, since the critical node (u, z) is not a supercritical node it has no need of
a shortest path back to (0, 0).
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We want to find a shortest path forward for every critical node, since some angular
path from some future inner band may terminate at any critical node. Therefore,
after finding each supercritical node’s minimal cost to the front critical node of the
outer band, then compute a tree partial prefix sum from the critical nodes to the
supercritical nodes. This lets all critical nodes know their shortest paths to the front
of the outer band.

Suppose, through recursive doubling, we generate the band D(i,v)
(j,t) and the shortest

path p
(i,v)
(j,t) from (i, v) back to (0, 0) in this band. The next theorem shows that we

can build the appropriate data structures to maintain the inductive invariant through
recursive doubling.

THEOREM 11. Suppose we have just merged any two nested bands into a new
band. Then the front pointers of the new band form a tree and the back pointers of
the new band form a linked list.

There is a proof by induction based on Theorem 9.
Theorem 11 shows that the inductive invariant holds given the appropriate data

structures and computations.

4.1. Merging bands using n2/lgn processors. In this subsection we show
how to merge two bands using n2/lgn processors in O(lgn) time. This algorithm
also merges two optimally triangulated convex polygons when all of the weights of
one polygon are heavier than all of the weights of the other. Given a triangle with
vertices wi, wj , and wk its cost is wiwjwk; also see [18, 28].

Recursively doubling the band merging algorithm while using the proper data
structures and appropriate tree contracting gives the n2/lgn-processor and O(lg3 n)-
time MCOP algorithm.

The algorithm in Figure 17 merges two bands in O(lgn) time using n2/lgn pro-
cessors. Adding the cost of recursive doubling and tree contraction gives a factor of
O(lg2 n) time to the entire algorithm, making the total cost for solving the MCOP
O(lg3 n) time using n2/lgn processors.

The two for loops in step 1 of the algorithm in Figure 17 perform the edge
minimizing. This is the only part of this algorithm that uses n2/lgn processors. In
O(lgn) time using n2/lgn processors we can edge minimize unit paths with contracted
trees such as those depicted in the bottleneck of Figure 5c.

The for loops in step 2 compute the supercritical nodes of the band that are being
created by merging. Step 3 computes the shortest paths forward for all critical nodes
in the inner band.

The base case for the recursive doubling can be established by breaking the canon-
ical subgraphs into bands of constant width. Then for each band sequentially, let the
n/lgn processors set up the inductive invariant in O(lgn) time. Number the nested
bands consecutively according to their nestings by the Euler tour technique so the
algorithm can track adjacent bands for merging.

The correctness of the algorithm in Figure 18 comes from Theorems 7, 9, and 11.
The time complexity of solving the MCOP can be reduced to O(lg2 n) time with

n2/lgn processors by performing band merging and then tree contraction.
THEOREM 12. Recursive doubling with band merging can be done simultane-

ously with tree contraction, thereby solving the MCOP in O(lg2 n) time with n2/lgn
processors.

Proof. Take any canonical tree T with nontrivial bands and leaves. Then T has
at most n− 1 critical nodes. In general, for any arithmetic expression tree with n− 1
nodes, it takes O(lgn) time to contract it. In a canonical tree we have just seen
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Take two adjacent nested bands, say D(i,v)
(j,t) nested around D

(j,t)
(k,s), such that for

each band individually the inductive invariant holds.

1. for all supercritical nodes (x, y) ∈ V [p(j,t)
(k,s)] in parallel do

for all angular edges from (x, y) to all (u, z) ∈ V [p(i,v)
(j,t) ] in parallel do

find the angular edge between the bands that gives a shortest
path from (x, y) all the way to (i, v), compute the
cost-of-front-ptrs for these new edges

let each supercritical node (x, y) have a pointer to a shortest path
through p

(i,v)
(j,t) to (i, v)

for the supercritical nodes in p
(j,t)
(k,s) put the angular edge that gives

them a shortest path forward to (i, v) in M
2. for all angular edges in M in parallel do

find the shortest path N from (i, v) back to (0, 0) through D
(i,v)
(k,s)

for all critical nodes in the path N in parallel do
using pointer jumping build the back-ptrs giving any new supercritical
nodes and compute the values of cost-to-back for each new supercritical
node

3. for all non-supercritical nodes in p
(j,t)
(k,s) in parallel do

using pointer jumping expand the tree of front-ptrs through the new
angular edges in M and their minimal values to (i, v). This gives
trees joined by a linked list through the supercritical nodes.

With this find the shortest path to (i, v) for all non-supercritical
nodes in p

(j,t)
(k,s) by computing a partial prefix in a rooted tree.

Also compute all of the new cost-to-front values using a parallel
partial prefix.

FIG. 17. An O(lgn)-time and n2/lgn-processor algorithm for merging two bands.

that each contraction operation (raking) can be done in O(lgn) time using n2/lgn
processors. This is because in the worst case a leaf raking operation in a canonical
tree is the merging of two bands. Now, each band can be seen as no more than a
linked list in the canonical tree that must be contracted where there is one leaf per
list node. Now, we can simply take every band that has k critical nodes and is in
any canonical tree, and we can assume that it has 2c “linked list nodes” such that
2c−1 < k ≤ 2c. With this, each raking operation will cost at most O(lgn) time using
n2/lgn processors. In addition, by assuming k is the nearest power of two greater
than or equal to k, we are at most doubling the number of critical nodes in T . Hence
the asymptotic bound we claim must hold.

5. An efficient polylog-time MCOP algorithm. In this section we reduce
the processor complexity of the band merging algorithm of section 4. The results of
this section are based on a parallel divide-and-conquer form of binary search which is
tied into some classical problems of finding row minima in totally monotone matrices.

Theorems 8 and 10 supply the basis for a parallel divide-and-conquer binary
search algorithm that finds the jumpers that minimize each unit path in a canonical
graph.
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1. Find the middle supercritical node in the inner band, say (x− 1, y).
2. Using m/lgm processors and in O(lgm) time find a shortest path

forward from (x− 1, y) to the front of the outer band. Suppose that this
shortest path forward from the supercritical node (x− 1, y) has an angular
edge between the two bands that terminates in row r.

3. Split the jumpers into two sets:
(a) Those smaller than or equal to (r, x) =⇒ (r, y); call them S. They are

nested inside (r, x) =⇒ (r, y).
(b) Those larger than or equal to (r, x) =⇒ (r, y); call them L. They are

nested around (r, x) =⇒ (r, y).
4. Do the following two steps in parallel:

(a) Assign |S| processors to rows r up through 1 and recursively repeat this
algorithm with the jumpers in S.

(b) Assign |L| processors to rows r down through m and recursively repeat
this procedure with the jumpers in L.

FIG. 18. An O(lg2 n)-time and n/ lgn-processor band merging algorithm.

THEOREM 13. Suppose that r is the row in the outer band such that the dual of
(r, x) =⇒ (r, y) gives a shortest path forward from the supercritical node (x− 1, y) of
the inner band to the front node of the outer band. Then to find shortest paths forward
from other supercritical nodes,

• it is sufficient to consider only larger nested jumpers in any row s below row
r, that is, ws > wr, and

• it is sufficient to consider only smaller nested jumpers in any row i above row
r, that is, wi < wr.

A proof of this theorem comes directly from Theorems 8 and 10.
The next algorithm replaces the two nested for loops in step 1 in the algorithm

of Figure 17. This next algorithm gives shortest paths forward for all supercritical
nodes originally in the inner band and a shortest path back to (0, 0) through the two
merged bands.

Assuming that each band has m critical nodes, the next procedure finds shortest
paths from all supercritical nodes of the inner band to the front of the outer band. In
addition, assume the shortest path information before the merging and all shortest
paths to the front of the outer band. Then the shortest path back from the front
node of the outer band is easily computed. As before, begin assuming the inductive
invariant. Also, all jumpers in the next algorithm are jumpers that get their sp values
from the inner band where the jumpers themselves are in unit rows or columns of the
outer band.

The following algorithm is strikingly similar to those discussed in [1] and [2]. This
key observation leads to some complexity improvements.

Now assign one processor to each unit path in the outer band. For each unit path,
summing the cost to the critical node and the cost from the critical node to the front
supercritical node of the outer band gives a shortest path backwards from the front
node of the outer band to (0, 0). These minimal paths can be computed in O(lgn)
time using n/lgn processors. If a unit path has no edge minimizing jumpers, then
this algorithm just finds the shortest path forward for all supercritical nodes in the
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inner band, since, in this case, the shortest path back to (0, 0) from the front critical
node of the outer band does not go through the inner band.

The algorithm in Figure 18 also breaks through the bottleneck of Figure 5c. It
takes O(lg2 n) time and uses n/lgn processors in the worst case. Considering the
cost of the recursive doubling and the tree contraction gives the O(lg3 n)-time and
n/lgn-processor matrix chain ordering algorithm.

The next corollary shows that the algorithm given here can be improved by using
efficient algorithms for finding row minima in totally monotone matrices. A m × n
matrix M is totally monotone if every 2 × 2 submatrix is monotone. That is, for all
1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n, if M [i, j] > M [i, l], then M [k, j] > M [k, l].

This row minima problem is classical and has been shown to be at the root of
many important problems; see for example [1, 2].

COROLLARY 3. Solving the row minima problem on totally monotone matrices
allows us to merge two bands.

Proof. Given two nested bands to merge, for ease of exposition take only the
horizontal straight unit paths of the outer band. Let each of these straight unit paths
denote the row of a matrix M . Each column of M represents the jumpers that get
their sp values from the supercritical nodes of the inner band. The first column
represents the effect of the innermost jumper, the second column represents the effect
of the immediate jumper containing it, etc. Similarly, several sets of independent
jumpers give several totally monotone matrices.

By Theorem 13, M is a monotone matrix. But, any submatrix of M repre-
sents neighboring straight unit paths in the rows and neighboring jumpers along the
columns. Similarly, every 2 × 2 submatrix is monotone. Since Theorems 8 and 10
still hold, we know that such a submatrix is also monotone since we can again apply
Theorem 13.

Therefore, our algorithm is one of the many known to depend on the row minima
problem on a totally monotone matrix. Hence, by the results of Aggarwal and Park [2]
and Atallah and Kosaraju [6], our algorithm runs inO(lg2 n lg lgn) time using n/lg lgn
processors on a common CRCW PRAM, or in O(lg2 n) time using n processors on an
EREW PRAM. For the EREW PRAM algorithm note that from pointer jumping to
tree contraction the time complexity stays the same asymptotically.

An asymptotically optimal polylog-time row minima algorithm for totally mono-
tone matrices would make the work of our MCOP algorithm the same as the work
of Hu and Shing’s O(n lgn) sequential algorithm. Very recently Bradford, Fleischer,
and Smid [14] give an algorithm for computing the row minima of totally monotone
matrices with O(n

√
lgn) work and O(lgn lg lgn) time on a CREW PRAM (and sev-

eral variations on other PRAM models). The results of [14] lead to an O(n lg1.5 n)
work and polylog time CREW PRAM algorithm for the MCOP.

Hu and Shing’s algorithm has the best known work for solving the MCOP to date
[28, 29]. In this regard, in [38, 39] Ramanan shows that problems closely related to
the MCOP have a Ω(n lgn) lower bound. Furthermore, in [13] Bradford, Choppella,
and Rawlins give several lower bounds for the MCOP on different models of compu-
tation, including a simple Ω(n lgn) lower bound on the comparison based model for
a constrained version of the MCOP.

6. Conclusions. The study of efficient parallel algorithms for problems with
elementary dynamic programming solutions is rich with interesting results. This paper
gives an algorithm that solves the matrix chain ordering problem to within less than
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a log factor of the best serial solution. Furthermore, the best serial solution is in some
sense optimal. This algorithm also solves a problem of finding an optimal triangulation
of a convex polygon.
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