
A Space Saving Trick for Directed Dynamic
Transitive Closure and Shortest Path Algorithms

Valerie King1 and Mikkel Thorup1,2

1 Department of Computer Science,
University of Victoria, Victoria, BC.

val@csr.uvic.ca, mthorup@research.att.com
2 AT&T Labs–Research,

Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07932.
mthorup@research.att.com

Abstract. We present a simple space saving trick that applies to many
previous algorithms for transitive closure and shortest paths in dynamic
directed graphs. In these problems, an update can change all edges inci-
dent to a node. The basic queries on reachability and distances should
be answered in constant time, but also paths should be produced in time
proportional to their length. For:
Transitive closure of Demetrescu and Italiano (FOCS 2000)

Space reduction from O(n3) to O(n2), preserving an amortized up-
date time of O(n2).

Exact all-pairs shortest dipaths of King (FOCS 1999)
Space reduction from Õ(n3) to Õ(n2

√
nb), preserving an amortized

update time of Õ(n2
√

nb), where b is the maximal edge weight.
Approximate all-pairs shortest dipaths of King (FOCS 1999)

Space reduction from Õ(n3) to Õ(n2), preserving an amortized up-
date time of Õ(n2).

Several authors (Demetrescu and Italiano, FOCS 2000, and Brown and
King, Oberwolfach 2000) had discovered techniques to give a correspond-
ing space reduction, but these techniques could be used to show only the
existence of a desired dipath, and could not be used to produce the actual
path.

1 Introduction

This paper is on saving space for dynamic transitive closure and shortest paths
in dynamic directed graphs. For example, the space saving for transitive closure
is from O(n3) to O(n2). Papers on algorithm are often more concerned with
time than space, but a bad space complexity hits like a wall, whereas time only
kills slowly. Ignoring for a moment the O-notation, if a computer has gigabyte
of memory, with n3 space, you can only run on graphs with up to 1, 000 nodes,
whereas with n2 space, you can deal with more than 30, 000 nodes. Our space
savings techniques are simplifying and tend to decrease rather than increase the
constants hidden in the O-notation, both in time and in space.

J. Wang (Ed.): COCOON 2001, LNCS 2108, pp. 268–277, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Space Saving for Dynamic Transitive Closure and Shortest Paths 269

A fully dynamic graph algorithm is a data structure for a graph which imple-
ments an on-line sequence of update operations that insert and delete edges in
the graph and answers queries about a given property of the graph. A dynamic
graph algorithm should process queries quickly and must perform update oper-
ations faster than computing from scratch (as performed by the fastest “static”
algorithm).

In this paper, we give dynamic algorithms for weighted directed graphs. The
problems considered are as follows, where the queries range over all pairs of ver-
tices u and w:

Transitive closure:
Reachability query: Is there a path from u to w in the current graph?
Path query: Return a path from u to w.

Exact all-pairs shortest paths:
Distance query: What is the distance from u to w?
Path query: Return a path from u to w.

Approximate all-pairs shortest paths:
Distance query: What is an upper bound on the distance from u to w within a
factor of (1 + ε)?
Path query: Return a path from u to w of length within a factor (1 + ε) of the
distance.

The following update operations are allowed:

– multi-insert(Ev): inserts a set of edges incident to the same vertex v.
– delete(e): deletes any edge currently in the graph.

In this paper, we are only considering amortized time bounds. Deleting an edge
is free in that it is paid for by the preceding insertion/initialization of the edge.

We present a simple space saving trick that for all the above problems reduce
the space substantially in the current fastest algorithm. More precisely, assuming
that the graphs start with an empty edge set, we achieve:

Transitive closure of Demetrescu and Italiano [3,4] Space reduction from
O(n3) to O(n2), preserving an amortized multi-insert time of O(n2).

Exact all-pairs shortest dipath of King [9] Space reduction from Õ(n3) to
Õ(n2

√
nb), preserving an amortized multi-insert time of Õ(n2

√
nb), where b

the maximal edge weight.
Approximate all-pairs shortest dipaths of King [9] Space reduction from

Õ(n3) to Õ(n2), preserving an amortized multi-insert time of Õ(n2).

The above update times should be compared with the best static algorithms.
Transitive closure and approximate shortest paths can be computed essentially
as fast matrix multiplication [8,10,13], which takes Õ(n2.376) time, and for exact
all pairs shortest paths, can be computed in Õ(n2.575) time, again using fast

270 Valerie King and Mikkel Thorup

matrix multiplication. Thus, the amortized update times may not seem that
impressive. However, fast matrix multiplication is considered rather slow, and
it is an open problem to construct a combinatorial algorithm just for transitive
closure with sub-cubic running time. Our algorithms are purely combinatorial,
and in this view, the dynamic speed-up is optimal in that we can construct a
graph from scratch with a multi-insert from each vertex, paying a total cost
of n × O(n2) = O(n3) to construct the transitive closure, thus matching the
best static combinatorial time bound. Our reduction of the space from O(n3) to
O(n2) adds optimality with respect to space.

Our ideas also apply to the older single source algorithms of Even and
Shiloach [5] and of Ramalingam and Reps [11], improving their internal space
from O(m) to O(n). Hence, if used for all pairs shortest paths, the improvement
is from O(mn) to O(n2). We are here particularly interested in Ramalingam and
Reps’ algorithms because it has proved efficient in practice [7,6]. Our idea also
simplifies the implementation which typically reduces the worked performed.

A common theme of all the above algorithms is that they keep tables of dis-
tance information along with witnesses. A table entry can only increase if all its
witnesses are lost. This theme goes back to Even and Shiloach’s decremental sin-
gle shortest path algorithm [5], and is also used in the fully-dynamic single source
shortest path algorithm of Ramalingam and Reps [11]. Unfortunately, there may
be many witnesses for each entry, and it is the storage of these witnesses that
cause a prohibitive space-overhead.

Recently space improvement similar to ours were reported by Brown and
King [2] and of Demetrescu and Italiano [4]. Their idea was to maintain a counter
of the number of witnesses for each entry. Again, the entry can only increase if
its counter goes to 0. The problem in their solution is that they loose track of
witnesses, and then they cannot answer path queries.

Our challenge of identifying witnesses rather than just knowing their exis-
tence is similar in spirit and motivation to that of finding witnesses for Boolean
matrix multiplication as done by Alon et al. [1], though the techniques we apply
here are combinatorial and completely different.

Our contribution is to observe that if we are careful about the order in which
we scan for witnesses, then we only need to store the first witness that we meet.
When a witness is lost, we just continue the scan for the next witness. Our
problem is then to identify scanning orders and properly define witnesses so
that the same potential witnesses are not scanned repeatedly.

Contents First, in §2, we present the simplest version of the trick, applying it
to Even and Shiloach’s classic algorithm [5]. In §2, we also point out the modi-
fication needed for Ramalingam and Reps’ algorithm [11]. Next, in §3, we show
how to tailor the trick to King’s exact shortest paths and transitive closure
algorithms [9]. For space reasons we defer the treatment of King’s exact and ap-
proximate shortest paths and Ranmalingam and Reps shortest paths algorithm
to the journal version of this paper.

Space Saving for Dynamic Transitive Closure and Shortest Paths 271

Notation We working on a dynamic directed weighted graph G = (E, V) with
edge weight function � : E → N. For any subgraph H of G, V (H) is its vertex
set and E(H) its edge set. For any pair of vertices (v, w), dist(v, w) denotes
their distance in G. For each vertex v, in(v) and out(v) denotes its incoming
and outgoing edges in G.

2 Even and Shiloach’s Algorithm

Our basic idea is most easily presented in terms of Even and Shiloach’s decre-
mental single shortest path algorithm [5]. Their result is that we can maintain
distances up to some threshold ∆ in O(m∆) total time. In [5] they just consider
unweighted graphs and threshold distance ∆ = n, giving them an O(mn) bound
for maintaining all distances from the source. We generalize this to weighted
graphs.

For a given source node s, the Even-Shiloach algorithm maintains a shortest
path graph Hs which is the union of all shortest paths from s of length at most ∆.
For each vertex v, we maintain its distance ds(v) from s, and, for each distance
i = 0, ..., ∆, we maintain the set of vertices v with ds(v) = i. During our response
to an edge deletion, ds(v) will be incremented by one at a time until it reaches
the new distance from s to v.

In the shortest path graph Hs, each edge (u, v) is a witness of the current
distance to v, in the sense that dist(s, v) = ds(v) = ds(u)+ �(u, v) = dist(s, u)+
�(u, v). Hence, when an edge (u, v) is deleted, it affects distances only if (u, v) is
in Hs, and there is no other edge (x, v) to v in Hs.

Suppose the deleted edge (u, v) is a last witness to v in Hs. This implies that
ds(v) has increased, and the outgoing edges (v, w) are no longer valid witnesses
of ds(w). A cascading effect is started: when a node w loses all its incoming edges
in Hs, we must delete all its outgoing edges in Hs.

To update Hs efficiently, the cascade is performed one distance i at the
time. Let (u, v) be the original edge deleted. Starting with i ← ds(v), we do
as follows. For each vertex w with ds(w) = i and no incoming edges in Hs, we
remove all its outgoing edges in Hs, and increment ds(w) by one. This preserves
ds(w) ≤ dist(s, w), and now, for all u with ds(u) ≤ i, we know that ds(u) =
dist(s, u). Next, for each w with ds(w) increased, we consider all its incoming
edges (x,w) in G. The edge (x,w) witnesses ds(w) = dist(s, w) if ds(x) ≤ i and
ds(x) + �(x, v) = ds(w), and if so, (x,w) is added to Hs. If no such witness is
found, we still have ds(w) < dist(s, v). We now set i ← i + 1 and repeat. We
terminate when i = ∆ + 1 or when we get to a distance i where all nodes have
incoming edges in Hs.

For a detailed description and analysis of the above algorithm, the reader
is referred to [5]. The running time is dominated by the scanning for witnesses;
each time we increment ds(w), we scan all its incoming edge to see if they witness
the new distance. Since this can happen at most ∆ times for each w, the total
cost is O(∆ ·∑w∈V (G) |{(x,w) ∈ E(G)}|) = O(∆m).

272 Valerie King and Mikkel Thorup

2.1 Our Space Saving Trick

The internal space of the Even-Shiloach algorithm, i.e. the space beyond the
input graph G, is O(m) for storing the shortest path graph Hs. We will reduce
this to O(n). If we want a decremental data structure for each node, then the
space is reduced from O(mn) to O(n2).

For each vertex v, its list in(v) of incoming edges in G stores the incoming
edges in some order. Instead of storing all of Hs, for each v, we store only the
edge (x, v) from Hs which is first in in(v). We then have the unique shortest
path tree Ts from s, spanning all nodes within distance ∆ and such that the
parent pointer of each node v is the first edge in in(v) which is on a shortest
path from the source to v.

The deletion of an edge (u, v) only has a consequence if (u, v) is in Ts. In
that case, we search for a replacement witness. Starting from the successor of
(u, v), we scan the edges in in(v), stopping if we reach a new witness (x, v) with
ds(x) + �(x, v) = ds(v). If that happens , we replace (u, v) with (x, v) in Ts, and
stop. Else we conclude that v has also lost its last incoming edge in Hs. As in
the Even-Shiloach algorithm, each incoming edge to each vertex v is considered
at most once for each value of ds(v). Hence, we preserve the running time of
O(∆m). However, since Ts is a tree, we have reduced the internal space from
O(m) to O(n). Also we save work when edges from Hs \ Ts are deleted.

3 King’s Algorithms

As the basis for all the fully-dynamic algorithms of King in [9], we want to
maintain all distances up to some threshold ∆. Besides edge deletions, we have
multi-inserts that for each vertex v can add any set of edges incident to v. The
amortized cost per multi-insert is O(∆n2). This also pays for all deletions. The
space is O(n3), but we reduce it to O(∆n2).

The algorithm uses the Even-Shiloach algorithm to maintains 2n deletions-
only data structures for distances up to∆. For each vertex v, we have one Out(v)
for distances from v, i.e. with v as source, and one In(v) with distances to v,
i.e. with v as a sink. For each pair (u,w) of vertices, distv(u,w) is the distance
from u to v in In(v) plus the distance from v to w in Out(v).

We start with a graph with no edges. Whenever we make a multi-insert of
edges incident to v, we reinitialize the pair (In(v), Out(v)) at amortized cost
O(∆m). When an edge is deleted, it is deleted from all pairs (In(v), Out(v))
created after it was inserted.

Lemma 1. If the distance from u to w is at most ∆, dist(u,w)=minv distv(u,w).

Proof. Obviously, dist(u,w) ≤ distv(u,w) for all v. Consider an arbitrary short-
est path from u to w and let v be the last vertex updated on this path. Then
all the edges of this path are contained in (In(v), Out(v)) so distv(u,w) =
dist(u,w).

Space Saving for Dynamic Transitive Closure and Shortest Paths 273

Thus, our problem is to keep track of the vertex v minimizing distv(u,w) for each
pair (u,w) of vertices. King’s idea is, for each possible distance d ∈ {1, ..., ∆},
to maintain the list L(u,w, d) of vertices v with distv(u,w) = d.
The King algorithm: Whenever a vertex u increases its distance to v in In(v),
this increases all distances distv(u,w) ≤ ∆. If d and d′ are the old and the new
distance of v, v has to be moved from L(u,w, d) to L(u,w, d′). This move takes
constant time. Each vertex u increases its distance at most ∆ times in In(v),
and each time, we have to perform a move between lists for each vertex w with
distv(u,w) ≤ ∆. Thus, u pays a total cost of O(∆n) for increases to its distance
in In(v). The cost for increases to its distance in Out(v) is the same. Thus, for
each pair (In(v), Out(v)), the total cost of distance increases is O(∆n2), which
is attributed to the multi-insert creating (In(v), Out(v)).

To get the distance matrix, for each (u,w), we maintain the smallest d for
L(u,w, d) = ∅. Then d = dist(u,w). For any vertex v in L(u,w, d), the pair
(In(v), Out(v)) provides a shortest path from u to w. When doing a multi-
insert, the above is trivially done by scanning all lists in O(n2∆) time. When
doing deletions, our amortization argument allows the multi-inserts to pay for
all distance increases, even if these are considered to be done one at the time. If
L(u,w, d) becomes empty because some vertex v is moved to L(u,w, d′), we can
afford to scan all the lists L(u,w, e), e = d+ 1, ..., d′ by charging the cost to the
multi-inserts.

Each pair (In(v), Out(v)) takes O(m) space. For each (u, v, w), v is in
L(u,w, distv(u,w)), so the total number of elements in the lists is O(n3). More-
over, there are O(∆n2) = O(n3) lists. Hence, the total size of the data structure
is O(n3).

3.1 Improving the Space

To reduce the space of the above data structure to O(∆n2), we need to address
both the pairs (In(v), Out(v)) and the witness lists L(u,w, d).

(In(v), Out(v)) For each pair (In(v), Out(v)), we wish to reduce the space
to O(n) using the trick from §2.1. However, that trick assumed for each vertex
w, that we could traverse in(w) in some fixed order. That is, if (x,w) was the
witness of w in Tv, and if (x,w) was deleted, we could continue the traversal
for witnesses from the successor of (x,w) in in(w) knowing that the same edge
would never be considered twice for the same distance dv(w).

To deal with the differing incidence lists, we spend O(∆n2), rather than
O(∆m), to maintain each pair (In(v), Out(v)). This does not affect our asymp-
totic cost, since we have already incurrred this cost for each multi-insert. Hence
we can spend O(n) time to traverse in(w) in Out(v).

We fix one arbitrary global ordering ≺ of all the vertices. For each vertex w
its list in(w) in Out(v) will be ordered as ≺ orders its predecessors. However,
in(w) will be stored only implicitly. We keep a global n × n incidence matrix
which for each (x, y) ∈ V 2 which stores its length �(x, y) or ∞ if (x, y) is not an
edge.

274 Valerie King and Mikkel Thorup

We traverse in(w) in Out(v) by going through all the vertices x ∈ V in the
order ≺ and keeping a pointer to our current location in the order. For each x, we
check if (x,w) is an appropriate witness, i.e., if distv(v, x)+�(x,w) = distv(v, w).
For each edge (x,w) which serves as a witness, we keep a pointer back to v, so
that when (x,w) or distv(v, x) is changed, we know to look for another witness.

We only increment distv(v, w) after the order is traversed. We only decrement
distv(v, w) when (In(v), Out(v)) is reinitialized. At botht times, we reset the
pointer to the beginning of the order. Note that in this space-saving version, we
may inadvertently add a witness which was created after the last time Out(v)
was initialized.

We maintain a shortest path tree of edge witnesses as described in Section
2.1, so that nodes affected by a distance increase can be easily determined.

As claimed, the total time to traverse the order is O(n), giving the amortized
cost of O(∆n2) for each pair (In(v), Out(v)). Our total space for all the pairs
(In(v), Out(v)), including the global incidence matrix, is now O(n2).

L(u, w, d) Instead of the lists L(u,w, d) of vertices v with distv(u,w) = d, we
maintain only the oldest witness v with distv(u,w) ≤ d. This reduces the space
to a constant per list, hence to to O(∆n2), as desired.

The switch from ‘=’ to ‘≤’ is crucial to our amortization. The point is that if
v is not a witness for distv(u,w) ≤ d, it will not become so before (In(v), Out(v))
is replaced by a multi-insert.

We maintain a historical list of the vertices ordered according to dates. Note
that this order has nothing to do with the order ≺ used previously. When we do
a multi-insert of edges around v, we move v to the end of the historical list.

Suppose d = distv(u,w) is increased. If v was the oldest witness of (u,w, d),
we scan the historical list starting from the successor of v, stopping as soon as we
find a younger vertex v′ with distv′(u,w) = d. Then v′ is the new oldest witness
of (u,w, d), and otherwise, there is no witness. If distv(u,w) was increased by
more than one, we repeat the above scanning if v was also the oldest witness
for (u,w, d+ 1). As soon as we reach some value e so that v was not the oldest
witness for (u,w, e), we stop; if v′ = v is the oldest witness for (u,w, e), it is also
an older witness for all (u,w, f) with f > e.

Since we always scan younger and younger witnesses, we see that a vertex v,
between multi-inserts around v, can only be scanned once for each triple (u,w, d).
So, the amortized cost of each multi-insert is O(∆n2). By getting rid of most
pointers, we also reduce the constants hidden in the O-notation.

Below, we briefly describe how the above techniques are applied by King [9]
to transitive closure, and leave the discussion of approximate and exact shortest
paths to the full paper. We show that our space improvements remain valid for
these applications.

3.2 Transitive Closure

King maintains the transitive closure of a digraph, in a manner similar to the
classical method of repeated squaring of matrices. For i = 0, 1, ..., h = �log n�,

Space Saving for Dynamic Transitive Closure and Shortest Paths 275

we maintain a digraph Gi that is a subgraph of the transitive closure, and which
is guaranteed to have an edge (v, w) if there is a dipath from v to w in G of
length at most 2i, i.e., G0 = G, and Gh is the transitive closure.

For i > 0, and for each vertex v ∈ V , we maintain the pair (Ini+1(v′),
Outi+1(v′)), with ∆ = 2. For i > 0, the edges of Gi+1 are defined to be all pairs
(u,w) such that there is a path from u to w in (Ini(v), Outi(v)) of length 3 or
less.

Lemma 2 (9). If a dipath P from u to w has length at most 2i+1 and
the youngest vertex in the dipath is v, there is a path from u to w in (Ini+1(v),
Outi+1(v)) of length 3 or less.

Proof. Let v′ be a middle vertex in P . Assume v′ is in Outi+1(v). Then P [u, v],
P [v, v′], P [v′, w] are all of length at most 2i. Hence (u, v), (v, v′) and (v′, w) were
all in Gi when (Ini+1(v), Outi+1(v)) was last reinitialized.

To save space, we implement the (Ini+1(v′), Outi+1(v′)) pairs as in the pre-
vious section, with incidence matrices for i = 1, ..., h. When a multi-insert of
edges around v occurs, and G0 has been updated, then for i = 1, ..., h, we reini-
tialize only (Ini+1(v), Outi+1(v)) using all edges currently in Gi. A the multi-
insert may create edges in Gi not incident to v which do not affect older pairs
(Ini+1(v′), Outi+1(v′)).

If an edge is deleted from G, it is deleted from the incidence matrix for G0.
For i = 1, ..., h, as edges in Gi−1 are deleted, this may result in the destruction
of paths in (Ini+1(v′), Outi+1(v′)) which in turn may result in the deletion of
edges in Gi+1.

Given any edge (u,w) ∈ Gi+1, to expand it to a path, we consider the witness
v for disti+1v (u,w) ≤ 3. Then (Ini+1(v), Ini+1(v)) provide us a path of length
≤ 3 from (u,w) using edges from Gi, and each of these edges can be expanded
recursively.

To get simple paths, we combine with a linear time computation of strongly
connected components [12]. For each strongly connected component, using an in-
tree and an out-tree from an arbitrary vertex, we provide a simple path between
any pair of vertices in the same strongly connected component. In linear time,
we also label each vertex with the strongly connected component it is in. Now
we only need to reconstruct segments between strongly connected components.
So, if Gi+1 provides us with a path of edges from Gi, we only expand edge (x, y)
if x and y are in different connected components.

Since there are log n levels, we maintain the transitive closure in O(n2 log n)
amortized time per multi-insert and O(n2 log n) space.

4 Demetrescu-Italiano Transitive Closure

The Demetrescu-Italiano transitive closure algorithm represents the graph as
an adjacency matrix and achieves a logn speed-up by basing its algorithm on
the static recursive scheme [8,10] for computing transitive closure, rather than

276 Valerie King and Mikkel Thorup

repeated squaring. The adjacency matrix of the graph is subdivided into four sub-
matrices. The transitive closure can be shown to be a polynomial over these four
sub-matrices. [4,3] show that the problem of updating a polynomial over Boolean
matrices can be reduced to updating the product of degree 2 polynomials, with
some errors allowed, as described below. Solving this problem in O(n2) space
gives an O(n2) space bound for the whole algorithm.

Let M1 and M2 be two n×n Boolean matrices. In computing their product,
there are two kinds of updates allowed to either matrix in which 0’s are changed
to 1’s: one where any entry can be set to 1 and one where just entries in a
particular row i and column i can be set to 1. The first is done by LazySet, the
second by SetRow(i,M) and SetCol(i,M), respectively. In addition, 1’s can be
changed to 0’s by ReSet. The “error” allowed is that in certain circumstances,
the bits set by LazySet can be ignored.

When entries (x, y) in M1 and (y, z) in M2 are both 1, we call these entries
a witness pair for (x, z), and y a witness for (x, z). A witness pair (x, z) cannot
be ignored if its two entries (x, y) and (y, z) exist currently and they existed
since a time when one of them was contained in a row or column updated by
a SetRow or SetCol. That is, the problem is to maintain for each entry in the
matrix product a witness pair (x, y, z) if one exists and was created at or before
the most recently executed SetRow(x,M1), SetCol(y,M1), SetRow(y,M2), or
SetCol(z,M2).

The goal is to spend no more than O(n2) time per SetCol and SetRow.
Essentially, LazySet does nothing except change bits in M1 and M2; SetCol and
SetRow do the work. The cost of ReSet is amortized against the operations which
change the 0’s to 1’s.

The implementation of this in O(n3) space is straightforward, and involves
the keeping of lists of relevant witnesses.
Our result: We can accomplish the multiplication of two matrices (with the
allowable errors)more easily while maintaining witnesses. We do this with no
change to the asymptotic time, maintaining a cost of O(n2) time per SetRow
and SetCol, and space O(n2). We use the technique of the previous sections, of
keeping a pointer to the next available witness. We keep:
– For each x, z, a pointer P1(x, z) which is initially set to the first column of y
in M1 such that M1(x, y) AND M2(y, z); these two entries are a witness pair for
(x, z)
– For each x, z, a pointer P2(x, z) which is initially set to the first row y in M2
such that M1(x, y) AND M2(y, z); these are a witness pair for (x, z).
– A queue of y ’s ordered by order of last execution of either SetCol(y,M1) or
SetRow(y,M2).
– For each (x, z), a pointer P3(x, z) which is initially set to the first y in the
queue such that M1(x, y) AND M2(y, z)
– Back pointers from the entries which are witnesses back to the (x, z) for which
they are a witness.
To do updates:
When SetRow(x) in M1 is executed, we reset P1(x, z) to the beginning for all z.

Space Saving for Dynamic Transitive Closure and Shortest Paths 277

When SetCol(z) in M2 is executed, we reset P2(x, z) to the beginning for all x.
When M1(x, y) or M2(y, z)is set to 0 during a ReSet:
– If P1(x, z) points to y, then we move P1(x, z) forward until another witness
is found or the end of the row.
– If P2(x, z) points to y then we move P2(x, z) forward until another witness is
found or the end of the column.
– If P3(x, z) points to y, then we advance P3(x, z) until another witness is found.
Running time analysis: Each time a pointer is set back to the beginning of a
row or column, there may be another n checks at a cost of O(1) each. P3(x, z)
is never set back but there may be an added cost of O(1) for every pair (x, z)
for each queue change. We charge the SetCol or SetRow to cover this.

References
1. N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses for boolean matrix multipli-

cation and for shortest paths. In Proceedings of the 33rd IEEE Annual Symposium

on Foundations of Computer Science, pages 417{426, 1992.
2. G. Brown and V. King. Space-e�cent methods for maintaining shortest paths and

transitive closure: Theory and practice, August 2000. Presentation at Workshop
on E�cient Algorithms at Oberwolfach.

3. C. Demetrescu. Fully Dynamic Algorithms for Path Problems on Directed Graphs.
PhD thesis, Dip. Informatica e Sistemistica Universita' di Roma \La Sapienza",
2000.

4. C. Demetrescu and G. Italiano. Fully dynamic transitive closure: Breaking through
the o(n2) barrier. In Proc. 41st IEEE Symp. on Foundations of Computer Science,
pages 381{389, 2000.

5. S. Even and Y. Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1{4,
1981.

6. Bernard Fortz and Mikkel Thorup. Internet tra�c engineering by optimizing OSPF
weights. In Proc. 19th IEEE INFOCOM - The Conference on Computer Commu-

nications, pages 519{528, 2000.
7. D. Frigioni, M. Io�reda, U. Nanni, and G. Pasqualone. Experimental analysis of

dynamic algorithms for the single-source shortest path problem. ACM Jounal of

Experimental Algorithmics, 3, article 5, 1998.
8. M. E. Furman. Application of a method of rapid multiplication of matrices to the

problem of �nding the transitive closure of a graph. Soviet Math. Dokl., 11(5):1250,
1970.

9. V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In Proc. 40th IEEE Symp. on Foundations of Com-

puter Science, pages 81{89, 1999.
10. I. Munro. E�cient determination of the transitive closure of a directed graph.

Information Processing Letters, 1(2):56{58, 1971.
11. G. Ramalingam and T. W. Reps. An incremental algorithm for a generalization

of the shortest-path problem. Jounal of Algorithms, 21(2):267{305, 1996.
12. R. E. Tarjan. Deep-�rst search and linear graph algorithms. SIAM J. Computing,

1:146{160, 1972.
13. U. Zwick. All pairs shortest paths in weighted directed graphs-exact and almost

exact algorithms. In Proceedings of the 39rd IEEE Annual Symposium on Foun-

dations of Computer Science, pages 310{319, 1998.

	Introduction
	Even and Shiloach's Algorithm
	Our Space Saving Trick

	King's Algorithms
	Improving the Space
	Transitive Closure

	Demetrescu-Italiano Transitive Closure
	References

