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ABSTRACT
Motivation: Recently, the concept of the constrained
sequence alignment was proposed to incorporate the know-
ledge of biologists about structures/functionalities/consensuses
of their datasets into sequence alignment such that the user-
specified residues/nucleotides are aligned together in the
computed alignment. The currently developed programs use
the so-called progressive approach to efficiently obtain a con-
strained alignment of several sequences. However, the kernels
of these programs, the dynamic programming algorithms for
computing an optimal constrained alignment between two
sequences, run in O(γ n2) memory, where γ is the number
of the constraints and n is the maximum of the lengths of
sequences. As a result, such a high memory requirement limits
the overall programs to align short sequences only.
Results: We adopt the divide-and-conquer approach to
design a memory-efficient algorithm for computing an optimal
constrained alignment between two sequences, which greatly
reduces the memory requirement of the dynamic program-
ming approaches at the expense of a small constant factor
in CPU time. This new algorithm consumes only O(αn) space,
where α is the sum of the lengths of constraints and usually
α � n in practical applications. Based on this algorithm, we
have developed a memory-efficient tool for multiple sequence
alignment with constraints.
Availability: http://genome.life.nctu.edu.tw/MUSICME
Contact: cllu@mail.nctu.edu.tw

1 INTRODUCTION
Multiple sequence alignment (MSA) is one of the fundamental
problems in computational molecular biology that have been
studied extensively, because it is a useful tool in the phylo-
genetic analyses among various organisms, the identification
of conserved motifs and domains in a group of related pro-
teins, the secondary and tertiary structure prediction of a
protein (or RNA), and so on (Carrillo and Lipman, 1988; Chan
et al., 1992; Gusfield, 1997; Nicholas et al., 2002; Notredame,
2002). Moreover, MSA is one of the most challenging
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problems in computational molecular biology because it has
been shown to be NP-complete under the consideration of
sum-of-pairs scoring criteria (Kececioglu, 1993; Wang and
Jiang, 1994; Bonizzoni and Vedova, 2001), which means
that it seems to be hard to design an efficient algorithm for
finding the mathematically optimal alignment. Hence, some
approximate methods (Gusfield, 1993; Pevzner, 1992; Bafna
et al., 1997; Li et al., 2000) and heuristic methods (Feng
and Doolittle, 1987; Taylor, 1987; Corpet, 1988; Higgins and
Sharpe, 1988; Thompson et al., 1994) were introduced to
overcome this problem.

Recently, the concept of the constrained sequence align-
ment was proposed to incorporate the knowledge of biolo-
gists regarding the structures/functionalities/consensuses of
their datasets into sequence alignment such that the user-
specified residues/nucleotides are aligned together in the
computed alignment (Tang et al., 2003). Tang et al. (2003)
first designed a dynamic programming algorithm for finding
an optimal constrained alignment of two sequences and then
used it as a kernel to develop a constrained multiple sequence
alignment (CMSA) tool based on the progressive approach,
where each constraint considered by Tang et al. is a single
residue/nucleotide only. Their proposed algorithm for the
two sequences runs in O(γ n4) time and consumes O(n4)

space, where γ is the number of constrained residues and
n is the maximum lengths of the sequences. Later, this res-
ult was improved independently by two groups of researchers
to O(γ n2) time and O(γ n2) space using the same approach
of dynamic programming (Yu, 2003; Chin et al., 2003). In
fact, each constraint requested to be aligned together can
represent a conserved site of a protein/DNA/RNA family
and each conserved site may consist of a short segment of
residues/nucleotides, instead of a single residue/nucleotide.
In other words, the constraint specified by the biologists
can be a fragment of several residues/nucleotides. For some
applications, biologists may further expect that some mis-
matches are allowed among the residues/nucleotides of the
columns requested to be aligned. Hence, Tsai et al. (2004)
studied such a kind of the constrained sequence alignment
and designed an algorithm of O(γ n2) time and O(γ n2)
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space for two sequences. The improvements and extension
above greatly increase the performances and practical usage
of the CMSA tools developed using the progressive approach.
However, the requirement of O(γ n2) memory still limits
the existing CMSA tools to align a set of short sequences,
at most several hundreds of residues/nucleotides. To align
large genomic sequences of at least several thousands of
residues/nucleotides, there is a need to design a memory-
efficient algorithm for the constrained pairwise sequence
alignment (CPSA) problem, which is the key limiting factor
relating to the applicable extent of the progressive CMSA
tools. Hence, in this paper, we adopt the so-called divide-and-
conquer approach to design a memory-efficient algorithm for
solving the CPSA problem, which runs in O(γ n2) time, but
consumes only O(αn) space, where α is the sum of the lengths
of constraints and usually α � n in practical applications.
Based on this algorithm, we have finally developed a memory-
efficient CMSA tool using the progressive approach. Note
that applying the divide-and-conquer approach to memory-
efficiently align two or more sequences without any con-
straints has been studied extensively (Myers and Miller, 1988;
Chao et al., 1994; Tönges et al., 1996; Stoye et al., 1997a,b;
Stoye, 1998). In contrast to the progressive approach used
here, the divide-and-conquer algorithms proposed by Stoye
et al. (Tönges et al., 1996; Stoye et al., 1997a,b; Stoye, 1998)
considered the input sequences simultaneously and heuristic-
ally compute the good, but not necessarily optimal, dividing
positions so that the resulting total MSA is close to an optimal
MSA of the original sequences. In fact, many other CMSAs
have been proposed from various perspectives, even using
different approaches (Schuler et al., 1991; Depiereux and
Feytmans, 1992; Taylor, 1994; Myers et al., 1996; Notredame
et al., 2000; Thompson et al., 2000; Sammeth et al., 2003). Of
these various CMSAs, it is worth mentioning that Myers et al.
(1996) obtained their CMSA by performing progressive mul-
tiple alignment under position-based constraints that are given
by users; Sammeth et al. (2003) got their CMSA by perform-
ing simultaneous multiple alignment under segment-based
constraints (as same as we studied here) that are pre-computed
via a local segmented-based algorithm (Morgenstern, 1999).
We refer the reader to their papers for details.

2 PROBLEM FORMULATION
Let S = {S1, S2, . . . , Sχ } be the set of χ sequences over the
alphabet �. Then an MSA of S is a rectangular matrix con-
sisting of χ rows of characters of � ∪{-} such that no column
consists entirely of dashes and removing dashes from row i

leaves Si for any 1 ≤ i ≤ χ . The sum-of-pairs score (SP
score) of an MSA is defined to be the sum of the scores of
all columns, where the score of each column is the sum of
the scores of all distinct pairs of characters in the column.
In practice, the score of the pair of two dashes is usually set
to zero. Then the problem of finding an MSA of S with the

optimal SP score is the so-called sum-of-pairs MSA problem
(Carrillo and Lipman, 1988; Chan et al., 1992; Gusfield, 1997;
Nicholas et al., 2002; Notredame, 2002).

Let δ(T1, T2) denote the Hamming distance between two
subsequences T1 and T2 of equal length, which is equal to
the number of mismatched pairs in the alignment of T1 and
T2 without any gap. Given an alignment L of S, a band is
defined as a block of consecutive columns in L (i.e. a sub-
matrix of L). For any band L′ of L, let subseq(Si , L′)
denote the subsequence of Si whose residues/nucleotides are
all in the band L′, where 1 ≤ i ≤ χ . A subsequence
T = t1t2 . . . tλ is said to appear in L if L contains a band
L′ of λ columns, say π1, π2, . . . , πλ, such that the charac-
ters of column πj , 1 ≤ j ≤ λ, are all equal to tj , or
equivalently, subseq(Si , L′) = T for each 1 ≤ i ≤ χ .
If δ[subseq(Si , L′), T ] ≤ λ × ε for a given error ratio
0 ≤ ε < 1 [i.e. some mismatches are allowed between
subseq(Si , L′) and T ], then T is said to approximately
appear in L. From the biological viewpoint, T can be con-
sidered as the consensus among the subsequences in L′ and
hence T is also called as an induced consensus by the band
L′. For any two subsequences T1 and T2, T1 ≺ T2 is used
to denote that T1 (approximately) appears strictly before T2

in L (i.e. their corresponding bands do not overlap). Let
	 = (C1, C2, . . . , Cγ ) be an ordered set of γ constraints
(i.e. subsequences), each Ci = ci

1c
i
2 . . . ci

λi
with length of

λi , where 1 ≤ i ≤ γ . Then the CMSA of S with respect to 	

is defined as an alignment L of S in which all the constraints
of 	 approximately appear in the order C1 ≺ C2 ≺ · · · ≺ Cγ

such that δ(subseq(Si , L′
j ), Cj ) ≤ λj × ε for all 1 ≤ i ≤ χ

and 1 ≤ j ≤ γ , where L′
j is the band of L whose induced

consensus is Cj . Given a set S of χ sequences along with
an ordered set 	 of γ constraints and an error ratio ε, the
so-called CMSA problem is to find a CMSA w.r.t. 	 with
the optimal SP score. When the number of sequences in S is
restricted to two (i.e. χ = 2), the CMSA problem is called as
the CPSA problem.

3 ALGORITHM
In this section, we shall first design a memory-efficient
algorithm for solving the CPSA problem with two given
sequences A = a1a2 . . . am and B = b1b2 . . . bn, a
given ordered set 	 = (C1, C2, . . . , Cγ ) of γ constraints,
each Ci = ci

1c
i
2 . . . ci

λi
with length of λi , 1 ≤ i ≤

γ , and a given error threshold ε. After that, we shall
use it as the kernel to heuristically solve the CMSA
problem.

For any sequence T , let pref(T , l) [respectively,
suff(T , l)] phase don’t change denote the prefix (respect-
ively, suffix) of T with length l. For any two characters
a, b ∈ �, let σ(a, b) denote the score of aligning a with b. The
gap penalty adopted here is the so-called affine gap penalty
that penalizes a gap of length l with wo+l×we, where wo > 0
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is the gap-open penalty and we > 0 is the gap-extension
penalty. For convenience, let Ai = pref(A, i) = a1a2 . . . ai ,
Bj = pref(B, j) = b1b2 . . . bj and 	k = (C1, C2, . . . , Ck),
where 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ γ .
Let Mk(i, j) denote the score of an optimal constrained
alignment of Ai and Bj w.r.t. 	k . Clearly, Mγ (m, n) is
the score of an optimal constrained alignment of A and B

w.r.t. 	. An alignment L is called as a semi-constrained
alignment of Ai and Bj w.r.t. 	k if it is a constrained align-
ment of Ai and Bj w.r.t. 	k−1 and also ends (or begins)
with a band whose induced consensus is equal to a prefix
of Ck (or a suffix of C1). Nk(i, j , h) is defined to be the
score of an optimal semi-constrained alignment of Ai and
Bj w.r.t. 	k that ends with an induced consensus equal to
pref(Ck , h). Let MD

k (i, j) [respectively, MI
k(i, j)] be the

maximum scores of all constrained alignments of Ai and
Bj w.r.t. 	k that end with a deletion pair (ai , −) [respect-
ively, an insertion pair (−, bj )]. By definition, it is not
hard to derive the recurrence of Mk(i, j), 1 ≤ i ≤ m and
1 ≤ j ≤ n, as follows. If k = 0, then Mk(i, j) =
max{Mk(i − 1, j − 1) + σ(ai , bj ), MD

k (i, j), MI
k(i, j)}.

If 1 ≤ k ≤ γ , then Mk(i, j) = max{Mk(i − 1,
j−1)+σ(ai , bj ), MD

k (i, j), MI
k(i, j), Nk(i, j , λk)}. Clearly,

Nk(i, j , λk) = Mk−1(i − λk , j − λk) + �0≤h≤λk−1σ(ai−h,
bj−h), if δ(suff(Ai , λk), Ck) ≤ λk ×ε and δ(suff(Bj , λk),
Ck) ≤ λk × ε; otherwise, Nk(i, j , λk) = −∞. To simply
describe the computation of MD

k (i, j) and MI
k(i, j), we

introduce another notation MS
k (i, j), which is defined to be

the maximum score of all constrained alignments of Ai and
Bj w.r.t. 	k that end with a substitution pair (ai , bj ). Let
LD

k (Ai , Bj ) denote the alignment of Ai and Bj with score
MD

k (i, j) that ends with a deletion pair (ai , −). Let L′ be
the portion of LD

k (Ai , Bj ) before the last aligned pair (ai , −).
Then there are three possibilities when we consider the last
aligned pair of L′.

Case 1: The last aligned pair of L′ is a substitution pair.
Then the score of L′ is MS

k (i −1, j) and (ai , −) is charged by
a gap-open penalty and a gap-extension penalty in MD

k (i, j).
Hence, MD

k (i, j) = MS
k (i − 1, j) − wo − we.

Case 2: The last aligned pair of L′ is a deletion pair. Then
the score of L′ is MD

k (i −1, j) and (ai , −) is charged by only
one gap-extension penalty in MD

k (i, j). Hence, MD
k (i, j) =

MD
k (i − 1, j) − we.

Case 3: The last aligned pair of L′ is an insertion pair. Then
the score of L′ is MI

k(i − 1, j) and (ai , −) is charged by a
gap-open penalty and a gap-extension penalty in MD

k (i, j).
Hence, MD

k (i, j) = MI
k(i − 1, j) − wo − we.

In summary, MD
k (i, j) = max{MS

k (i − 1, j) − wo −
we, MD

k (i − 1, j) − we, MI
k(i − 1, j) − wo − we}. How-

ever, by including an extra MD
k (i − 1, j) − wo − we into the

right-hand side of the above recurrence, we can reformulate

the above recurrence as MD
k (i, j) = max{Mk(i − 1, j) −

wo−we, MD
k (i−1, j)−we}. Similar to the discussion above,

the recurrence of MI
k(i, j) can be derived as MI

k(i, j) =
max{Mk(i, j − 1) − wo − we, MI

k(i, j − 1) − we}.
According to the recurrences above, we designed an

algorithm to compute Mγ (m, n) and its corresponding con-
strained alignment using the technique of dynamic program-
ming as follows. For convenience, we depicted the recurrences
of matrices Mk , MD

k , MI
k and Nk for all 0 ≤ k ≤ γ by

a three-dimensional (3D) grid graph G, which consists of
(m + 1) × (n + 1) × (γ + 1) entries and each entry (i, j , k)

consists of four nodes Mk , MD
k , MI

k and Nk corresponding
to Mk(i, j), MD

k (i, j), MI
k(i, j) and Nk(i, j , λk), respect-

ively. Figure 1 shows the relationship of four adjacent entries
(i, j , k), (i − 1, j , k), (i, j − 1, k) and (i − 1, j − 1, k) of G for
each fixed k.

Note that there is a directed edge, which is not shown
in Figure 1, with weight �0≤h≤λk−1σ(ai−h, bj−h) from the
Mk−1 node of the entry (i −λk , j −λk , k −1) to the Nk node
of the entry (i, j , k). Then each path from M0(0, 0) node of
entry (0, 0, 0) to Mγ (m, n) node of entry (m, n, γ ) corres-
ponds to a constrained alignment of A and B w.r.t. 	. As a
result, an optimal constrained alignment of A and B can be
obtained by backtracking a shortest path from Mγ (m, n) to
M0(0, 0) in G. It is not hard to see that the algorithm costs
both computer time and memory in the order of O(γmn). We
call the above algorithm based on the dynamic programming
approach as CPSA-DP algorithm.

Hirschberg (1975) had developed a linear-space algorithm
for solving the longest common subsequence problem based
on the divide-and-conquer technique. Since then, this strategy
has been extended to yield a number of memory-efficient
algorithms for aligning biological sequences (Myers and
Miller, 1988; Chao et al., 1994). In this paper, we general-
ize the Hirschberg’s algorithm so that it is capable of dealing
with the CPSA. As compared with others, our generalization
is more complicated because the grid graph G dealt here is 3D,
instead of 2D, and the input sequences are accompanied with
several constraints that need to be considered carefully. The
central idea of our memory-efficient algorithm is to determ-
ine a middle position (imid, jmid, kmid) on an optimal path
from M0(0, 0) to Mγ (m, n) in G so that we were able to
divide the constrained alignment problem into two smaller
constrained alignment problems; then these smaller con-
strained alignment problems are continued to be divided in the
same manner, and finally the optimal constrained alignment
is obtained completely by merging the series of the calculated
mid-points (Fig. 2).

Before describing our algorithm, some notation must be
introduced as follows. Let Ai and Bj denote the suffixes
ai+1ai+2 . . . am and bj+1bj+2 . . . bn of A and B, respectively,
for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let 	k denote
the ordered subset (Ck+1, Ck+2, . . . , Cγ ) for 1 ≤ k ≤ γ .
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Fig. 1. The schematic diagram of four adjacent entries of G, where entry (i, j , k) consists of four nodes Mk , MD
k , MI

k and Nk corresponding
to Mk(i, j), MD

k (i, j), MI
k (i, j) and Nk(i, j , λk), respectively.

Fig. 2. Schematic diagram of divide-and-conquer approach: two light gray areas are the reduced subproblems after middle position
(imid, jmid, kmid) is determined, each of which will be further divided into two subproblems of dark gray areas.

Define Mk(i, j) to be the score of an optimal constrained

alignment of Ai and Bj w.r.t. 	k , and define MS

k (i, j)

(MD

k (i, j) and MI

k(i, j), respectively) to be the maximum
score of all constrained alignments of Ai and Bj w.r.t.
	k that begin with a substitution [deletion and insertion,
respectively] pair (ai+1, bj+1) [(ai+1, −) and (−, bj+1),

respectively]. Let 	k(h) = [C1, C2, . . . , Ck−1,pref(Ck , h)]
and 	k(h) = [suff(Ck , λk − h), Ck+1, . . . , Cγ ], where
1 ≤ h ≤ λk . Let N k(i, j , h) denote the score of an
optimal semi-constrained alignment L of Ai and Bj w.r.t.
	k(h) that begins with a band whose induced consensus is
equal to suff(Ck , λk − h). Note that the recurrences for
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computing matrices Mk , MS

k , MD

k , MI

k and N k can be
developed similarly as those for computing Mk , MS

k , MD
k ,

MI
k and Nk , respectively. Clearly, MS

k (i, j) = Mk(i −
1, j − 1) + σ(ai , bj ). If δ[suff(Ai , λk), Ck] ≤ λk × ε and
δ[suff(Bj , λk), Ck] ≤ λk × ε, then we can reformulate the
recurrence of Nk as follows: Nk(i, j , 1) = Mk−1(i − 1, j −
1) + σ(ai , bj ) and Nk(i, j , h) = Nk(i − 1, j − 1, h − 1) +
σ(ai , bj ) for each 1 < h ≤ λk .

Next, we describe our divide-and-conquer algorithm,
termed as CPSA-DC algorithm, for computing an optimal
constrained alignment between A and B w.r.t. 	 as fol-
lows. The key point is to determine the middle position
(imid, jmid, kmid) of the optimal path in G to divide the prob-
lem into two subproblems, each of which is recursively
divided into two smaller subproblems using the same way.
Given an alignment L, we use score(L) to denote the
score of L. Let Lγ (A, B) be an optimal constrained align-
ments of A and B w.r.t. 	 and clearly score[Lγ (A, B)] =
Mγ (m, n). Let imid = 	m

2 
. Then, we partition Lγ (A, B)

into two parts by cutting it at the position immediately after
aimid and we let Lkmid(Aimid , Bjmid) denote the part containing
aimid and Lkmid(Aimid , Bjmid) denote the remaining part, where
bjmid denotes the last character in Lkmid(Aimid , Bjmid) from B,
and kmid denotes the largest index so that pref(Ckmid , hmid)

(approximately) appears in Lkmid(Aimid , Bjmid). Then there are
two possibilities when we consider the last aligned pair of
Lkmid(Aimid , Bjmid).

Case 1: The last aligned pair of Lkmid(Aimid , Bjmid) is a
substitution pair [i.e. (aimid , bjmid)]. In this case, we have
Mγ (m, n) = score(Lγ (A, B)) = score(Lkmid(Aimid ,
Bjmid)) + score(Lkmid(Aimid , Bjmid)). If (aimid , bjmid) is not
a constrained column in Lγ (A, B), then Lkmid(Aimid , Bjmid)

is an optimal constrained alignment of Aimid and Bjmid

w.r.t. 	kmid ending with a substitution pair (aimid , bjmid),
and Lkmid(Aimid , Bjmid) is an optimal constrained alignment
of Aimid and Bjmid w.r.t. 	kmid . Hence, Mγ (m, n) =
MS

kmid
(imid, jmid) + Mkmid(imid, jmid). If (aimid , bjmid) is a con-

strained column in Lkmid(Aimid , Bjmid), then Lkmid(Aimid , Bjmid)

is an optimal semi-constrained alignment of Aimid and Bjmid

w.r.t. 	kmid(hmid) ending with a band L′ whose induced con-
sensus is equal to pref(Ckmid , hmid). If hmid < λkmid , then
Lkmid(Aimid , Bjmid) is an optimal semi-constrained alignment
of Aimid and Bjmid w.r.t. 	kmid(hmid) beginning with a band
L′ whose induced consensus is equal to suff(Ckmid , λkmid −
hmid). Moreover, the induced consensus of the merge of L′ and
L′ have to be equal to Ckmid . In this case, we have Mγ (m, n) =
Nkmid(imid, jmid, hmid) + N kmid(imid, jmid, hmid). If hmid =
λkmid , then Lkmid(Aimid , Bjmid) is an optimal constrained align-
ment of Aimid and Bjmid w.r.t. 	kmid(hmid), and hence
Mγ (m, n) = Nkmid(imid, jmid, λkmid) + Mkmid(imid, jmid).

Case 2: The last aligned pair of Lkmid(Aimid , Bjmid)

is a deletion pair [i.e. (aimid , −)]. If the first aligned

pair in Lkmid(Aimid , Bjmid) is not a deletion pair, then

Mγ (m, n) = max{MD
kmid

(imid, jmid) + MS

kmid
(imid, jmid),

MD
kmid

(imid, jmid)+MI

kmid
(imid, jmid)}. If the first aligned pair

in Lkmid(Aimid , Bjmid) is a deletion pair, then Mγ (m, n) =
MD

kmid
(imid, jmid) + MD

kmid
(imid, jmid) + wo. We need to com-

pensate it by adding wo because the open penalty of the gap
containing aimid and aimid+1 in Lγ (A, B) is charged twice by

MD
kmid

(imid, jmid) and MD

kmid
(imid, jmid).

In summary, the recurrence of Mγ (m, n) is derived as
follows:

Mγ (m, n)

= max




MD
kmid

(imid, jmid) + MS

kmid
(imid, jmid),

MD
kmid

(imid, jmid) + MI

kmid
(imid, jmid),

MD
kmid

(imid, jmid) + MD

kmid
(imid, jmid) + wo,

MS
kmid

(imid, jmid) + Mkmid (imid, jmid),
Nkmid (imid, jmid, hmid) + N kmid (imid, jmid, hmid),
Nkmid (imid, jmid, λkmid ) + Mkmid (imid, jmid)




.

When MD
kmid

(imid, jmid) + MD

kmid
(imid, jmid) is added to the

right-hand side, the above recurrence is not changed, but can
be reformulated as follows:

Mγ (m, n) = max




MD
kmid

(imid, jmid) + Mkmid (imid, jmid),

MD
kmid

(imid, jmid) + MD

kmid
(imid, jmid) + wo,

MS
kmid

(imid, jmid) + Mkmid (imid, jmid),
Nkmid (imid, jmid, hmid) + N kmid (imid, jmid, hmid),
Nkmid (imid, jmid, λkmid ) + Mkmid (imid, jmid)




.

In other words, jmid, kmid and hmid are the indices j , k and
h, where 1 ≤ j ≤ n, 0 ≤ k ≤ γ and 1 ≤ h < λk , such that
the following maximal value is the maximum.

max




MD
k (imid, j) + Mk(imid, j),

MD
k (imid, j) + MD

k (imid, j) + wo,
MS

k (imid, j) + Mk(imid, j),
Nk(imid, j , h) + N k(imid, j , h),
Nk(imid, j , λk) + Mk(imid, j)




.

Now, we show how to use O(αn), instead of O(γmn),
memory to determine jmid, kmid and hmid, where α =∑

1≤k≤γ λk and α ≤ min{m, n} intrinsically. In fact, a single
matrix E of size (γ + 1) × (n + 1) with each entry E(k, j) of
λk +4 space is enough to compute Mk(imid, j), MS

k (imid, j),
MD

k (imid, j) MI
k(imid, j) and Nk(imid, j , h), for 1 ≤ j ≤ n,

0 ≤ k ≤ γ and 1 ≤ h ≤ λk . When reaching the entry
(i, j , k) of 3D grid graph G, we use entry E(k, j) of E to hold
the most recently computed values of Mk(i, j), MS

k (i, j),
MD

k (i, j) MI
k(i, j) and Nk(i, j , h), which clearly needs a

total of λk + 4 space. Note that the old values in entry E(k, j)

will be moved into an extra entry, termed as Vk whose space
is equal to E(k, j), before they are overwritten by their newly
computed values. Before moving the old values in E(k, j) into
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Fig. 3. The grid locations of E(k − 1), E(k) and the values in Vk−1 and Vk when the entry (i, j , k) of G, marked with ‘?’, is reached for the
computation.

Vk; however, we need to first move Mk(i−1, j −1) in Vk into
a space, named as vk,k+1, where 1 ≤ i ≤ m. The mechanism
above will enable us to compute Nk(i, j , 1), which needs to
refer to Mk−1(i − 1, j − 1) that is kept in vk−1,k; compute
Nk(i, j , h) for each 2 ≤ h ≤ λk , which needs to refer to
Nk(i − 1, j − 1, h − 1) that is kept in Vk; compute MS

k (i, j),
which needs to refer Mk(i − 1, j − 1) that is kept in Vk; and
finally we were able to compute Mk(i, j). Figure 3 shows
the grid locations of E(k − 1), E(k) and the values in Vk−1

and Vk when we reach the entry (i, j , k) of G for the com-
putation, where E(k) denotes the k-th row of E. Hence, the
total needed space for computing and storing all Mk(imid, j),
MS

k (imid, j), MD
k (imid, j) MI

k(imid, j) and Nk(imid, j , h) is
the sum of the space of matrix E, the space of all Vk and
the space of all vk,k+1, where 1 ≤ j ≤ n, 0 ≤ k ≤ γ

and 1 ≤ h ≤ λk , which is equal to O(αn). Similarly, the
required matrix, denoted by E, for computing all Mk(imid, j),

MS

k (imid, j), MD

k (imid, j)M
I

k(imid, j) andN k(imid, j , h) still
needs O(αn) space. Hence, the determination of jmid, kmid

and hmid can be performed in O(αn) space. The details
of CPSA-DC algorithm are described as follows. Note that
the program code of BestScoreRev is similar to that of
BestScore and hence is omitted here. In the codes, the variable
E(Mk(imid, j)) is used to denote the value of Mk(imid, j)

in E(k, j) and others are analogous. The global variables
HA(k, h) = δ(suff(Aimid , h),pref(Ck , h)), HA(k, h) =
δ(pref(Aimid , λk − h),suff(Ck , λk − h)), HB(j , k, h) =
δ(suff(Bj , h),pref(Ck , h)), and HB(j , k, h) = δ(pref
(Bj , λk − h),suff(Ck , λk − h)) are computed in Algorithm
BestScore so that they can be used directly in Algorithm
CPSA-DC.

Algorithm CPSA-DC(istart, iend, jstart, jend, kstart, kend)

Input: Sequences aistart · · · aiend and bjstart · · · bjend with
constraints (Ckstart , . . . , Ckend)

1: if (istart > iend) or (jstart > jend) then
Align the nonempty sequence with spaces;

else
imid = 	 istart+iend

2 
;
BestScore(istart, imid, jstart, jend, kstart, kend);
BestScoreRev(imid + 1, iend, jstart, jend, kstart, kend);

end if
2: max = −∞;

for j = jstart − 1 to jend do
for k = kstart − 1 to kend do

if E(MD
k (imid, j)) + E(Mk(imid, j)) > max then

max = E(MD
k (imid, j)) + E(Mk(imid, j));

jmid = j ; kmid = k; type = case 1;
end if

if E(MD
k (imid, j)) + E(MD

k (imid, j)) + wo > max then

max = E(MD
k (imid, j)) + E(MD

k (imid, j)) + wo;
jmid = j ; kmid = k; type = case 2;

end if
if E(MS

k (imid, j)) + E(Mk(imid, j)) > max then
max = E(MS

k (imid, j)) + E(Mk(imid, j));
jmid = j ; kmid = k; type = case 3;

end if
if k ≥ 1 then

for h = 1 to λk − 1 do

if
(

HA(k,h)+HA(k,h)
λk

≤ ε
)

and(
HB(j ,k,h)+HB(j ,k,h)

λk
≤ ε

)
then

if E(Nk(imid, j , h)) + E(N k(imid, j , h)) >

max then
max = E(Nk(imid, j , h))

+ E(N k(imid, j , h));
jmid = j ; kmid = k; hmid = h; type = case 4;

end if
end if

end for

25



C.L.Lu and Y.P.Huang

if
(

HA(k,λk)
λk

≤ ε
)

and
(

HB(j ,k,λk)
λk

≤ ε
)

then

if E(Nk(imid, j , λk)) + E(Mk(imid, j)) >

max then
max = E(Nk(imid, j , λk)) + E(Mk(imid, j));
jmid = j ; kmid = k; hmid = h; type = case 5;

end if
end if

end if
end for

end for
3: if type = case 1 then

CPSA-DC(istart, imid − 1, jstart, jmid, kstart, kmid);
Align aimid with a space;
CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);

end if
if type = case 2 then

CPSA-DC(istart, imid − 1, jstart, jmid, kstart, kmid);
Align aimidaimid+1 with two spaces;
CPSA-DC(imid + 2, iend, jmid + 1, jend, kmid + 1, kend);

end if
if type = case 3 then

CPSA-DC(istart, imid − 1, jstart, jmid − 1, kstart, kmid);
Align aimid with bjmid ;
CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);

end if
if type = case 4 then

CPSA-DC(istart, imid − hmid, jstart, jmid − hmid, kstart,
kmid − 1);

Align aimid−hmid+1 · · · aimid+λk−hmid with bjmid−hmid+1 · · ·
bjmid+λk−hmid ;

CPSA-DC(imid + λk − hmid + 1, iend, jmid + λk − hmid

+ 1, jend, kmid + 1, kend);
end if
if type = case 5 then

CPSA-DC(istart, imid − λk , jstart, jmid − λk , kstart,
kmid − 1);

Align aimid−λk+1 · · · aimid with bjmid−λ+1 · · · bjmid ;
CPSA-DC(imid + 1, iend, jmid + 1, jend, kmid + 1, kend);

end if

Algorithm BestScore(istart, iend, jstart, jend, kstart, kend)
Input: Sequences aistart · · · aiend and bjstart · · · bjend

with constraints (Ckstart , . . . , Ckend)

1: /* Reindex */
m = istart − iend + 1; n = jstart − jend + 1;
γ = kstart − kend + 1;

2: /* Initialization */
for j = 0 to n do

for k = 0 to γ do
E(MS

k (imid, j)) = E(MD
k (imid, j)) = −∞;

if (j = 0) or (k > 0) then E(MI
k(imid, j)) = −∞;

else E(MI
k(imid, j)) = −wo − jwe;

if (j = 0) and (k = 0) then E(Mk(imid, j)) = 0;
else E(Mk(imid, j)) = −∞;

if k ≥ 1 then
for h = 1 to λk do E(Nk(imid, j , h)) = −∞;

end if
end for

end for
3: /* Computation */

for i = 1 to m do
for k = 0 to γ do /* For the case of j = 0 */

Vk(Mk(imid, 0)) = E(Mk(imid, 0));
if k ≥ 1 then

for h = 1 to λk do Vk(Nk(imid, 0, h))

= E(Nk(imid, 0, h)));
end if
E(MS

k (imid, 0)) = E(MI
k(imid, 0)) = −∞;

E(Mk(imid, 0)) = E(MD
k (imid, 0)) = −wo − jwe;

end for
for j = 1 to n do /* For the case of j > 0 */
for k = 0 to γ do

tempk(Mk(imid, j)) = E(Mk(imid, j)) ;
if k ≥ 1 then

for h = 1 to λk do tempk(Nk(imid, j , h))

= E(Nk(imid, j , h));
end if
E(MS

k (imid, j)) = Vk(Mk(imid, j))

+ σ(aistart+i−1, bjstart+j−1);
E(MD

k (imid, j)) = max{E(MD
k (imid, j))

− we, E(Mk(imid, j)) − wo − we};
E(MI

k(imid, j)) = max{E(MI
k(imid, j − 1))

− we, E(Mk(imid, j − 1))

− wo − we};
if k ≥ 1 then

for h = 1 to λk do
if h = 1 then

E(Nk(imid, j , h)) = vk−1,k + σ(aistart+i−λk
,

bjstart+j−λk
);

else
E(Nk(imid, j , h)) = Vk(Nk(imid, j , h − 1))

+ σ(aistart+i−λk+h−1,
bjstart+j−λk+h−1);

end if
end for

end if
E(Mk(imid, j))

= max




E(MD
k (imid, j)), E(MI

k(imid, j)),
E(Nk(imid, j , λk))

Vk(Mk(imid, j)) + σ(aistart+i−1,
bjstart+j−1),




;

vk,k+1 = Vk(Mk(imid, j));
Vk(Mk(imid, j)) = tempk(Mk(imid, j));
if k ≥ 1 then

for h = 1 to λk do
Vk(N (imid, j , h)) = tempk(Nk(imid, j , h));

end for
end if
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if i = m and k ≥ 1 then
for h = 1 to λk do

if h = 1 then
if j = 1 and aistart+i−λk

�= ck
h then

HA(k, h) = 1; else HA(k, h) = 0;
if bjstart+j−λk

�= ck
h then

HB(j , k, h) = 1; else HB(j , k, h) = 0;
else

if j = 1 and aistart+i−λk+h−1 �= ck
h then

HA(k, h) = HA(k, h − 1) + 1;
if bjstart+j−λk+h−1 �= ck

h then HB(j , k, h)

= HB(j , k, h − 1) + 1;
end if

end for
end if

end for
end for

end for

Now, we analyze the time-complexity of our CPSA-DC
algorithm for solving the CPSA. As shown in Figure 2,
after determining the middle position (imid, jmid, kmid) of the
optimal path in G, we can divide the original problem into
two subproblems, each of which further can be recursively
divided into two smaller subproblems using the same way.
Note that regardless of where the optimal path passes through
(imid, jmid, kmid), the total size of the two reduced subproblems
is just half the size of the original problem, where the size is
measured by the number of entries in G. It is not hard to see
that the time-complexity of determining the middle position of
each subproblem at each recursive stage is proportional to the
size of the subproblem. Let � denote the size of the original
problem (i.e. � = γmn). Then the total time-complexity of
our CPSA-DC algorithm is equal to � + �

2 + �
4 +· · · = 2�,

which is twice as high as the CPSA-DP algorithm. Using
the CPSA-DC algorithm as a kernel, we were able to design
a memory-efficient algorithm, termed CMSA-DC, for pro-
gressively aligning multiple input sequences into a CMSA
according to the branching order of a guide tree. The above
progressive method we adopted was proposed by Tang et al.
(2003). Owing to space limitation, we refer the reader to their
paper for the details of its implementation.

4 EXPERIMENTAL RESULTS
We use Java language to implement the CMSA-DC algorithm
as a web server, called as MuSiC-ME (Memory-Efficient
tool for Multiple Sequence Alignment with Constraints).
The input of the MuSiC-ME system consists of a set of
protein/DNA/RNA sequences and a set of user-specified con-
straints, each with a fragment of residue/nucleotide that
(approximately) appears in all input sequences. The output
of MuSiC-ME is a CMSA in which the fragments of the input
sequences whose residues/nucleotides exhibit a given degree

Table 1. The information of the tested families and their constraints

Family #SEQ MAXSEQ #CON MAXCON

Protease 6 123 4 1
Globin 6 146 7 2
RNase 6 185 3 1
Kinase 6 353 10 3
CoV-3′-UTR 6 422 12 2

#SEQ is the number of sequences, MAXSEQ is the maximum length of sequences,
#CON is the number of constraints and MAXCON is the maximum length of constraints.

Table 2. The comparison of CPU time and memory usage between MuSiC
and MuSiC-ME

Family MuSiC MuSiC-ME
CPU Time Memory CPU Time Memory
(s) (MB) (s) (MB)

Protease 6 25.4 6 15.5
Globin 23 42.0 18 15.5
RNase 11 32.0 8 15.5
Kinase 131 160.8 96 15.9
CoV-3′-UTR — — 165 17.4

The memory usage includes JVM (Java Virtual Machine), code (MuSiC/MuSiC-ME)
and data, and MuSiC cannot deal with the case of CoV-3′-UTR due to running out of
memory.

of similarity to a constraint are aligned together. For its biolo-
gical applications, we refer the reader to other related papers
(Tang et al., 2003; Tsai et al., 2004).

In the following, we evaluate our memory-efficient MuSiC-
ME system and compare its running time and memory to the
original MuSiC system (Tsai et al., 2004), whose kernel CPSA
algorithm was implemented by the dynamic programming
approach. We chose five families of protein/RNA sequences
as our testing datasets, each of which has been shown to
contain an ordered series of conserved motifs related to the
structures/functionalities/consensuses of the family (McClure
et al., 1994; Chin et al., 2003; Tang et al., 2003; Tsai et al.,
2004): (1) the aspartic acid protease family (Protease), (2) the
hemoglobins family (Globin), (3) the ribonuclease family
(RNase), (4) the kinase family (Kinase) and (5) the 3′- untrans-
lated region of the coronaviruses (CoV-3′-UTR). From each
family, we have selected a representative set of sequences and
adopted the ordered series of conserved motifs as the con-
straints. Table 1 lists the information of the tested families and
their constraints. All tests were run with default parameters on
IBM PC with 1.26 GHz processor and 512 MB RAM under
Linux system. Table 2 lists the CPU time and memory usage of
our experiments using MuSiC and MuSiC-ME. It shows that
the memory usage of MuSiC-ME is much smaller than that of
MuSiC for large-scale sequences, and the CPU time required
by MuSiC-ME is smaller than that required by MuSiC for
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Fig. 4. The partial display of the resulting CMSA of MuSiC-ME by aligning the sequences of SARS-TW1 3′-UTR with those of other five
coronaviruses.

short sequences, since we have simplified the recurrences of
the dynamic programming here.

It is worth mentioning that in MuSiC-ME system, the let-
ters representing the constraints are not just the individual
residues/nucleotides, but also the IUPAC (International Union
of Pure and Applied Chemistry) codes. For example, nucleo-
tides N and R have the meanings of any nucleotides and purine
(i.e. A or G), respectively. This enhanced improvement will
enable the user to define more flexible constraints or combine
several small constraints with fixed distances into a large one.
For example, consider our fifth experiment above related to
the 3′-UTRs of the coronavirus sequences, including HCV-
229E (human coronavirus), PEDV (porcine epidemic diarrhea
virus), TGEV (porcine transmissible gastroenteritis virus),
BCV (bovine coronavirus), MHV (mouse hepatitis virus) and
SARS-TW1 (severe acute respiratory syndrome virus). All
the 12 adopted constraints appear in the fragment sequences
that were able to fold themselves into a stable pseudoknot
structure (Williams et al., 1999; Tsai et al., 2004). However,
these adopted constraints are too short to correctly align the
truly conserved motifs of sequences together, since the short
constraints occur frequently in the large genomic sequences
that led to the difficulty in identifying the true occurrences.
In fact, four pairs of two consecutive constraints appear
in the stem regions (containing no loops) of pseudoknots
and each paired constraints is separated by a non-conserved
subsequence of fixed length. Hence, we can combine each
pair of constraints into a new and larger constraint by rep-
resenting the non-conserved part with N. Consequently, we
got eight new constraints with the order of (CUNNNNC,
A, AA, G, C, UNNNA, GNNNNAG, UNNNA) for this
dataset. After running MuSiC-ME, a satisfied CMSA was
found (Figure 4), where the band of the resulting CMSA
corresponding to a constraint is black and its corresponding
constraint is displayed beneath it. This resulting CMSA
implies that the fragment of SARS-TW1 between the first

band and the last band may fold into a pseudoknot structure
that is possibly involved in replicating SARS viruses (Pleij,
1994; Deiman and Pleij, 1997). In fact, this fragment is the
pseudoknot sequence of SART-TW1 that was found by Tsai
et al. (2004) using MuSiC to align the 3′-UTR of SARS-
TW1 with the pseudoknot sequences, instead of 3′-UTRs, of
other coronaviruses. The input sequences of the above experi-
ment were also tested by Clustal W 1.82, the most commonly
used MSA tool. According to its resulting MSA as shown
in Figure 5, the fragments of all pseudoknots, including our
detected pseudoknot for SARS-TW1, were not able to align
well so that it is difficult for us to identify the exact fragment
of the SARS-TW1 pseudoknot from this MSA.

5 CONCLUSIONS
In this paper, we designed a memory-efficient program for
performing the CMSA, which can incorporate the knowledge
of biologists about the structures/functionalities/consensuses
of their datasets into sequence alignment such that the user-
specified residues/nucleotides are aligned together. We first
used the divide-and-conquer approach to design a memory-
efficient algorithm for optimally aligning two sequences with
constraints, and then based on this algorithm, we used the pro-
gressive method to develop a memory-efficient tool, called
MuSiC-ME, for heuristically aligning multiple sequences
with constraints. The proposed MuSiC-ME system makes
it possible to align several large-scale protein/DNA/RNA
sequences with constraints through the desktop PC with the
limited memory. In this system, moreover, the letters allowed
to represent the constraints are the IUPAC codes, which will
enable the user to define more flexible constraints or com-
bine several small constraints with fixed distances into a
large one. It is worth mentioning that the A∗ algorithm, a
heuristic search method in Artificial Intelligence, has been
extensively used to time- and/or memory-efficiently solve the
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Fig. 5. The partial display of the resulting MSA of Clustal W 1.82 by aligning the 3′-UTR sequences of six coronaviruses, where the bases
not in the pseudoknots are marked with dots.

general MSA problem without constraints (Ikeda and Imai,
1994, 1999; Kobayashi and Imai, 1999; Lermen and Reinert,
2000). Hence, it is interesting to study whether or not the A∗
algorithm can still be applied to the CMSA problem.
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