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Abstract

We study a pricing problem where buyers with non-uniform demand purchase one of many
items. Each buyer has a known benefit for each item and purchases the item that gives the
largest utility, which is defined to be the difference between the benefit and the price of the
item. The optimization problem is to decide on the prices that maximize total revenue of the
seller. This problem is also called the optimal product line design problem in the absence of
competition.

Even though the general problem is known to be NP-hard, it can be solved efficiently
under some natural assumptions on customer benefits. In this paper we study properties
of optimal solutions and present a dynamic programming algorithm when customer benefits
satisfy the Monge property. The same algorithm can also be used to solve the problem under
the additional requirement that all buyers should be served.

1 Introduction

In this paper, we study a pricing problem where given a collection of buyers and a collection of

available items, the seller wants to decide on the prices of the items so as to maximize his revenue.

The buyers are assumed to have individual demand levels and the items are available in unlimited

supply. Each buyer has a given benefit for each item and purchases the item that maximizes his

utility provided that the utility, which is defined as the difference between the benefit and the price

of the item, is non-negative. This is a relatively common utility model in economic theory known

as the linear utility model, see[9]. We also consider a variation of this problem where each buyer

has to be served and therefore prices have to be set in such a way that for each buyer there is at

least one item that gives a non-negative utility.

A possible application of this model could be in the telecommunications industry where a mobile

phone operator has to decide on which calling plans to offer and how to price these plans to max-

imize revenue. A “buyer”, in this context, corresponds to a group of customers with similar needs

and purchasing power. This is a reasonable model as marketing departments of these companies

typically segregate their customer base into segments with similar behavior. The estimated num-

ber of customers in each group gives the demand of each “buyer”. Similarly, “items” correspond
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to different calling plans of which each buyer can choose at most one. Clearly, our model in this

context overlooks the potential effects of other service providers and assumes that the customer

base is indifferent to external events. This problem is also known as the optimal product line de-

sign problem in the absence of competition. The term “product line” here refers to a collection of

substitutable products. See [11] for an early reference and [10] for recent references.

Formally, we define the pricing problem as follows: Let I = {1, . . . , n} denote the set of buyers,

J = {1, . . . , m} denote the set of items, Di ∈ R+ denote the demand of buyer i ∈ I , and Bi,j ∈ R+

denote the benefit of buyer i ∈ I for obtaining item j ∈ J . Without loss of generality, we assume

that problem data satisfies B 6= 0 and D > 0. Given a price vector P ∈ Rm
+ , the assignment vector

α ∈ Jn, maps each buyer to one of the items that maximizes his utility. In other words, for i ∈ I ,

Bi,α(i) − Pα(i) ≥ Bi,j − Pj

for all j ∈ J . If there is a tie, we assume that the buyer is mapped to the item with the higher

benefit, and therefore with higher price. We break further ties by mapping the buyer to the item

with the smaller index. Buyer i purchases item α(i) provided that Bi,α(i) ≥ Pα(i). If Bi,α(i) < Pα(i),

we assume that the buyer does not purchase any of the items and his demand is unsatisfied. The

resulting total revenue for the seller is
∑

i∈I:Bi,α(i)≥Pα(i)

DiPα(i).

Therefore, the optimization problem becomes,

z = max
{

∑

i∈I:Bi,α(i)≥Pα(i)

DiPα(i) : P ∈ Rm
+ , α ∈ Jn, Bi,α(i) − Pα(i) ≥ Bi,j − Pj ∀i ∈ I, j ∈ J

}

.

The pricing problem [2] and its variations [7, 8]are known to be NP-hard.

It is also possible to formulate this problem as a bi-linear mixed-integer program (see [4] for a

similar formulation):

Maximize
∑

i∈I

Di

∑

j∈J

xi,j pj

Subject to: ∑

j∈J

xi,j ≤ 1 for all i ∈ I

ui ≥ Bi,j − pj for all i ∈ I, j ∈ J

ui =
∑

j∈J

xi,j (Bi,j − pj) for all i ∈ I

u, p ≥ 0,

x ∈ {0, 1}n×m.

where xi,j denotes whether or not buyer i buys item j; pj denotes the price of item j; and, ui

denotes the utility of buyer i. As u ≥ 0, if all items give negative utility for a buyer i, the solution

has xi,j = 0 for all j ∈ J .
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We note that it is also possible to produce a linear formulation for the pricing problem by intro-

ducing (i) a new set of variables yij ≥ 0 that stand for the product xijpj , and, (ii) a new set of

linearization constraints based on max{0, pj −Mj(1− xij)} ≤ yij ≤ min{pj , Mjxij}, where Mj is

a valid bound on pj such as maxi∈I{Bi,j}.

The paper is organized as follows: In the next section we describe the Monge property and related

assumptions on buyer benefits. We then study structure of optimal solutions under these assump-

tions. In Section 3, we study the pricing problem when all buyers have to served and present a

dynamic programming algorithm. Finally, in Section 4, we relax the restriction that all buyers have

to be served and show that the pricing problem still admits a dynamic programming algorithm if

buyer benefits satisfy the extended Monge property.

2 Monge property and basic results

In the rest of the paper, we study the pricing problem when the benefit matrix B is a Monge

matrix. A matrix C ∈ Rn×m is said to satisfy the Monge property if

Cij + Crs ≥ Cis + Crj for all 1 ≤ i < r ≤ m, 1 ≤ j < s ≤ n. (1)

To be precise, this property is actually called the inverse Monge property, which is same as the

Monge property after reordering the rows and columns of the matrix C. It is easy to show that

inequality (1) holds provided that Monge property holds for adjacent rows and columns

Cij + Ci+1,j+1 ≥ Ci,j+1 + Ci+1,j for all 1 ≤ i < m, 1 ≤ j < n. (2)

An early reference for an optimization application of this property dates back to 1781 when the

French mathematician Gaspard Monge studied a basic transportation problem. This property was

later formalized and attributed to Monge by Alan Hoffman [6] in 1961. In this paper, Hoffman

also shows that the well-known transportation problem can be solved using a greedy algorithm,

called the northwest rule, if the cost matrix satisfies the Monge property. Since then a number

of optimization problems have been studied in the presence of the this property, including some

generalizations of the transportation problem [3]. We refer the reader to [1] for a survey.

We say that a matrix C ∈ Rn×m satisfies the extended Monge property provided that all of the

following three assumptions hold:

Assumption 1. For all 1 ≤ i < n and 1 ≤ j < m

Ci,j − Ci,j+1 ≥ Ci+1,j − Ci+1,j+1.

Assumption 2. For all 1 ≤ i ≤ n and 1 ≤ j < m

Ci,j ≥ Ci,j+1.

Assumption 3. For all 1 ≤ i < n and 1 ≤ j ≤ m

Ci,j ≥ Ci+1,j .
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When applied to the benefit matrix B, Assumptions 2 and 3 order items and buyers in such a

way that items with smaller indices are more beneficial for all buyers; and buyers with smaller

indices obtain larger benefit from obtaining any item and therefore, they obtain larger utility in

the optimal solution independent of how the prices are set. Combined with the Monge property of

Assumption 1, these assumptions imply that buyers with smaller indices value money less, that is,

they are relatively indifferent to prices, and therefore, they are more likely to buy items that they

value most.

Finally, we also note that if Assumption 1 holds for the benefit matrix B, then, (i) Bi,j −Bi,j+1 ≥

Bn,j − Bn,j+1 and therefore Assumption 2 reduces to requiring Bn,j − Bn,j+1 ≥ 0 for all j ∈

J \ {m}, and, (ii) Bi,j −Bi+1,j ≥ Bi,m −Bi+1,m and Assumption 3 reduces to Bi,m −Bi+1,m ≥ 0

for all i ∈ I \ {n}.

2.1 Basic properties independent of the assumptions

We next describe a natural property of the assignment vectors associated with similar price vectors.

Proposition 1 Let P 1, P 2 ∈ Rm be two price vectors and let α1, α2 ∈ Jn be the corresponding

assignment vectors. Furthermore, let P 1
j = P 2

j for all j ∈ J\{k}, and P 2
k > P 1

k . Then α1(i) = α2(i)

for all i ∈ I such that α1(i) 6= k.

Proof. Let i ∈ I be such that α1(i) = t 6= k. As Bi,t − P 1
t ≥ Bi,j − P 1

j for all j ∈ J by definition

and P 2 ≥ P 1, we have Bi,t − P 2
t = Bi,t − P 1

t ≥ Bi,j − P 2
j for all j ∈ J as well.

In other words, if the price of an item is increased, the only change in the assignment vector

is due to the buyers abandoning this item. Next, we describe a basic property of optimal price

vectors. Given an optimal assignment vector, the following observation relates optimal prices to

buyer benefits. This observation has stronger implications under Assumptions 1 and 2.

Proposition 2 Let P ∈ Rm be a price vector and α ∈ Jn be the corresponding assignment vector.

Let Ī = {i ∈ I : Bi,α(i) ≥ Pα(i)}, J̄ = {j ∈ J : j = α(i) for some i ∈ Ī}, and let P ′ = minj∈J̄{Pj}

be the price of the cheapest item that has a buyer. Let Ī ′ = {i ∈ Ī : Pα(i) = P ′}, then either

min
i∈Ī′

{Bi,α(i)} = P ′,

or, the total revenue
∑

i∈Ī DiPα(i) can be improved while serving the same set of customers Ī.

Proof. Assume δ = mini∈Ī′{Bi,α(i)}−P ′ > 0. In this case prices for all j ∈ J̄ ′ = {j ∈ J̄ : Pj = P ′}

can be increased uniformly by δ/2. Notice that with the new prices Bi,α(i) ≥ P ′
α(i) still holds for

all i ∈ Ī . The assignment vector α does not necessarily reflect buyer preferences correctly for the

new prices, but by Proposition 1 none of the buyers in Ī \ Ī ′ change their assignment after seeing

the new prices, and all buyers in Ī ′ now either pay more for the same item or buy more expensive

items. Therefore, total revenue increases.
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2.2 Structural properties under one of the assumptions

We next present a strong structural property of the assignment vector when the buyer befits satisfy

the Monge property. Note that the following observation holds for any price vector, including sub-

optimal ones.

Proposition 3 Under Assumption 1, for any given price vector P ∈ Rm, the corresponding as-

signment vector α ∈ Jn has no crossing. In other words, α(i + 1) ≥ α(i) for all i ∈ I \ {n}.

Proof. Remember that, by definition, for i ∈ I , α(i) satisfies Bi,α(i) − Pα(i) ≥ Bi,j − Pj for all

j ∈ J , and in case of a tie, the buyer is assigned to the item with the higher benefit (price), and if

there is still a tie, to the item with the smallest index.

Assume that α does not satisfy the claim for some i ∈ I \ {n} and let α(i + 1) = j and α(i) = k

where j < k. If both i and i + 1 are indifferent to items j and k, that is, if Bi,k − Pk = Bi,j − Pj ,

and Bi+1,k − Pk = Bi+1,j − Pj , then, as the ties are broken the same way, α(i) = α(i + 1), a

contradiction. We can therefore assume that at least one of i or i + 1 strictly prefers the assigned

item.

In this case, if buyer i has a strict preference, i.e. Bi,k −Pk > Bi,j −Pj we combine this inequality

with with Bi+1,j − Pj ≥ Bi+1,k − Pk, to obtain

Bi,k −Bi,j > Pk − Pj ≥ Bi+1,k −Bi+1,j .

More precisely, Bi+1,j − Bi+1,k > Bi,j − Bi,k where k > j. Note this inequality can also be

established if buyer i + 1 has a strict preference for j. This inequality can be re-written as

k−1
∑

l=j

Bi+1,l −Bi+1,l+1 >
k−1
∑

l=j

Bi,l −Bi,l+1

which is inconsistent with Assumption 1 when considered term by term.

A direct consequence of the above result is that under Assumption 1, there is an optimal assignment

vector that partitions the buyers into contiguous groups with the same assigned item. In other

words, for any i ∈ I \{n}, either α(i) = α(i+1), or, α(i) < α(i+1). Therefore, there is a partition

of I = ∪k
l=1Cl where Cl = {sl, . . . , tl} and α(i) = αl for all i ∈ Cl. Furthermore, αl ≤ αl+1 for

l = 1, . . . , k − 1. This observation is one of the main building blocks of the dynamic programming

algorithm described later. We demonstrate this structure in Figure 1 for k = 4.

We next present a basic property of prices of items that have at least one potential buyer in a

solution. Note that the following observation is also valid for any price vector, not only the optimal

one.

Proposition 4 Given a price vector P ∈ Rm and the corresponding assignment vector α ∈ Jn, let

J̄ = {j ∈ J : j = α(i) for some i ∈ I} denote the set of desired items. Then, under Assumption

2, if j1 < j2 for j1, j2 ∈ J̄ , then

Pj1 > Pj2 .
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Figure 1: Partitioning of the buyers due to Monge property

Proof. Assume the claim is wrong, and Pj1 ≤ Pj2 . Note that there can be no i ∈ I for which

α(i) = j2 as Bi,j1 ≥ Bi,j2 and Pj2 ≥ Pj1 imply that Bi,j1 − Pj1 ≥ Bi,j2 − Pj2 . This gives a

contradiction even when Bi,j1 − Pj1 = Bi,j2 − Pj2 , as ties are broken in the favor of the item with

the smaller index.

Note that there is a high level of degeneracy with regards to the optimal prices as items without

a buyer in the solution, that is j 6∈ J̄ , can assume arbitrarily high prices without changing the

assignment vector or total revenue. It is possible to extend Proposition 4 to show a complete

ordering of item prices, including the ones without a buyer. In other words, we can show that

there exists an optimal price vector P ′ with the same assignment vector and total revenue that

satisfies P ′
j ≥ P ′

j+1 for all j ∈ J \ {m}. This can simply be achieved by setting the prices of the

items in J \ J̄ as high as possible without violating the ordering condition.

Next, we present a basic property of assignment vectors under Assumption 3.

Proposition 5 Given a price vector P ∈ Rm and the corresponding assignment vector α ∈ Jn,

let Ī = {i ∈ I : Bi,α(i) ≥ Pα(i)}. Then, under Assumption 3, Ī = {1, 2, , . . . , i′} for some i′ ∈ I.

Proof. Let i ∈ Ī \ {1}, and consider buyer i− 1 ∈ I . As Bi,α(i)−Pα(i) ≥ 0 and Bi−1,α(i) ≥ Bi,α(i)

by Assumption 3, we have Bi−1,α(i) − Pα(i) ≥ 0 and therefore i − 1 ∈ Ī as well. Combining this

this observation with the fact that Ī 6= ∅, the proof is complete.
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3 A DP algorithm for a restricted pricing problem

In this section, we study a restriction of the pricing problem where the price vector P is required

to satisfy the following property

max
j∈J

{Bi,j − Pj} ≥ 0

for all i ∈ I . In other words, all buyers need to be assigned to an item with non-negative utility.

In this case total revenue simply becomes
∑

i∈I DiPα(i).

Throughout this section, we also assume that buyer benefits B ∈ Rn×m satisfy the extended Monge

property.

We denote the optimal price vector by P ∗ ∈ Rm and the corresponding assignment vector by

α∗ ∈ Jn. Without loss of generality, we also assume that the optimal assignment vector partitions

buyers into contiguous groups as described by Proposition 3. In other words, I = ∪k
l=1Cl where

Cl = {sl, . . . , tl} and α∗(i) = αl for all i ∈ Cl. Furthermore, αl ≤ αl+1 for l = 1, . . . , k − 1.

Finally, we will use the following proposition to assume that α1 = 1.

Proposition 6 Without loss of generality, α∗(1) = 1.

Proof. Let α∗(1) = α1 6= 1. By Proposition 4, α1 is the most expensive item that has a buyer,

that is, P ∗
α1

≥ P ∗
αl

for l = 1, . . . , k. Furthermore, by Assumption 2, B1,1 ≥ B1,α1 and as α1 6= 1,

we also have P ∗
α1

B1,α1 > B1,1 − P ∗
1 . Since ties are broken in favor of the item with the smaller

index, P ∗
1 > P ∗

α1
.

Let P ∗∗ be the price vector obtained from P ∗∗ by reducing the price of item 1 to P ∗
α1

and keeping

the remaining prices the same. Add let α∗∗ be the corresponding assignment vector. Clearly,

α∗∗(1) = 1. In addition, by Proposition 1, if α∗∗(i) 6= α∗(i), for some i ∈ I , then α∗∗(i) = 1. In

other words, the only assignments that would change are for buyers who would switch to item 1.

As the new price of item 1 is equal to the highest price in the original solution, the total revenue

can only increase.

Therefore, P ∗∗ is also an optimal price vector and α∗∗(i) = 1.

We next present two observation that relate optimal prices to the assignment vector using buyer

benefits.

Proposition 7 All customers are served if and only if P ∗
α∗(n) = Bn,α∗(n).

Proof. Let α∗(n) = αk. As Assumption 3 holds, if Bn,αk
= P ∗

αk
, then Bi,αk

≥ P ∗
αk

for all i ∈ I ,

and therefore, all buyers are served.

Next, assume that all buyers are served. Note that, by definition, αk is the item with the largest

index that has a buyer. As P ∗ is optimal, by Proposition 4, P ∗
αk

is the price of the cheapest item

that has a buyer and by Proposition 2, P ∗
αk

= mini∈Ck
{Bi,α(i)} = Bn,αk

.

- 7 -
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Proposition 8 For any l ∈ {1, 2, . . . , k− 1}, buyer tl is indifferent between items αl and αl+1. In

other words, if k > 1, then Btl,αl
− P ∗

αl
= Btl,αl+1

− P ∗
αl+1

.

Proof. Assume the claim does not hold for some l ∈ {1, 2, . . . , k − 1}. Since α∗tl
= αl, we

have Btl,αl
− Pαl

≥ Btl,αl+1
− Pαl+1

. If the claim is wrong, tl must strictly prefer item αl, i.e.

P ∗
αl

< Btl,αl
+ P ∗

αl+1
−Btl,αl+1

.

In this case, if P ∗
αl

is increased to P ∗
αl+1

+Btl,αl
−Btl,αl+1

customer tl and therefore, by Proposition

1 and Proposition 3, no other customer would abandon item αl to buy a cheaper item. Note that

P ∗
αl

, and therefore the total revenue can be strictly increased, a contradiction.

A straight forward observation based on Proposition 8 is the following.

Corollary 9 For any l ∈ {1, 2, . . . , k − 1}, P ∗
αl
− P ∗

αl+1
= Btl,αl

−Btl,αl+1
.

Combining this observation with the fact that Bn,αk
= P ∗

αk
by Proposition 7, it is possible to

express the optimal prices using buyer benefits provided that the optimal assignment vector is

known. That is,

P ∗
αl

= P ∗
αk

+

k−1
∑

q=l

(

P ∗
αq
− P ∗

αq+1

)

= Bn,αk
+

k−1
∑

q=l

(

Blq ,αq
−Blq ,αq+1

)

.

for all l ∈ {1, 2, . . . , k − 1}.

Furthermore, total revenue can also be expressed using buyer benefits. For ease of notation, define

D(a, b) =
∑b

i=a Di and let αl+1 = m + 1 and Bn,m+1 = 0 and define P ∗
m+1 = 0. We can now write

n
∑

i=1

DiP
∗(α∗(i)) =

k
∑

h=1

D(sh, th)P ∗(αh)

=

k
∑

h=1

D(sh, th)

(

k
∑

l=h

(P ∗(αl)− P ∗(αl+1))

)

=

k
∑

l=1

D(1, tl) (P ∗(αl)− P ∗(αl+1))

=
k
∑

l=1

D(1, tl)
(

Btl,αl
−Btl,αl+1

)

provided that k > 1. If k = 1, then α1 = 1 and z∗ = D(1, n)Bn,1.

In other words, given an optimal assignment vector, it is possible to compute the resulting objec-

tive function value (total revenue) without explicitly constructing the optimal price vector. This

observation forms the basis of our dynamic programming recursion as the problem now reduces

to searching for an optimal assignment vector which is a combinatorial object. We next define a

family of problems obtained by perturbing the original problem.

- 8 -
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Let PP(a, b) denote the pricing problem with the buyer set reduced to Ī = {a, . . . , n}, and the item

set reduced to J̄ = {b, . . . , m}. Furthermore, the demands D̄ for the reduced problem are obtained

by setting D̄a = D(1, a) and D̄i = Di for i > a + 1. The requirement that all buyers should

be served still holds for PP(a, b). Notice that if the original befit matrix B satisfies any of the

Assumptions 1-3, the benefit matrix of the reduced problem also satisfies the same assumptions.

Let z∗(a, b) denote the optimal value of PP(a, b). Using this notation, the original problem can

now be called PP(1, 1) and the optimal value of the original problem z∗ is equal to z∗(1, 1). In

the following two Propositions, we relate the optimal value of the reduced problem to the optimal

value of the original problem.

Proposition 10 Let b ∈ J , then,

z∗ ≥ D1 (B1,1 −B1,b) + z∗(2, b).

Proof. Given the optimal solution to the reduced problem PP(2, b), it is possible to obtain a

solution to the original problem as follows: By Proposition 6, we can assume that the optimal

assignment vector of PP(2, b) assigns buyer 2 to item b. If b > 1, the price vector of the reduced

problem is augmented by setting P1 to Pb +B1,1−B1,b ≥ Pb ≥ 0 and setting prices of all remaining

items {2, . . . , b − 1} (if any) to a large number to obtain a price vector for the original problem.

Next, we augment the optimal assignment vector of the reduced problem by assigning buyer 1

to item 1 to construct an assignment vector to the original problem. Note that the augmented

price vector is consistent with the augmented assignment vector. Also note that all buyers are still

served as B1,1 − P1 = B1,b − Pb ≥ B2,b − Pb ≥ 0.

The objective value of this solution is z∗(2, b) + D1 (B1,1 −B1,b).

Proposition 11 Let α∗ be the optimal assignment vector for the pricing problem. Then,

z∗ = D1

(

B1,1 −B1,α∗(2)

)

+ z∗(2, α∗(2)).

Proof. First note that if α∗(2) = 1, that is, α∗(1) = α∗(2), the claim is correct as z∗ = z∗(2, 1).

On the other hand, assume α∗(2) 6= 1 and therefore the group of buyers assigned to item 1 only

consists of buyer 1, i.e., C1 = {1}.

In this case, it is possible to truncate the solution to the pricing problem by deleting buyer 1 and

items 1, . . . , α∗(2)− 1 to obtain a solution to PP(2, α∗(2)), implying

z∗(2, α∗(2)) ≥ z∗ −D1

(

P ∗
1 − P ∗

α∗(2)

)

= z∗ −D1

(

B1,1 −B1,α∗(2)

)

Observing that z∗(2, α∗(2)) ≤ z∗ −D1

(

B1,1 − B1,α∗(2)

)

by Proposition 10 completes the proof.

Combining Proposition 10 and 11, we have therefore shown that:

z∗ = z∗(1, 1) = max
b∈J

{

D1 (B1,1 −B1,b) + z∗(2, b)
}

(3)

which leads to the following dynamic programming recursion:

- 9 -
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Proposition 12 For all i ∈ I \ {1, n} and j ∈ J

z∗(i, j) = max
b∈{j,...,m}

{

D(1, i) (Bi,j −Bi,b) + z∗(i + 1, b)
}

Proof. It suffices to apply inequality (3) after renumbering buyers and items in PP(i, j) starting

from 1 instead of i and j.

Finally, as PP(n, j) is a trivial problem with a single buyer, we have z∗(n, j) = D(1, n)Bn,j by

Proposition 6. Therefore under Monge property and with the additional requirement that all buyers

are served, the pricing problem can be solved by the dynamic programming algorithm below.

Algorithm 1

for j = m down to 1 do

z∗(n, j) = D(1, n)Bn,j

for i = n− 1 down to 2 do

for j = m down to 1 do

z∗(i, j) = max
b∈{j,...,m}

{

D(1, i) (Bi,j −Bi,b) + z∗(i + 1, b)
}

end do

end do

z∗ = z∗(1, 1) = max
b∈J

{

D1

(

B(1,1 −B1,b

)

+ z∗(2, b)
}

After applying Algorithm 1, it is straight forward to construct the optimal solution as follows: First

set α∗1 = 1. Then, for the remaining buyers i ∈ I \ {1}, sequentially set α∗i to the item b ≥ α∗i−1

that satisfies

z∗(i, b) = z∗(i− 1, α∗i−1)−D(1, i− 1)
(

Bi−1,α∗
i−1

−Bi−1,b

)

.

The optimal prices can now be constructed by Proposition 2 and Corollary 9. Therefore, we have

shown the following result.

Theorem 13 If all buyers have to be served and buyer benefits satisfy Assumptions 1,2 and 3,

then the pricing problem can be solved by Algorithm 1 in O(nm2) time using a state space of size

O(nm).

4 A DP algorithm under the extended Monge property

In this section we show that Algorithm 1, with minor modifications, solves the pricing problem if

buyer benefits satisfy extended Monge property. In other words, we drop the requirement that all
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buyers need to be served. In this case, by Proposition 5 , the collection of buyers with non-negative

utility in the optimal solution are Ī = {i ∈ I : Bi,α∗(i) ≥ P ∗
α∗(i)} = {1, 2, , . . . , i′} for some i′ ∈ I .

Therefore, it is possible to solve the pricing problem under the extended Monge assumption by

solving n (one for each possible value of i′) instances of the restricted problem studied in Section 3.

Each restricted instance has a subset of the original customers, namely {1, . . . , i′}, all of which have

to be served. Maximum revenue obtained by the solutions of these restricted problems gives the

maximum revenue for the original problem. This algorithm can actually be improved as described

below.

Notice that if a matrix C ∈ Rn×m
+ satisfies the extended Monge property then C ′ ∈ Rn×m+1

+ also

satisfies the extended Monge property where C ′ is obtained from C by adding a column of zeroes

at the end. Therefore, by simply adding an artificial item which has zero benefit for every buyer,

it is possible to generate a new instance of the pricing problem that satisfies Assumptions 1, 2 and

3. Furthermore, without loss of generality, the price vector can now be required to serve all buyers

as the price of the new item can always be set to 0 without changing the value of the optimal

solution. It is easy to obtain a one-to-one correspondence between the solutions of the original

problem instance and the new instance by setting the price of the new item to zero and assigning

all unserved buyers by the original problem to the new item. Clearly corresponding solutions of

the two problems have the same objective function value. Therefore, we have the following result.

Theorem 14 If buyer benefits satisfy the extended Monge property, the pricing problem can be

solved by dynamic programming in O(nm2) time using a state space of size O(nm).

Proof. Given an instance of the pricing problem, create a new instance with the same set of buyers

and the item set J ′ = J ∪ {m + 1}. The benefit matrix B′ ∈ Rn×m+1 is obtained from B ∈ Rn×m

by setting Bi,m+1 = 0 for the missing entries. Applying Algorithm 1 to the new instance gives the

optimal solution to the original problem. Buyers i ∈ I with α∗(i) = m + 1 are not served.
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