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SPEED-UP IN DYNAMIC PROGRAMMING*

F. FRANCES YAO"

Abstract. Dynamic programming is a general problem-solving method that has been used widely in
many disciplines, including computer science. In this paper we present some recent results in the design
of efficient dynamic programming algorithms. These results illustrate two approaches for achieving efficiency:
the first by developing general techniques that are applicable to a broad class of problems, and the second
by inventing clever algorithms that take advantage of individual situations.

1. Introduction. Dynamic programming is a general problem-solving technique
that has been used widely in operations research, economics, control theory and, more
recently, computer science. The present paper will be oriented toward the use of
dynamic programming as a paradigm for designing algorithms in computer science.
As computational efficiency is a major goal in algorithm design, we will be interested
in techniques which allow us to speed up algorithms produced by straightforward
dynamic programming. There are two promising directions for such research, namely,
the development of general techniques that are applicable to a large class of problems,
and the invention of efficient algorithms for specific problems by taking advantage of
their special properties. In this paper we give a review of some recent progress in
these directions. In 2, we discuss a general speed-up technique that can be applied
to dynamic programming problems when the cost function satisfies certain restrictions
known as the Quadrangle Inequalities. In 3, we give an improved algorithm for
finding the optimal order of multiplying a sequence of matrices.

We will not give proofs for the theorems cited in this paper. For proofs as well
as further discussions, the reader is referred to [8] for the topic considered in 2, and
[4], [9] for the topic considered in 3.

2. Quadrangle inequalities.
Example 1. Given a set of points X on the plane, how do we find five points

that span a pentagon with maximum perimeter?
A natural solulion based on dynamic programming would be to seek out maximum

triangles, maximum quadrilaterals, and maximum pentagons in turn. It is not difficult
to argue that we can restrict our consideration to the extreme points of X. Therefore
let us assume the convex hull of X to be P (vl, v., , vn), and the distance between
vi and vj to be dij. Then maximum triangles can be found by computing the largest
entry in the matrixD +D (R)D, whereD (dij), and (R) denotes the (max, +)-multiplica-
tion of two matrices defined by

F(R)G (p/j), wherepij max {f +gli <-k <-f}forF=(fij) and G (g/j).

Since (R) is associative, we will write D2 for D (R)D, and D for D t-1 (R)D. A maximum
pentagon then corresponds to a maximum entry inD +D4, whereD4 may be evaluated
as D2(R)D2. In general, a maximum t-gon can be found by first computing Dt- and
then finding a maximum entry in D +D t-i. Since Dt- can be obtained from D in
O(log t)(max, +)-multiplications (see [7, 4.6.3], for example) at a cost of O(n 3) steps
per matrix multiplication, the answer can be obtained in O(n 3 log t) steps.

Now we pose the question: Can D (R)D be computed in time faster than O(n3)?
It turns out that, by properties of the Euclidean metric dij, if we let K(i, ]) denote
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max {kldik + dkt (D (R)Dit}, thenK (i,/) is a monotone function of and/" (see Theorem
1).

CLAIM 1. K(i,f)<=K(i,f+l)<-K(i+l,f+l).
This property enables us to limit our search for the optimal k, while computing

(D(R)D)id+l=max{di.k +dk.t+li <=k <=f + l}, to those k that lie between K(i,f) and
K(i + 1, f + 1), provided that the latter two values are already known. This suggests
computing (D(R)D)it by diagonals, in order of increasing values of f-i. The cost for
computing all entries of one diagonal is O(n) as a result of Claim 1 and the total cost
for obtaining D (R)D is thus only O (n 2).

More generally, when one forms the product D (R)D for any r-> 1 and s >-1,
monotonicity properties analogous to Claim 1 also hold (Theorems 1 and 2). This
implies that our earlier dynamic programming algorithm for finding maximum t-gons
can be speeded up from O(n 3 log t) to O(n 2 log t).

The critical property of the Euclidean distance function dit that makes Claim 1
true is what we call the "quadrangle inequalities". We say that a real-valued function
]’(i,/), where 1 =< <= / _-< n, satisfies convex quadrangle inequalities (convex QI) if

f(i, k) +f(j, l) >- f(i, l) +f(j, k) for <- / =< k -< l.

The same inequalities with signs reversed are called concave quadrangle inequalities
(concave QI):

f(i, k)+f(/, I)<-f(i, I)+f(/, k) for <=/" <= k <= I.

Example 2. It is easy to see that the distance function dit for vertices of a convex
polygon in Example 1 satisfies the convex QI. Some other examples of functions are
given below.

f(i, ]) ai -b ai+ -b. -b a )
f(i, /) ai + ai+ +’" + at-
f(i, /) ai+l -b ai+2 q- + at-1

all satisfy both concave QI and convex QI;

f(i, /) ai ai+l at satisfies concave QI if all ak’S are >_- 1.

Furthermore, convex QI are preserved by convex, nondecreasing mappings (for
example, log dit satisfies convex QI); while concave QI are preserved by concave,
nondecreasing mappings (for example, f2(i, j) satisfies concave QI for any of the four
f’s defined above). Additional QI-preserving mappings that are of particular import-
ance to dynamic programming will be discussed in Theorem 2 and 3 below.

Our earlier Claim is derived from the following general theorem. Let gfg(i, j)
denote max{klf(i,k)+g(k,j)=(f(R)g)(i,j)}; that is, K:(R)g(i,j) is the largest index k
for which f(i, k)+g(k,/) achieves the maximum. For simplicity, we will write K(i,f)
for Kr(R)g(i, f) whenever the context f(R)g is understood.

THEOREM 1. If both f and g satisfy convex QI, then Kr(R)g(i, f) is a monotone

function of and ]"

K(i, /) <-_K(i + 1,/) <-_K(i + 1,/+ 1).

As we saw in Example 1, the above theorem allows us to compute K:(R)g and f (R) g
with a cost of only O(n) per diagonal, thus O(n 2) in total.

COROLLARY A. If both f and g satisfy convex QI, then f(R)g and K:(R)g can be
computed in O(n 2) time and space.
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The above results regarding convex QI and maximization problems have parallels
in concave QI and minimization problems. Define

fQ) g(i, /’) min (f(i, k) + g(k, ])li <-- <- k.
COROLLARY B. If both f and g satisfy concave QI, then f (R)g and Krg can be

computed in O(n 2) time and space.
The following theorem allows us to apply these corollaries iteratively, in situations

such as Example 1.
THEOREM 2. If both f and g satisfy convex QI, then f(R)g also satisfies convex

QI. If both f and g satisfy concave QI, then f(2) g also satisfies concave QI.
We also find the concepts of QI useful in the evaluation of recurrence relations

involving either minimization or maximization operations. We will mention one such
result for concave QI.

A function w (i,/’) where -< ] is said to be monotone if it is monotonically increasing
on the lattice of intervals (ordered by inclusion), i.e.,

w (i,/’) <_- w (i’,/") if [i,/’]
_

[i’,/"].

THEOREM 3. Let c (i,/’), where <-_ f, be defined by

()

c (i, i) w (i, j) + min [c (i, k 1) + c (k,/’)]
i<]<--k

c(i,i)=a(i).

If w satisfies concave QI and is monotone, then c satisfies concave QI.
In consequence, we have the following speed-up result analogous to Theorem 1

and its corollaries.
COROLLARY. For a function c(i, ]) satisfying the description of Theorem 3, we

can compute Kcc (i, f) and c (i, f) for 0 <-_i <-_ ] <-n in O(n 2) time and space.
Example 3. A bookstore is interested in organizing its index files in a way to

facilitate look-ups. Take the subject index for example. Suppose that the index,
alphabetically ordered, consists of a number of key subjects such as {ART, COOK-
ING, ., TRAVEL}, plus other subjects that fall in the intervals in between, namely
{A-ART, ART-COOKING,...}. We will denote the key subjects by
{gl, K2, gn}, and the intervals by {Io, Ix, , I, }. Assume that the access probabil-
ity for key Ki is pi, and that for interval/ is qi. We would like to build a binary tree,
with the Ki’s as internal nodes, and the/;s as external nodes, such that the expected

NOVEL

E

Io It I2 / Is 16 17 18

I3

FIG. 1. A binary search tree.
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number of comparisons in looking up a subject, namely

pi(1 + level of Ki) + Y’. qj(level of/.)
lin

is minimized (Fig. 1).
Since all subtrees of an optimal tree must themselves be optimal, this problem

can be solved by dynamic programming. One naturally arrives at recurrence relations
of the form (1), with c(i, f) being the minimum cost of a subtree for keys {Ki/l, , K}
and intervals {Ii,"’,/}, and

(2)
w(i,f)=p+l+...+p+q+. .+q,

a(i) =0.

The cost of the optimal tree that we are interested in is c (0, n). As noted in Example
2, the function w (i,/’) in (2) satisfies concave QI. Therefore by the corollary to Theorem
3, we can compute the values of c(i, ]) in O(n 2) time and space. Furthermore, once
c (0, n)and Kcc (0, n) are found, we can then trace the information in Kc(i,/’) "from
top down" to obtain the actual construction of an optimal binary tree in O(n) steps.

Remarks. The problem of optimal binary search trees discussed above is a classical
example of dynamic programming in the computer science literature. The original
O (n 3) solution by setting up the recurrence relations (1) was due to Gilbert and Moore
[3]. Then Knuth [5] showed that the algorithm can be speeded up to O(n 2) by proving
that Kc,(i, ]) is monotone. However, his proof of monotonicity was given for the
particular w(i, ]) as defined by (2), and thus not apparently generalizable. For the
problem considered in Example 1, some recent results can be found in [2].

3. Multiplying a sequence of matrices. We now turn to another example of a
classical dynamic programming algorithm [1] which saw much notable progress lately.

Example 4. Let M,ME,"" ,M,, be n matrices of dimensions ddE, dE
d3, , dn dn+, respectively. What is the optimal order, by multiplying two matrices
at a time, for evaluating the productM ME" Mn ?

To be more specific, let us assume that the cost for multiplying a p q matrix
with a q r matrix is pqr. Consider, for example, four matrices M1,... ,M4 of
dimensions 100 1, 1 50, 50 20 and 20 1. Evaluating their product in the left-to-
right order ((M ME) M3) M4 would cost 125,000 operations, while the minimum
cost, achieved byM x ((ME x M3) x M4), is only 2,200.

Using dynamic programming, a solution to this problem can be obtained by
defining c(i, ]) to be the minimum cost for evaluatingM xM+. x M., and setting
up the recurrence relations

c(i, ])= min [c(i, k 1)+c(k, j)+didkdi]
i<k<--j

c(i,i)=O.

if/</,

This gives an O(n 3) algorithm for computing c(1, n). Can we do any better? As our
tools based on quadrangle inequalities (Theorem 3) do not apply to recurrence relations
of the present form, we must come up with a different technique.

In the following, we will first develop a geometric representation for the problem.
Then, by looking at the case n 3, we will extrapolate some simple properties of the
optimal solution. We then show how these properties can be utilized to lead to an
O(n 2) dynamic programming algorithm.
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FIG. 2. Geometric representation ]’or the evaluation o]’ a matrix chain.

We will use the vertices of an (n + 1)-sided convex polygon in the plane to
represent the n + 1 parameters (dl, d2," , d,/l). A directed edge from di to dj, where
<], will be interpreted as a matrix of dimension d x dj, representing the product

Ms M+ x. Mj_1. Thus, the n + 1 sides of the convex polygon correspond to the
n input matrices and the final product, while any chord represents a potential partial
product. It is easy to see that there is a one-to-one correspondence between the
different ways of parenthesizingM ME" M, and the possible ways of triangulat-
ing the polygon (dl, dE, dn+l). If we associate a cost of didkd with a triangle whose
vertices are labeled d, dk and d, then our original problem becomes the problem of
finding an optimal triangulation of the polygon (d, d2,’’’, dn/). Figure 2 illustrates
the triangulations corresponding to the two different ways of evaluating M1 M2
M3 M4 mentioned earlier.

From now on, we will refer to the d’s as weights. Let w <-w2-<"" -< wn be the
weights of an n-sided convex polygon P sorted into nondecreasing order. (The ordering
may not be unique as some of the weights may be equal; we assume that a particular
ordering is chosen and remains fixed.) We will use ww to denote a directed edge
from w to w, and WiWjWk to denote a triangle with vertices w, w and Wk, when there
is no ambiguity to these notations. We will also use the term partition interchangeably
with triangulation.

Consider the case of a quadrilateral. If w and WE face each other, then the
arc wWE gives us an optimal partition. This is so because

W1 W2" W4 + W1 W2" W3 W2" W3 W4 -I- W1 W3 W4

or

1/w3+ 1/w4<= 1/wl + 1/w2.

Similarly, if w faces wa, then w w3 is an optimal partition, because

l/w2 + 1/W4 <- 1/w + 1/w3.

On the other hand, if w faces w4, then either ww4 or w2w3 could be optimal.
The above generalizes to an n-gon by an inductive argument.
LEMMA 1. Let P be an n-gon with weights w <-_ w2 <-"" <= w,. Then there exists

an optimal partition 7r ]’or which the ]ollowing is true.
(a) wx and w2 are ad]acent (either by a side edge or by a chord); similarly ]or Wl

and w3.

(b) ifboth w w2 and w w3 are side edges, then either w w4 or w2w3 exists as a chord.
Lemma 1 implies that we can set up the following recursive procedure or finding

an optimal triangulation. We use P to denote the subpolygon of P consisting of those
vertices lying between wi and w in a clockwise traversal.
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PROCEDURE Partition [P]
begin

if [PI 1 or 2 then return
else

if P is a triangle then return P
else

else

else

end.

if wl and W2 are not adjacent then return Partition [P1,2] [-J Partition [P2,1]

if W1 and W3 are not adjacent then return Partition [P,3] t_J Partition [P3,1]

return better of {Partition [P2,3] [--J Partition [P3,2],
Partition [Px,4] [-J Partition [P4,]};

As it is, this recursive algorithm requires exponential time, since in the worst
case the last else clause could generate two problems of size n-c for some constant
c. We will show that, however, the total number of calls on distinct subpolygons {Q}
is bounded by O(n2). Furthermore, these O(n 2) subpolygons can be ordered in such
a way that in computing Partition[Q], solutions to its subproblems are already
available. In other words, one can turn Partition into a dynamic programming algorithm
with an O(n 2) space and time bound. To this end, we need a characterization of those
chords wiwj in the original polygon P that may arise as WEW3 in some recursive call
spawned by Partition [P].

DEFINITION. A (directed) chord wiwj of P is called a bridge, if all weights Wk in

Pii satisfy k _-> max {i,/’}.
Note that both w w2 and w2w are bridges, and it is the only instance where two

bridges correspond to the same (undirected) edge. The side edges of P may be viewed
as degenerate bridges, henceforth we will include them in the definition for con-
venience.

It is easy to check that bridges have the following properties’
1. Two bridges never intersect (except possibly at the endpoints); therefore there

are at most O(n) bridges.
2. A partial order < can be imposed on the set of bridges if we define w i,w, < wiw

to mean PiT - Pij.
3. The transitive reduction of < (i.e., the subgraph of < with all edges implied

by transitivity removed) is a forest, for a <b and a <c imply that b and c are
comparable in <. We shall denote this forest by T[<]. Note that ww2 and w2w are
the two roots of T[<], and the leaves are the degenerate bridges (sides) of P.

4. Any nonleaf node wiwi of T[<] has exactly two sons, namely WiWk and WkWi
where k is the smallest index (aside from and/’) in Pii; we will refer to them
respectively, assuming <f, as the minson and the maxson of wiwi. Thus T[<] is
actually the union of two binary trees. Figure 3 gives an example of a polygon P and
the corresponding T[<].

Procedure MarkBridges below identifies and outputs the bridges of P as it makes
one clockwise scan of the weights. The bridges are actually generated in (slightly
modified) postorder [6] of the tree T[<]; therefore, in particular, they are topologically
sorted into a nondecreasing order consistent with <. The procedure employs a
stack S, and we use the notations S x abd x S for pushing and popping as defined
in [6].
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FIG. 3. A polygon Pand the correspondingforest T[<]. (The weights are represented by their indices only.)

PROCEDURE MarkBridges [P];
begin

find the minimum weight w 1;

w<-wl;

repeat
begin

Sw;
w - nextweight;
while top(S) > w do

begin <:: S;

--Going clockwise from w 1.

output (top(S), t) and (t, w) as bridges;
end;

end
until w w1; --Halt after returning to w 1.

end.

DEFINITION. A subpolygon Q of P is called a cone, if Q Pij LJ WiWjWk where
b wiw is a bridge of P, and k _-<min {i,/’}. We also denote a cone Q by (b, Wk)
(Fig. 4).

In particular, Pi for any bridge ww] is a cone, and P itself is the union of two
cones P1,2 and P2,1. The existing partial orders on bridges and on weights induce a
natural alphabetic order on cones.

DEFINITION. We say that a cone Q’= (b’, W k,) precedes a cone Q (b, Wk) if
either (1) b’<b, or (2) b’=b and k’>-_k.

LEMMA 2. Any subpolygon that may arise in the execution of Partition [Q], ]:or
a cone Q (b, Wk), is either a triangle or a cone Q’ which precedes Q.

Thus we can use dynamic programming to compute and tabulate the solutions
to all cones in accordance with their precedence order. The actual recurrence relations

W

Wk’

FIG. 4. Example of two cones (the shaded regions).
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have been incorporated into the following program. We use Partition [Q] to refer to
the table entry containing the optimal solution to cone Q. The outer for loop iterates
over all b in the order as they are generated by MarkBridges, while the inner for
loops iterate over all Wk with k _<-i in decreasing order. The algorithm runs in O(n 2)
time, as there are at most 2n bridges, and at most n cones for a given bridge.

PROCEDURE DP-Partition [P]
begin

tor b wiwj B do
begin

if b is a leaf then

--B is the output of Markbridges [P].
--Assume that </’.

Ior all cones Q (b, Wk with k _-< do
if Wk Wi then Partition [Q]*-

else Partition [Q],,- Q;
if b is not a leaf then

for all cones Q (b, Wk) with k -<_ do
if Wk Wi then Partition [Q].- Partition[(minson (b), wi)] U

Partition[(maxson (b ), wi)]
else Partition [Q]

better of {Partition [(b, wi)] [.J WiWjWk,
Partition[(minson (b ), Wk)]
Partition [(rnaxson (b), Wk)]};

end;
Partition [P].- Partition [P1,2] t.J Partition [P2,1];

end.

Remark: In 1980, Hu and Shing [4] gave an O(n log n) algorithm for solving
this problem. However, their presentation is exceedingly long; a more concise exposi-
tion, including the preceding algorithm, can be found in Yao [9].

4. Conclusions. We surveyed some recent results in the design of dynamic pro-
gramming algorithms. These results illustrate two approaches for obtaining speed-up
in dynamic programming: one general and the other problem specific. In the first
case, the quadrangle inequalities provide a type of sufficient conditions by which
speed-up is guaranteed, and these conditions apply to a broad class of problems. In
the second case, we present a nonobvious algorithm for solving the matrix chain
product problem efficiently. Even though the techniques involved in the second case
are problem specific, it serves as an excellent example for illustrating how speed-up
comes about in dynamic programming: namely, by trying to solve individual subprob-
lems fast, and by trying to keep small the total number of distinct subproblems that
need solving.
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