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EFFICIENT PARALLEL ALGORITHMS FOR STRING EDITING
AND RELATED PROBLEMS*
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SCOTT MCFADDIN

Abstract. The string editing problem for input strings x and y consists of transforming x into
y by performing a series of weighted edit operations on x of overall minimum cost. An edit operation
on x can be the deletion of a symbol from x, the insertion of a symbol in x or the substitution of a
symbol of x with another symbol. This problem has a well-known O(Ixllyl) time-sequential solution.
Efficient PRAM parallel algorithms for the string editing problem are given. If m min(Ixl, lY[)
and n- max([xl, lYl), then the CREW bound is O(logm log n) time with O(mn/logm) processors.
The CRCW bound is O(log n(log log m)2) time with O(mn/log log m) processors. In all algorithms,
space is O(mn).

Key words, string-to-strirlg correction, edit distances, approximate string searching, spelling
correction, longest common subsequence, shortest paths, grid graphs, analysis of algorithms, parallel
computation, cascading divide and conquer
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1. Introduction. One of the major goals of parallel algorithm design for PRAM
models is to come up with parallel algorithms that are both fast and efficient, i.e.,
that run in polylog time while the product of their time and processor complexities
is within a polylog factor of the time complexity of the best sequential algorithm for
the problem they solve. This goal has been elusive for many simple problems that
are trivially in the class NC (recall that NC is the class of problems that are solvable
in O(log(1) n) parallel time by a PRAM using a polynomial number of processors).
For example, topological sorting of a DAG and finding a breadth-first search tree of
a graph are problems that are trivially in NC, and yet it is not known whether either
of them can be solved in polylog time with n2 processors.

This paper gives parallel algorithms for the string editing problem that are both
fast and efficient in the above sense. We give a CREW-PRAM algorithm that
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runs in O(logmlogn) time with O(mn/logm) processors, where m (respectively,
n) is the length of the shorter (respectively, longer) of the two input strings. We
also give a CRCW-PRAM algorithm that runs in O(logn(loglogm)2) time with
O(mn/log log m) processors. In both algorithms, space is O(mn).

In related work, Ranka and Sahni [17] have designed a hypercube algorithm
for m n that runs in O(v/n’logn) time with n2 processors, and have considered
time/processor tradeoffs. In independent work, Mathies [15] has obtained a CRCW-
PRAM algorithm for the edit distance that runs in O(log n log m) time with O(mn)
processors if the weight of every edit operation is smaller than a given constant integer.
Also independently, Aggarwal and Park have, in [3] and [4], given an O(log m log n)
time, O(mn/log m) processor CREW-PRAM algorithm, and an O((log log m)2 log n)
time, O(mn/(log log m)2) processor CRCW-PRAM algorithm. The basic structure of
their algorithms is similar to ours, but they use different methods for the "conquer"
stage (in particular, they do not use the cascading divide-and-conquer scheme). In
the terminology of [3] and [4], the "conquer" stage corresponds to the problem of
computing the "tube maxima of a totally monotone n n n matrix." Within the
"conquer" stage, the computation of a single row (as in 6.1) corresponds in [3] and
[4] to the problem of "computing the row maxima of a totally monotone n n matrix."
We refer the reader to [2]-[4] for the myriad other applications of the "tube maxima"
and "row maxima" problems.

Recall that the CREW-PRAM model of parallel computation is the synchronous
shared-memory model where concurrent reads are allowed but no two processors can
simultaneously attempt to write in the same memory location (even if they are trying
to write the same thing). The CRCW-PRAM differs from the CREW-PRAM in that
it allows many processors to write simultaneously in the same memory location: in
any such common-write contest, only one processor succeeds, but it is not known in
advance which one.

The rest of this Introduction reviews the problem, its importance, and how it can
be viewed as a shortest-paths problem on a special type of graph.

Let x be a string of Ixl symbols on some alphabet I. We consider three edit
operations on x, namely, deletion of a symbol from x, insertion of a new symbol in x
and substitution of one of the symbols of x with another symbol from I. We assume
that each edit operation has an associated nonnegative real number representing the
cost of that operation. More precisely, the cost of deleting from x an occurrence
of symbol a is denoted by D(a), the cost of inserting some symbol a between any
two consecutive positions of x is denoted by I(a), and the cost of substituting some
occurrence of a in x with an occurrence of b is denoted by S(a, b). An edit script on
x is any consistent (i.e., all edit operations are viable) sequence a of edit operations
on x, and the cost of a is the sum of all costs of the edit operations in a.

Now, let x and y be two strings of respective lengths Ixl and lYl. The string editing
problem for input strings x and y consists of finding an edit script a of minimum cost
that transforms x into y. The cost of a is the edit distance from x to y. In various ways
and forms, the string editing problem arises in many applications, notably, in text
editing, speech recognition, machine vision and, last but not least, molecular sequence
comparison. For this reason, this problem has been studied rather extensively in the
past, and forms the object of several papers (e.g., [13], [14], [16], [18]-[20], [23], to list a
few). The problem is solved by a serial algorithm in O(Ixllyl) time and space, through
dynamic programming (cf., for example, [23]). Such a performance represents a lower
bound when the queries on symbols of the string are restricted to tests of equality [1],
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FIG. 1.1. Example of a 5 x 10 grid DAG.

[24]. Many important problems are special cases of string editing, including the longest
common subsequence problem and the problem of approximate matching between a
pattern string and text string (see [12], [21], and [22] for the notion of approximate
pattern matching and its connection to the string editing problem). Needless to say,
our solution to the general string editing problem implies similar bounds for all these
special cases.

The criterion that subtends the computation of edit distances by dynamic pro-
gramming is readily stated. For this, let C(i,j), (0 <_ <_ Ixl, 0 <_ j <_ lYl) be the
minimum cost of transforming the prefix of x of length into the prefix of y of length
j. Let sk denote the kth symbol of string s. Then C(0, 0) 0, and

C(i,j) min(C(i- 1,j 1)/ S(xi,yj), C(i- 1,j)/ D(xi), C(i,j 1)+ I(yj)}

for all i,j, (1 _< _< Ixl;1 _< j _< lYl). Hence C(i,j) can be evaluated row by
row or column by column in )(Ixllyl) time [23]. Observe that, of all entries of the
C-matrix, only the three entries C(i- 1,j- 1), C(i- 1,j), and C(i,j- 1) are
involved in the computation of the final value of C(i, j). As was observed in [10], such
interdependencies among the entries of the C-matrix induce an (Ixl / 1) (lYl / 1)
grid-directed acyclic graph (grid DAG for short) associated with the string editing
problem.

DEFINITION 1. An 11 12 grid DAG is a directed acyclic graph whose vertices are
the l12 points of an l 12 grid, and such that the only edges from grid point (i, j)
are to grid points (i,j / 1), (i + 1,j), and (i / 1,j / 1).

Figure 1.1 shows an example of a grid DAG and also illustrates our convention
of drawing the points such that point (i, j) is at the ith row from the top and jth
column from the left. Note that the top-left point is (0, 0) and has no edge entering it

i.e., is a source), and that the bottom-right point is (m, n) and has no edge leaving
it (i.e., is a sink).

We now review the correspondence between edit scripts and grid graphs that was
observed in [10]. We associate an (Ix + 1) (lYl / 1) grid DAG G with the string
editing problem in the natural way: the (Ixl/ 1)(lyl/ 1) vertices of G are in one-to-one
correspondence with the (Ixl / 1)(ly + 1) entries of the C-matrix, and the cost of an
edge from vertex (k, 1) to vertex (i,j) is equal to I(yj) if k and j- 1; to
D(xi) if k- i-landl-j; and to S(xi,yj) if k--i-1 andl-j-1. We can
restrict our attention to edit scripts which are not wasteful in the sense that they do
no obviously inefficient moves such as: inserting then deleting the same symbol, or
changing a symbol into a new symbol which they then delete, etc. More formally,
the only edit scripts considered are those that apply at most one edit operation to a
given symbol occurrence. Such edit scripts that transform x into y or vice versa are
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in one-to-one correspondence to the weighted paths in G that originate at the source
(which corresponds to C(0, 0)) and end on the sink (which corresponds to
Thus, in order to establish the complexity bounds claimed in this paper, we need only
establish them for the problem of finding a shortest i.e., least-cost) source-to-sink
path in an m x n grid DAG G.

Throughout, the left boundary of G is the set of points in its leftmost column.
The right, top, and bottom boundaries are analogously defined. The boundary of G
is the union of its left, right, top, and bottom boundaries.

The rest of the paper is organized as follows. Section 2 gives a preliminary CREW-
PRAM algorithm for computing the length of a shortest source-to-sink path, assuming
m n. Section 3 gives an algorithm that uses a factor of log m fewer processors than
the previous one and that will be needed later in our best CREW algorithm (given
in 6). Section 4 sketches how to extend the previous algorithm to the case m _< n.
Section 5 considers computing the path itself rather than just its length. Section 6
gives our best CREW-PRAM algorithm, which is the main technical result of this
paper. Section 7 gives the CRCW-PRAM algorithm. Section 8 concludes the paper.

2. A preliminary algorithm. Throughout this section, m n, i.e., G is an
m x m grid DAG. Let DISTG be a (2m) x (2m) matrix containing the lengths of all
shortest paths that begin at the top or left boundary of G, and end at the right or
bottom boundary of G. In this section we establish that the matrix DISTG can be
computed in O(log3 m) time, O(m2) space, and with O(m2/logm) processors by a
CREW-PRAM. The preliminary algorithm that achieves this is intended as a "warm-
up" for the better algorithms that follow in later sections. The preliminary algorithm
works as follows: divide the m m grid into four (m/2) (m/2) grids A, B, C, D, as
shown in Fig. 2.1. In parallel, recursively solve the problem for each of the four grids
A,B, C,D, obtaining the four distance matrices DISTA, DISTB, DISTc, DISTD.
Then obtain from these four matrices the desired matrix DIST. The main problem
we face, and the main contribution of this paper, is how to perform the "conquer"
step efficiently, in parallel.

FIG. 2.1. Illustrating how the problem is partitioned.

The performance bounds we claimed for this preliminary algorithm would imme-
diately follow if we can show that (i) DISTv can be obtained from DISTA, DISTB,
DISTc, DISTD in parallel in time O((q+log m) log m) and with O(m2/q) processors,
where q _< m is an integer of our choice, and (ii) the whole problem can be solved
sequentially in O(m2 log m) time. This is because the time and processor complexities
of the overall algorithm would then obey the following recurrences:

T(m) <_ T(m/2) + cl (q + log m) log m,

P(m) <_ max(4P(m/2), c2m2/q),
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with boundary conditions T(v/’) cq log q and P(x/-) 1, where Cl, c2, c3 are

constants. The solutions are T(m) O((q -+-logm)log2 m) and P(m) O(m2/q).
Choosing q log m would then establish the desired result.

A sequential O(m2 log m) time bound follows from the parallel algorithm we give
in 3: it does that much work and hence also translates into a sequential algorithm
with this time bound (there is no circularity in the logic: 3 is self-contained). There-
fore in the rest of this section, we merely concern ourselves with establishing (i), that
is, showing that DISTv can be obtained from DISTA, DISTB, DISTc, DISTD in
time O((q + logm)logm) and with O(m2/q) processors.

Let DISTAuB be the (3m/2) x (3m/2) matrix containing the lengths of shortest
paths that begin on the top or left boundary of A U B and end on its right or bottom
boundary. Let DISTcuD be analogously defined for C t2 D. The procedure for
obtaining DISTv performs the following steps:

1) Use DISTA and DISTB to obtain DISTAuB.
2) Use DISTc and DISTD to obtain DISTcuD.
3) Use DISTAB and DISTcD to obtain DISTa.
We only show how step 1) is done, since the procedures for steps 2) and 3) are very

similar. First, note that the entries of DISTAB that correspond to shortest paths
that begin and end on the boundary of A (respectively, B) are already available in
DISTA (respectively, DISTB), and can therefore be obtained in O(q) time. Therefore
we need only worry about the entries of DISTAB that correspond to paths that begin
on the top or left boundary of A and end on the right or bottom boundary of B. Assign
to every point v on the top or left boundary of A a group of m/q processors. The task
of the group of m/q processors assigned to v is to compute the lengths of all shortest
paths that begin at v and end on the right or bottom boundary of B. It suffices to
show that it can indeed do this in time O((q + logm)log m). Observe that:

(1) DISTAB(V, w) min{DistA(v,p) + DistB(p, w)

p lies on the boundary common to A and B}.
Using (1) to compute DISTAuB(V,W) for a given v, w pair is trivial to do in time
O(q + log(m/q)) by using O(m/q) processors for each such pair, but that would
require an unacceptable O(m3/q) processor. We have only m/q processors assigned
to v for computing DISTAB(V, w) for all w on the bottom or right boundary of B.
These m/q processors are enough for doing the job in time O((q + log(m/q))log m).
The procedure is given below.

DEFINITION 2. Let v be any point on the left or top boundary of A, and let w be
any point on the bottom or right boundary of B. Let 0(v, w) denote the leftmost p
which minimizes the right-hand side of (1). Equivalently, 0(v, w) is the leftmost point
of the common boundary of A and B such that a shortest v-to-w path goes through
it.

Define a linear ordering <B on the m points at the bottom and right boundaries
of B, such that they are encountered in increasing order of <B by a walk that starts
at the leftmost point of the lower boundary of B and ends at the top of the right
boundary of B. Let LB be the list of m points on the lower and right boundaries of
B, sorted by increasing order according to the <B relationship. For any w, W2 LB,
we have the following:

If wl <B W2 then 0(v, wl) is not to the right of O(v, w2).
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FIG. 2.2. Illustrating the procedure for computing the function

A similar property was proved in [9], and in fact Aggarwal and Park [3] have traced
this simple observation back to Monge, in 1781. It helps the comprehension of this
paper to review the proof of property (2). But before doing so, we sketch how property
(2) is used to obtain an O((q+log(m/q))logm) time and O(m/q) processor algorithm
for computing DISTAuB(V, w) for all w E LB. We henceforth use 0(w) as a shorthand
for 0(v, w), with v being understood. It suffices to compute 0(w) for all w LB. The
procedure for doing this is recursive, and takes as input:

A particular range of r contiguous values in LB, say a range that begins at
point a and ends at point c, a <S c,
The points O(a) and 0(c),
A number of processors equal to max{l, (p+ r)/q} where p is the number of
points between O(a) and O(c) on the boundary common to A and B. (See
Fig. 2.2.)

The procedure returns O(w) for every a <B w <B C. If r 1 then there is only
one such w and there are enough processors to compute O(w) in time O(q + log(p/q)).
If r > 1 then all of the max{l, (p + r)/q} processors get assigned to the median of
the a-to-c range and compute, for that median (call it point b), the value O(b) in time
O(q + log(p/q)). Because of (2), it is now enough for the procedure to recursively call
itself on the a-to-b range and (in parallel) the b-to-c range. The first (respectively,
the second) of these recursive calls gets assigned max{l, (p + r/2)/q} (respectively,
max{l, (p2 + r/2)/q}) processors, where p (respectively, P2) is the number of points
between O(a) and O(b) (respectively, between O(b) and O(c)). Because p + p p,
there are enough processors available for the two recursive calls. (See Fig. 2.2.) In
the initial call to the procedure, it is given (i) the whole list LB, (ii) the 0 of the first
and last point of LB, and (iii) 3m/2q processors. The depth of the recursion is log m,
at each level of which the time taken is no more than O(q + log(m/q)). Therefore the
procedure takes time O((q + log(m/q))log m) with O(m/q) processors. We conclude
that the preliminary solution follows from (2).

We now review the proof of property (2). It is by contradiction: Suppose that,
for some w,w LB, we have wl <B w2 and O(wi) is to the right of 0(w2), as shown
in Fig. 2.3. By definition of the function 0 there is a shortest path from v to w going
through O(w) (call this path a), and one from v to w2 going through 0(w2) (call it
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FIG. 2.3. Illustrating the proof of property (2).

). Since wl <B W2 and O(wl) is to the right of 0(w2), the two paths a and 3 must
cross at least once somewhere in B: let z be such an intersection point. See Fig. 2.3.
Let prefix(a) (respectively, prefix()) be the portion of a (respectively,/) that goes
from v to z. We obtain a contradiction in each of two possible cases:

Case 1. The length of prefix(a) differs from that of prefix(). Without loss
of generality, assume it is the length of prefix(3) that is the smaller of the two.
But then, the v-to-w path obtained from a by replacing prefix(a) by prefix() is
shorter than a, a contradiction.

Case 2. The length of prefix(a) is same as that of prefix(). In a, replacing
prefix(a) by prefix(3) yields another shortest path between v and w, one that
crosses the boundary common to A and B at a point to the left of O(w), contradicting
the definition of the function 0.

This completes the review of the proof of (2).
3. Using fewer processors. This section gives an algorithm that has the same

time complexity as that of the previous section, but whose processor complexity is
a factor of log m better. This is more than a mere "warm-up" for our best CREW
algorithm of 6: the algorithm of 6 will actually use the technical result, given in
this section, that DISTAuB can be obtained from DISTA and DISTB with O(m2)
total work.

We establish the following lemma.
LEMMA 1. Let G be an m x m grid DAG. Let DIST be a (2m) x (2m) matrix

containing the lengths of all shortest paths that begin at the top or left boundary of G,
and end at the right or bottom boundary of G. The matrix DIST can be computed
in O(log3 m) time, O(m2) space, and with O(m2/log2 m) processors by a CREW-
PRAM.

We prove the above lemma by giving an algorithm whose processor complexity
is a log m factor better than that of the preliminary solution of 2. We illustrate
the method by showing how DISTAuB can be obtained from DISTA and DISTB in
O(log2 m) time and O(m2/log2 m) processors. The preliminary procedure for com-
puting DISTAuB can be seen to do a total amount of work which is O(m2 log m).
Our strategy will be to first give a procedure which has the same time and processor
complexities as the preliminary one, but which does a total amount of work which
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is only O(m2). Our claimed bounds for the computation of DISTAuB from DISTA
and DISTB will then follow from this improved procedure and from Brent’s theorem
[7] as follows.

THEOREM 1 (Brent). Any synchronous parallel algorithm taking time T that
consists of a total of W operations can be simulated by P processors in time
O((W/P) + T).

Proof. See [7] for the proof. 8
There are actually two qualifications to Brent’s theorem before we can apply it

to a PRAM: (i) at the beginning of the ith parallel step, we must be able to compute
the amount of work Wi done by that step, in time O(Wi/P) and with P processors,
and (it) we must know how to assign each processor to its task. Both (i) and (it) will
trivially hold in our framework.

Let LA and <A be defined analogously to LB and <B, respectively. In other
words, LA is a list of the m points on the left and top boundaries of A, sorted in the
order in which they are encountered by a walk that starts at the lowest point of the
left boundary of A and ends at the rightmost point of the top boundary of A (i.e.,
sorted by increasing order according to the <A relationship). A symmetric version
of (2) holds, i.e., for any w E LB and any two points vl and v2 of LA, we have the
following:

(3) If vl <A v2 then 0(v, w) is not to the right of O(v, w).

The proof of (3) is identical to that of (2) and is therefore omitted.
Let P be the m (m/2) submatrix of DISTA containing the lengths of the

shortest paths that begin at the top or left boundary of A, and end at its bottom
boundary. Let Q be the (m/2) m submatrix of DISTB containing the lengths of the
shortest paths that begin at the top boundary of B, and end at its bottom or right
boundary. By definition, the rows of P are indexed by the entries of LA, the columns
of Q are indexed by the entries of LB, and the columns of P (hence the rows of Q) are
indexed by the m/2 points at the common boundary of A and B, sorted from left to
right. The problem we face is that of "multiplying" the rn (m/2) matrix P and the
(m/2) m matrix Q in the closed semiring (min, +). In matrix terminology, (v, w)
is the smallest index k, 1 <_ k <_ m/2, such that PQ(v, w) P(v, k)+ Q(k, w). We
give the procedure below for the (more general) case where P is an / h matrix, and
Q is an h l matrix, l _< 2h. The only structure of these matrices that our algorithm
uses is the following property (4), which is merely a restatement of properties (2) and
(3) using matrix terminology:

(4) V(l_<v <v2_<l,l_<w_<l), t?(v,w)_<O(v2, w), and O(w,v)_<0(w, v2).

To compute the product of P and Q in the closed semiring (min, +), it suffices to
compute O(v, w) for all 1 _< v, w _< 1. To compute the product PQ (i.e., the function
), we use the following procedure which runs in O(log l log h) time, O(h/logh)
processors, and O(lh) total work:

1) Recursively solve the problem for the product PQ where P (respectively,
Q’) is the (g/2) h (respectively, h (g/2)) matrix consisting of the odd
rows (respectively, odd columns) of P (respectively, Q). This gives O(v, w)
for all pairs (v, w) whose respective parities are (odd, odd). If Work(g, h)
and T(g, h) denote the total work and time for this procedure, then this step
does Work(g/2, h) work in T(g/2, h) time.
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2) Compute O(v, w) for all pairs (v, w) of parities (even, odd). This is done
as follows. In parallel for each odd w, assign h log h processors to w, with
the task of computing 0(v, w) for all even v. The fact that we already know
0(v, w) for all odd v, together with property (4), implies that these h log h
processors are enough to do the job in O(log h) time. The work done is then
O(h) for each such w, for a total of O(lh) work for this step.

3) Compute 0(v, w) for all pairs (v, w) of parities (odd, even). The method used
is identical to that of the previous step and is therefore omitted.

4) Compute (v, w) for all pairs (v, w) of parities (even, even). The method is
very similar to that of the previous two steps and is therefore omitted.

The time, processor, and work complexities of the above method satisfy the recur-
rences:

T(/, h) <_ T(i/2, h) + c log h,

P(/, h) _< max{P(//2, h), th/log h},

Work(l, h) <_ Work(i h) + c2ih,

where Cl and c2 are constants. These recurrences imply that T(/, h) O(log i log h),
P(i,h) O(lh/logh), and Work(,h) O(h). This, together with Theorem 1
(Brent’s theorem) in which T log i log h, P th/q, and W lh, implies that the
above algorithm can be simulated by Ih/q processors in O(q + log i log h) time. In
our case, :.re have l m and h m/2, implying that PQ (and hence DISTAvB) can
be obtained from P and q in O(q + log2 m) time with O(m2/q) processors.

The above method enables us to obtain DISTa from DISTA, DISTB, DISTc,
DISTD in O(q + log2 m) time and O(m2/q) processors. This implies that the over-
all divide-and-conquer algorithm runs in O((q + log2 m)logm) time with O(m2/q)
processors. Choosing q log2 m establishes Lemma 1.

4. The case m _< n. This section generalizes the algorithm for the case m _< n.
The main result is the following.

THEOREM 2. Let G be an m x n grid bAG, m <_ n. The length of a shortest
source-to-sink path in G can be computed by a CREW.-PRAM in O(log n log m) time,
O(mn) space, and with O(mn/log2 m)processors.

Note that, if G is m x n with m <: n, then using the same idea as in 3 would result
in an unacceptable (m + n)(m + n)/log2(m + n’ processor complexity, the DISTa
matrix we are computing now being (m + n) x (m + n). In order to prove our claimed
bounds, we shall abandon the goal of computing such a matrix DISTa and settle for
computing a Da matrix that contains less information than DISTa, but enough to
obtain the desired quantity: the length of a shortest source-to-sink path in G.

DEFINITION 3. For any m x n grid bAG G, m _< n, let Da be the m x m matrix
containing the lengths of all the shortest paths that begin at the left boundary of G,
and end at the right boundary of G.

Note that Da is a submatrix of DISTa.
The following lemma is another ingredient that we need.
LEMMA 2. Let G be an m x m grid bAG that is partitioned by a vertical line into

G1 and G2. (See Fig. 4.1.) Then, given Da and Da, the matrix Da can be com-
puted by a CREW-PRAM in O(log2 m) tim, O(m2) space, and with O(m2/ log2 m)
processors.
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G G

FIG. 4.1. Illustrating Lemma 2.

G G
2 etc m

FIG. 4.2. Illustrating the partitioning of G.

Proof. The algorithm proving the above lemma is similar to the procedure we
used in 3 to obtain DISTAuB from DISTA and DISTB, and is omitted.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Without loss of generality, assume that m divides n (if
not then G can always be "padded" with extra vertices and zero-cost edges so as
to make it m n where m divides n and n- n _< m). Partition G by vertical
lines into n/m grid DAGs G1,’",Gn/m, where each Gi is m m (see Fig. 4.2).
In parallel for each E {1,... ,n/m}, use Lemma 1 to obtain the DISTc matrices.
This takes O(logam) time with a total of O((m2/log2 m)(n/m)) O(mn/log2 m)
processors. From each DISTG matrix, extract its submatrix Dc. We are now left
with the task of combining the Da’s into a single DG. In parallel, we recursively
obtain the D-matrix of the union of the leftmost n/2m Gi’s, and similarly the D-
matrix of the union of the rightmost n/2m Gi’s. We then combine these two D
matrices into DG by using Lemma 2. This recursive combining procedure takes a
total of O(log2 m log(n/m)) time with O(mn/log2 m) processors. The overall time
complexity is therefore O(log3 m / log2 m log(n/m)) O(log n log2 m).

In view of the remarks made in 1, the following is an immediate consequence of
the above theorem.

COROLLARY 1. Let x and y be two strings over an alphabet I. Let m
min(Ixl, lYl), n max(Ixl, lYl). For edit operations of arbitrary nonnegative costs,
the edit distance from x to y can be computed by a CREW-PRAM in O(log n log2 m)
time, O(mn) space, and with O(mn/ log2 m) processors.

5. Computing the actual path. In this section we sketch a modification of
the algorithm given in the previous sections which enables us to compute an actual
shortest source-to-sink path in G within the same time, space, and processor bounds
as in the length computation.

THEOREM 3. Let G be an m n grid DAG, m

_
n. A shortest source-to-sink

path in G can be computed by a CREW-PRAM in O(log n log2 m) time, O(mn) space,
and with O(mn/ log2 m) processors.

The rest of this section proves the above theorem.
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HCUTG(S,t)

VCUTG(S,t)

FIG. 5.1. Illustrating the computation of the actual path.

We begin with the case m n, i.e., an m x m grid DAG. We cannot afford to
let the matrix DISTG of 3 be a matrix of paths instead of lengths, because that
would take m3 space, killing any hope of a polylog time algorithm that does not use
an almost cubic number of processors. Instead, we modify the algorithm of 3 so that
it also has the "side effect" of computing two (2m) (2m) matrices HCUTG and
VCUTa (mnemonics for "horizontal cut" and "vertical cut," respectively) having the
same index domain as DISTG. These two matrices are global in the sense that they
remain even after the recursive call returns, and their significance is as follows. Let
H be the horizontal boundary between A LJ C and B LJ D, and let V be the vertical
boundary between A U B and C U D (see Fig. 5.1). Let PATH(x, y) be the lowest
x-to-y path of cost DISTG(x, y); i.e., no other x-to-y path of length DIST,(x, y)
goes through any vertex that is below a vertex of PATH(x, y). It is easy to prove
that there is a unique such path PATH(x,y) (the proof is straightforward and is
omitted). Then HCUTa(x, y) is the leftmost intersection of PATH(x, y) with H,
and VCUTa(x, y) is the lowest intersection of PATH(x, y) with V. If the intersection
of PATH(x, y) with g (respectively, V) is empty, then HCUTG(x, y) (respectively,
VCUTv(x, y)) is undefined. Because these additional matrices are global, after the
algorithm terminates it leaves behind N(m) of them where

N(m) 4N(m/2) + 2 O(m2).

Fortunately, even though there are O(m2) such HCUT and VCUT matrices that
remain, the total storage space they take is S(m) where

S(m) 4S(m/2) -4- am2 O(m2 log m).

Before showing how S(m) is decreased to O(m2), we show how the matrices HCUT
and VCUT are used to retrieve the shortest source-to-sink path in G. It suffices to
output the points on this path as a set (i.e., in arbitrary order), since a postprocessing
sorting step puts them in the right order in O(logm) time and O(m) processors [8].
Let s and t denote the source and sink of G, respectively. We first print HCUTa(s, t)
and VCUTG(s,t), and then we recursively print the three portions of the shortest
s-to-t path determined by its two intersections with H and V (this involves three
(m/2) x (m/2) grid DAGs; see Fig. 5.1). The procedure can be implemented to run
in O(h 4- log m) time and 2m/h processors, where h _< m is an integer of our choice,
by maintaining the property that each recursive call of size m’ _> h gets assigned
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2m/h processors (the bottom of the recursion is when problem size m becomes _< h,
at which time a single processor finishes the job sequentially, in O(m’) time). (We
would, of course, choose h log m.)

We bring the space complexity S(m) down by storing each row (say, row p) of
the HCUT (or VCUT) matrix in an O(m)-bit vector ROW(p) that is "packed" in
O(m/logm) registers of size log m bits each. (The assumption that word size is a
logarithmic function of problem size is a standard one [5].) Let us immediately point
out that a consequence of this encoding scheme is that we now have S(m) O(m2).
To see this, let BITS(m) be the total number of bits used by the encoding scheme,
and note that S(m) O(BITS(m)/ log m), since each register contains log m bits.
Thus it suffices to show that BITS(m) O(m2 log m). But this trivially follows from
the fact that BITS(m) 4BITS(m/2)+ O(m).

We now describe the encoding scheme used for storing row p of (e.g.) HCUT in
the O(m)-bit vector ROW(p). We exploit the fact that the contents of row p happen
to be sorted by the left-to-right linear ordering of the points on H. More precisely,
if the points of H are denoted by 1,..., m in left-to-right order, then row p contains
a nondecreasing sequence of O(m) integers between 1 and m. Instead of storing the
entries of row p, we therefore store the sequence of differences between the consecutive
entries of row p. This sequence of differences is stored in unary in the O(m)-bit vector
ROW(p), with as many consecutive l’s as needed to encode a particular difference,
and using a 0 as a separator between consecutive nonzero entries. For example, if row p
contains the sequence (3, 3, 5, 7, 9, 11) then the sequence of differences is (3, 0, 2, 2, 2, 2)
and ROW(p) (11100110110110110). We can actually obtain ROW(p) without
going through the intermediate step of computing the sequence of differences: simply
observe that if the ith entry of row p is k then the (i + k)th entry of ROW(p) is a
0 (in our example, the fourth entry is 7 and hence the eleventh entry of ROW(p)
is a 0). This observation implies that we can obtain ROW(p) in O(q + log m) time
with O(m/q) processors by first initializing all the entries of ROW(p) to 1, and then
changing some of these into O’s according to the observation. Reading the kth entry
of row p is now done by computing the sum of all the entries of ROW(p) that precede
its kth leftmost zero; i.e. it requires a parallel prefix computation [11] on ROW(p)
and hence O(log m) time, so that extracting the s-to-t path now takes O(log2 m) time
rather than the previous O(log m). This fact is of no consequence, however, since the
bottleneck in the time complexity comes from the computation of the DISTa matrix.

This completes the proof of Theorem 3 for the case m n.
It is not hard to see that, so long as rn n, the above procedure actually works

when s and t are arbitrary points on the boundary of G. This observation implies that,
for the case m

_
n, it suffices to find for every E {1,..., (n/m) 1} the lowest point

(call it CROSS(i)) at which a shortest path from s to t crosses the boundary between
Gi and Gi+l. Once we have these CROSS(i)’s, we can use the procedure of the
previous paragraph to obtain the actual path joining each CROSS(i) to CROSS(i+I)
in time O(log3 m), space O(m2n/m) O(mn), and with O((m2/log2 m)(n/m))
O(mn/log2 m) processors. We obtain the CROSS(i)’s as follows. Refer to 4, the
proof of Theorem 2: We modify that procedure so that, as the procedure computes
the D-matrix, it now also produces as a side effect a global m m matrix CUTa.
The significance of this matrix is that CUTa(x, y) is the lowest point of intersection
of any shortest x-to-y path with the boundary separating the two recursive calls. The
total number of such CUT matrices is O(n/m), and their total storage is O(mn). We
use these CUT matrices to output the CROSS(i)’s as a set (i.e., unordered) by first
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printing CUTa(s,t), and then recursively printing the CROSS(i)’s that are to the
left of CUT((s, t), and simultaneously (i.e., in parallel) those to its right. It is easily
seen that the CROSS(i)’s are produced in time O(log(n/m)), and that there are
enough processors to carry out the procedure. A post-processing sorting step orders
the CROSS(i)’s. This completes the proof of Theorem 3. El

An immediate consequence of Theorem 3 is the following.
COROLLARY 2. Let x and y be two strings over an alphabet I. Let rn

min(Ixl, lYl), n max(Ixl, lYl). For edit operations of arbitrary nonnegative costs, an
optimal edit script from x to y can be computed by a CREW-PRAM in O(log n log2 m)
time, O(mn) space, and with O(mn/ log2 m) processors.

6. A faster CREW-PRAM algorithm. This section gives a CREW algo-
rithm that is faster by a log m factor and uses O(mn/logm) processors. More pre-
cisely, we establish the following.

THEOREM 4. Let G be an m n grid DAG, m <_ n. A shortest source-to-sink
path in G can be computed by a CREW-PRAM in O(log n log m) time, O(mn) space,
and with O(mn/ log m) processors.

COROLLARY 3. Let x and y be two strings over an alphabet I. Let m
min(Ixl, lYl), n max(Ixl, lYl). For edit operations of arbitrary nonnegative costs, an
optimal edit script from x to y can be computed by a CREW-PRAM in O(log n log m)
time, O(mn) space, and with O(mn/ logm) processors.

From the developments of 2-5, it should be clear that in order to establish the
above theorem, it suffices to show that"

1) The matrix DISTAwB can be obtained from DISTA and DIST in O(log m)
time, O(m2) space, and with O(m2/log m) processors, and

2) The matrix Da can be obtained from Dv and Da (see Definition 3 and
Fig. 4.1)in O(log m) time, O(m2) space, and with O(m2/ log m) processors.

Since the proofs of 1) and 2) are very similar, we only give that for 1). Thus the
rest of this section deals with how to obtain DISTAB from DISTA and DISTB in
O(log m) time, O(m2) space, and with O(m2/log m) processors.

6.1. Obtaining one row of DISTAB. This section gives an O(logm) time,
O(m log m) space, and O(m log m) processor algorithm for obtaining one particular
row of DISTAB, i.e., computing 0(v, w) for a fixed v LA and all w L. The fixed
vertex v is implicit in the rest of this section, so that whenever we refer to a "path
to w" it is understood that this path originates at v. To simplify the exposition, we
assume that m is a power of 2 (the procedure can easily be modified for the general
case).

We refer to the vertices on the boundary common to A and B (denoted A B
for short) as crossing vertices and number them c, c2,..., Cm/2, where the numbering
is from left to right along the common boundary. We refer to the vertices in L as
destination vertices and denote them w, w2, "", win, numbered according to <s,
their order in LB.

DEFINITION 4. A crossing interval is a nonempty set of contiguous crossing
vertices {c,c+,... ,c}. We say that crossing interval I is to the left of crossing
interval J, and J is to the right of I, if the rightmost vertex of I is to the left of the
leftmost vertex of J.

DEFINITION 5. Let F C_ AB and w LB, i.e., F is a set of crossing vertices (not
necessarily an interval) and w is a destination vertex. Let OF(W) denote the leftmost
crossing vertex in F incident to a (v, w) path that is shortest among all (v, w) paths
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constrained to pass through F. (If there is no such (v, w) path, then this is denoted
by OF(W) .)

Note that Of(w) may differ from O(v, w), but that 0AnS(W) 0(v, w).
The following lemma is the analogue, for constrained paths, to property (2) of 2.
LEMMA 3. Let F C_ A N B and Wl, w2 E LB. Ifw <B w2, then 0f(Wl) is not to

the right of OF(W2).
Proof. The proof is identical to that of property (2).
We now give an informal description of the algorithm.
If U is any set of destination vertices and I is any crossing interval, then we will

define 0x(U) to be a data structure that contains enough information to determine
OI(W) for all w E U. The details of that data structure will be explained later.

It is useful to think of the computation as progressing through the nodes of a tree
T which we now proceed to define.

We define a crossing interval to be diadic if it is either A N B (i.e., it consists of
all crossing vertices), or if it is the the left or right half of a diadic crossing interval.
Note that there are exactly m- 1 diadic crossing intervals, which form a complete
binary tree T rooted at A N B, and whose m/2 leaves are the m/2 crossing vertices
(the ith leaf of T containing ci, the ith leftmost crossing vertex). Thus the diadic
crossing interval at an interior node of T is simply the union of the diadic crossing
intervals of its two children in T. We can talk about the height and the children of a
diadic crossing interval (= its height and children in T).

Since the. m- 1 diadic crossing intervals are the only crossing intervals we shall
be interested in, from now on we simply say "interval" as a shorthand for "diadic
crossing interval." Thus whenever we refer to an interval I we are implicitly assuming
that I T, i.e., that I is one of the m- 1 diadic crossing intervals. We use III to
denote the size of the interval, i.e., the number of crossing vertices in it. Observe
that EIeT III O(mlogm). Thus we have enough processors to associate III of
them with each interval I (i.e., node I) of T. Similarly, we can afford to use
space per interval I. The computation proceeds in 2 log m- 1 stages, each of which
takes constant time. The ultimate goal is for every interval I to compute 0I(LB).
The structure of the algorithm is reminiscent of the cascading divide-and-conquer
technique [8], [6]" each I T will compute 0I(U) for progressively larger subsets U
of LB, subsets U that double in size from one stage to the next of the computation.
We now proceed to state precisely what these subsets are.

DEFINITION 6. A k-sample of LB is obtained by choosing every kth element of
LB (i.e., every element whose rank in LB is a multiple of k). For example, a 4-sample
of LB is (w4, ws,"’,Wm). For k e {0, 1,...,logm}, let Uk denote an (m/2k)-sample
of LB.

For example:

Ulogm {w, w2, wm}

Note that
At the tth stage of the algorithm, an interval I of height h in T will use its

processors to compute, in constant time, Oi(U,-h) if h < t < h+logm. It does so with
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the help of information from 8I(U-l-h), LeftChild(I)(Vt-h), and RightChild(I)(Vt_h),
all of which are available from the previous stage t 1. If h > t or t > h -t- log m
then interval I does nothing during stage t. Thus before stage h the interval I lies
"dormant," then at stage t h it first "wakes up" and computes 8l(Uo), then at the
next stage t h / 1 it computes 8I(UI), etc. At step t h -t- log m it computes
8I(Ulogm), after which it is done. The details of what information I stores and how
it uses its III processors to perform stage t in constant time are given below. First,
we observe the following.

LEMMA 4. The algorithm terminates after 2 log m- 1 stages.
Proof. After stage h-t-logm every interval I of height h is done, i.e., it has

computed I(LB). The root interval has height logm- 1 and thus is done after stage
2 log m 1.

Thus to establish the main claim of this section, it suffices to prove the following
lemma.

LEMMA 5. With III processors and O(lII) space assigned to each interval I E T,
every stage of the algorithm can be completed in constant time.

The rest of this section proves the above lemma.
We begin by describing the way in which an interval I at height h in T stores

Ol(U-h) using only III space. Rather than directly storing the values 8i(w) for all
w U-h (which would require lUg_hi space), we store instead the inverse mapping,
which turns out to have a compact O(lII) space encoding because of the monotonicity
property guaranteed by Lemma 3. In other words, for each c e I, let

t) e

Then Lemma 3 implies that the elements of ri(c, t) are contiguous in the list Vt-h.
More specifically, the sets rx(c, t), c I, form a partition of the set Ut-h into [I[ sub-
sets each of which is either empty or contains contiguous elements in Ut-h. Therefore
I does not need to store the elements of ri(c, t) explicitly, but rather by just re-
membering where they begin and end in Ut-h, i.e., O(1) space for each c I. Of
course Ut-h is itself not stored explicitly by I, since the height h and stage number t
implicitly determine it. Thus O([I[) space is enough for storing ri(c, t) for all c I.

Interval I stores the sets ri(c,t), c I, in an array RANGEI, with entries
RANGEI(c) (wi, wj) such that wi (respectively, wj) is the first (respectively, last)
element of Ut-h that belongs to ri(c, t). If ri(c, t) is empty then RANGEI(c) equals
q}. At stage t of the algorithm, I must update the RANGEI array so that it changes
from being a description of the ri(c, t- 1)’s to being a description of the ri(c, t)’s. The
rest of this section needs only to show how such an update is done in constant time
by the III processors assigned to I. Of course, since we are ultimately interested in
ACB(W) for every w LB, at the end of the algorithm we must run a postprocessing
procedure which recovers this information from the RANGEAnB array available at the
root ofT, i.e., it explicitly obtains 0An(w) for all w Ulogm. But this postprocessing
is trivial to perform in O(log m) time with O(m) processors, and we shall not concern
ourselves with it anymore.

In the rest of this section, intervals L and R are the left and (respectively) right
children of I in T. Observe that, for any destination w, Oi(w) is one of OL(W) or
On(w). Furthermore, if Ox(w) OL(W) then OI(W’) e L for every w’ smaller than w
(in the <s ordering). Similarly, if Oi(w) On(w) then Oi(w’) e R for any w’ larger
than w. (These observations follow from Lemma 3.)

The RANGEI array alone is not enough to enable I to perform the updating
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required at stage t. In addition, at each stage t, I must compute in a register called
CRITICALI an entry CriticaIi(t) defined as follows.

DEFINITION 7. At each stage t, let the critical destination for I, denoted
Criticali(t), be the largest w E U-h such that Ox(w) OL(W). If there is no such w
(i.e., if Ox(w) O(w) for all w U-h), then Criticali(t) .

Note that Lemma 3 ensures that Criticali(t) is well defined. We shall later
show how storing and maintaining this critical destination enables I to update the
RANGEI array in constant time. Of course it also places on I the burden of updating
its CRITICALI register so that after stage t it contains Criticali(t) rather than
Criticali(t- 1). We shall later show that updating the CRITICALI register can be
done in constant time as well.

We now complete this section by explaining how I performs stage t, i.e., how it
obtains Criticali(t) and the i(c, t)’s using the 7rL(C t- 1)’s, the r(c, t- 1)’s, and
its previous critical index Criticali(t- 1). The fact that the III processors can do
this in constant time is based on the following three observations:

(5) Criticall(t) is either the same as Criticali(t- 1), or it is the successor of
Criticali(t- 1) in U-h.

(6) If c L then 7rI(C, t) 7rL(C,t- 1) {the elements of 7rL(C t- 1) that are
larger than Criticali(t) in the < ordering}.

(7) If c R then 7I(C t) 7rR(C t- 1) {the elements of rn(c, t- 1) that are
less than or equal to Criticali(t) in the <s ordering}.

Correctness of (5)-(7) follows from the definitions. Their algorithmic implications are
discussed next.

Updating the CRITICALI register. Relationship (5) implies that in order to
update CRITICALI (i.e., compute Criticali(t)) all i has to do is determine which of
Criticali(t-1) or its successor in Ut-h is the correct value of Criticali(t). This is done
as follows. If Criticali(t- 1) has no successor in Ut-h then Criticali(t- 1) Wm
and hence Criticali(t) Criticali(t- 1). Otherwise the updating is done in the
following two steps. For shorthand, let r denote Critical(t- 1), and let s denote the
successor of r in Ut-h.

The first step is to compute OL(S) and O(s) in constant time. This involves
a search in L (respectively, R) for the crossover c in L (respectively, R) whose
rL(C, t- 1) (respectively, r(c, t- 1)) contains s. These two searches in L
and R are done in constant time with the III processors available. We explain
how the search in L is done (that in R is similar and omitted). I assigns a
processor to each c L, and that processor tests whether s is in rL(C, t- 1);
the answer is "yes" for exactly one of those ILl processors and thus can be
collected in constant time. Thus I can determine OL(S) and 0(s) in constant
time.
The next step consists of comparing which of the following two paths to s is
better: the one through OL(S), or the one through O(s). If the path through
O(s) is better, then Criticali(t) is the same as Criticali(t- 1) and the
CRITICAL register stays the same (containing r). Otherwise Criticali(t)
is s, and we set CRITICALI equal to s. This comparison of the two paths
and resulting update are done in constant time (by one processor, in fact).

We next show how the just computed Criticali(t) value is used to compute the
ri(c, t)’s in constant time.

Updating the RANGE array. Relationship (6) implies the following for each
cL:
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1) If rL(c, t-- 1) is to the leftof Criticali(t) then ri(c, t) rL(C, t-- 1).
2) If rL(c,t- 1) is to the right of Criticali(t) then ri(c,t) O.
3) If rL(C, t-- 1) contains Criticali(t) then it consists of the portion of rL(C, t-- 1)

up to (and including) Criticalx(t).
The above facts 1)-3) immediately imply that O(1) time is enough for ILl of the
processors assigned to I to compute ri(c, t) for all c E L, by adjusting the RANGEI(c)
value according to rules 1)-3) above (recall that the rL(c, t- 1)’s are available in L
from the previous stage t- 1, and Criticali(t) has already been computed and is in
the CRITICALI register).

A similar argument shows that relationship (7) implies that [R[ processors are
enough for computing r(c, t) for all c E R. Thus I can update its RANGE array
in constant time with [I[ processors. This completes the proof of Lemma 5.

The result of this section is easily seen to provide an O(log rn) time, O(rn log
processor CREW-PRAM solution to the problem commonly called [2], [3] "computing
the row maxima of an m x rn totally monotone matrix" (we refer the reader to [2]
and [3] for some of the many applications of this problem, for which a linear-time
sequential solution is known [2]).

6.2. Obtaining all rows of DISTAuB. This section shows that O(m2/log m)
processors and O(m2) space suffice for computing in O(logm) time all the 0(v, w)’s
(hence for computing the DISTAuB matrix). Let LA and LB be as in previous
sections. Our task is to compute 0(v, w) for all v LA and all w LB. We use
S(L, k) to denote the k-sample of a list L.

In the first stage of the computation, we assign m log m processors to each v
S(LA, log2 m)..Then, in parallel for all v S(LA, log2 m), we use the method of the
previous section to obtain 0(v, w) for all w LB. This first stage of the computation
takes O(logm) time, O(m2) space, and O(m2/logm) processors, and obtains 0(v, w)
for all v S(LA, log2 m) and w LB.

In the second stage, of the computation, we assign 2m processors to each w
S(LB, log rn), with the task of computing 0(v, w) for all v LA. These 2m processors
perform this computation for their particular w in O(log m) time, as follows. The set of

m log2 m values {0(v, w) v e S(LA, log2 m)} partitions the common boundary of A
and B into m/log2 m pieces J1,J2,"" (see Fig. 6.1). Let I,I2,... be the m/log2 m
pieces (of size log2m each) into which S(LA,log2 m) partitions LA (see Fig. 6.1).
Partition the group of 2m processors assigned to w into m/log2 rn subgroups, where
the ith subgroup contains log2 m + IJl processors whose task is to compute, for all
v e/, which element of J equals O(v, w). This subgroup of log2 rn + IJl processors
does this as follows:

1) It gives each of the logm elements of S(I,logm) (say, to element v) 1 +
IJl/log rn processors that v uses to find out, in O(log m) time, which element
of J equals O(v,w). The set of log m values {O(v,w) v S(I,logm)}
partitions Ji into log rn pieces Ji,, Ji,2,"’. Let Ii,,Ii,2,... be the log rn
pieces (of size log m each) into which S(Ii, log rn) partitions Ii.

2) It partitions its log2 rn + [Ji[ processors into log rn subsubgroups, where the
kth subsubgroup contains log rn + [Ji,k[ processors whose task is to compute,
for all v e Ii,k, which element of Ji,k equals O(v, w). This subsubgroup of
log rn + [Ji,k[ processors does this in O(log rn) time by giving to each of the
log rn elements of Ii,k (say, to element v) 1 + [Ji,kl/log rn processors that v
uses to find out, in O(log rn) time, which element of Ji, equals O(v, w).
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FIG. 6.1. Illustrating the second stage of the computation.

In the third stage of the computation, we assign 2m/x/’10g m processors to each
v E S(LA, v/logm), with the task of computing O(v,w) for all w E LB. These
2m/v/logm processors perform ,this computation for their particular v in O(logm)
time, as follows. The set of m/log m values {O(v, w) w S(LB, log m)} partitions
the common boundary of A and B into m/logm pieces J1, J2,’" ". Let I,I2,... be the
m/logm pieces (of size log m each) into which S(LB,logm) partitions LB. Partition
the group of 2m/v/log m processors assigned to v into m/log m subgroups, where the
ith subgroup contains x/log m + IJl/v/log m processors whose task is to compute, for
all w Is, which element of Ji equals O(v, w). This subgroup of x/log m + Ijl/v/log m
processors does this as follows:

1) It gives each of the v/log m elements of S(I, v/log m) (say, to element w) 1 +
IJl/log m processors that w uses to find out, in O(log m) time, which element
of Ji equals O(v,w). The set of v/logm values {0(v, w)[w e S(Ii, v/logm)}
partitions Ji into x/10g m pieces Ji,, Ji,2,"" ". Let Ii,, Ii,2,’." be the
x/log m pieces (of size x/log m each) into which S(/, v/log m) partitions/.

2) It partitions its v/logm + [Ji[/x/’logm processors into v/log m subsubgroups.
The kth subsubgroup contains 1 + IJ,kl/x/’logm processors whose task is
to compute, for all w ,Ii,k, which element of Ji,k equals O(v, w). This
subsubgroup of 1 / IJi,k[/v/logm processors does this in O(logm) time as
follows:
(a) If [Ji,k[ >_ log m, by giving to each of the v/log m elements of Ii,k (say, to

element w)IJi,t:l/logm processors that w uses to find out, in O(logm)
time, which element of Ji,k equals O(v, w).

(b) If [Ji,k[ < log m, by partitioning Ii,k into 1 + [Ji,k[/v/logm equal pieces
Ii,k,,Ii,k,2,’’" (each of size at most log m/[Ji,k[) and giving each//,k,t
one processor. This processor sequentially finds O(v, w) for all w Ii,k,t
in O(logm) time, since [Ii,k,t[IJi,kl O(logm).

The fourth stage of the computation "fills in the blanks" by actually computing
O(v, w) for all v LA and w LB. It does so with only m2/logm processors by ex-
ploiting what was computed in the previous stages. Partition LA into m/v/log m con-
tiguous blocks X, X2,’" of size v/log m each. Similarly, partition LB into m/v/log m
contiguous blocks Y, Y2, of size v/log m each. Let Zij be the interval on the bound-
ary common to A and B that is defined by the set of 0(v, w) such that v Xi and
w Yj. Of course we already know the beginning and end of each such interval
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Zj (from the third stage of the computation). Furthermore, we have the following
lemma.

LEMMA 6 z..,i= z.,j= IZijI O(m2/v/logm)
First, observe that Zij and Zi+,j+ are adjacent intervals that are disjoint except

for one possible common endpoint (the rightmost point in Zij and the leftmost point
in Zi+,j+ may coincide). This observation implies that for any given integer 6 (0 _<
I1 <_ m/v/10g m), we have (it is understood that IZI- 0 if j < 1 or j > m/x/log m)"

m/v/log m
O(m).

i--1

The lemma follows from the above simply by rewriting the summation in the lemma’s
statement"

m/v/log m m/v/log m

i=l

The above lemma implies that with a total of m2 / log m processors, we can afford
to assign a group of 1 + Zij i/v/log m processors to each pair Xi, Y. The task of this
group is to compute O(v, w) for all v E Xi and w E Y (of course each such O(v, w) is in
Zij). It suffices to show how such a group performs this computation in O(log in) time.
If IZil _< v/16gm then a single processor can solve the problem in O((/logm)2)
O(logm) time, by the quadratic work method of 3. If IZ] > v/logm then we
partition Zi6 into IZi]/v/log m pieces J, J2,... of size /log m each. We assign to each
Jk one processor which solves sequentially the subproblem defined by Xi, Jk, Y’, i.e.,
it computes for each v Xi and w Y the leftmost point of J} through which passes
a path that is shortest among the ts-to-w paths that are constrained to go through
J}. This sequential computation takes O(log m) time (again, using the method of 3).
It is done in parallel for all the J’s. Now we must, for each pair v, w with is Xi
and w Y, select the best crossing point for it among the ]Z:il/v"logm possibilities
returned by each of the above-mentioned sequential computations. This involves
a total (i.e., for all such v,w pairs) of O(IXiliYliZi:sllv/logm) O(IZilvllogm)
comparisons, which can be done in O(logm) time by the IZi:silvllogra processors
available (Brent’s theorem).

7. CRCW-PRAM algorithm. This section briefly sketches how the partition-
ing schemes of 6.2 translate into a CRCW-PRAM algorithm of time complexity
O(log n(log log m)) and processor complexity O(mnl log log m). Again, it suffices to
show how DISTAcJB can be obtained from DISTA and DISTB in O((loglogm)2)
time and with m2/log log in processors.

We first describe a preliminary procedure that has the right time complexity but
does too much work: O(m2 log m) work. The procedure is reeursive, and we describe
it for the more general ease when DISTA is g x h and DISTB is h x g (that is,
ILA] ILBI g and the common boundary has size h). It suees to show that we
can, in O(loglog h log log g) time and gh log g work, compute 0(is, w) for all is c= LA
and w

_
LB.

The first stage of the preliminary algorithm partitions LA into v/ contiguous
blocks X1,X2,... of size vr each. Similarly, LB is partitioned into / contiguous
blocks Y1, Y2,... of size V/ each. In parallel for each pair is, w such that is is an
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endpoint of an Xi and w is an endpoint of a Y, we compute, in O(log log h) time and
O(h) work, the point O(v, w). Thus, if we let Zij denote the interval on the boundary
common to A and B that is defined by the set O(v, w) such that v E Xi and w
then after this stage of the computation we know the beginning and end of each such
interval Zij.

The second stage of the computation "fills in the blanks" by doing, in parallel,
recursive calls, one for each Xi, Yj pair. The call for pair Xi, Yj returns O(v, w) for all
v Xi and w Y (of course each such O(v, w) is in Zij).

The time and work complexities of the above method satisfy the recurrences:

T(g, h) <_ T(vQ, h) + cl log log h,

W(.,h) <_max{c2t.h, EW(V,lZijl)},,..
where cl and c2 are constants. The time recurrence implies that T(l,h)
O(log log h log log l). That the processor recurrence implies W(t., h) O(ih log )
becomes apparent once we observe that , IZjl _< 2hx/. The proof of this last fact

is similar to that of Lemma 6" ’i,j IZiJl is rewritten as i, IZi,i+[ <_ h <_ 2hvQ.
This completes the proof of the preliminary CRCW-PRAM bound.

To decrease the work done from O(m2 log m) down to O(m2 log logm) (which
would imply the bound we claimed in the abstract of this paper), we use a parti-
tioning scheme similar to the ones we used in the CREW-PRAM method, in 6.2.
We partition the common boundary into log m contiguous blocks J,..., Jlog m of size
m/log rn each, then we create log rn subproblems where the ith one consists of com-
puting t?j(v,w) for all v S(LA, logm) and w S(LB,logm). We solve in parallel
all such subproblems using the preliminary scheme of the previous paragraph, then
we "collect answers"" for each v S(LA,logm) and w S(LB,logm) we compute
the correct O(v, w) from among Oj (v, w),..., {Jlog (V, W). As in 6.2, the O(v, w)’s so
computed define a partition of the common boundary into Zi’s, whose corresponding
subproblems we solve as in the schemes of 6.2: if a Zij is "small" (i.e., _< log m)
then we solve it using the preliminary algorithm; otherwise we partition it into small
pieces, solve each of them using the preliminary algorithm; and then collect answers.
An analysis like those of 6.2 reveals that the work done is O(m2 log log m), while the
time complexity remains O((loglogm)2).

Of course the same algorithm as above yields different complexity bounds when
we use in it other CRCW-PRAM methods for computing the min of h objects.

8. Conclusion. We gave a number of PRAM algorithms for the string editing
problem. The algorithms were fast and efficient, but the best time x processors bound
still did not match the time complexity of the best serial algorithm for the problem
[14], [23].
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