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COMPUTATION OF MATRIX CHAIN PRODUCTS. PART I*

T. C. HUt AND M. T. SHING

Abstract. This paper considers the computation of matrix chain products of the form M1 x M2 ’’"
M,,-1. If the matrices are of different dimensions, the order in which the product is computed affects the
number of operations. An optimum order is an order which minimizes the total number of operations. We
present some theorems about an optimum order of computing the matrices. Based on these theorems, an
O(n log n) algorithm for finding an optimum order will be presented in Part II.
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1. Introduction. Consider the evaluation of the product of n 1 matrices

M=M1 XM2 x’’" x M._I,

whereM is a wi wi/ matrix. Since matrix multiplication satisfies the associative law,
the final result M in (1) is the same for all orders of multiplying the matrices. However,
the order of multiplication greatly affects the total number of operations to evaluate
M. The problem is to find an optimum order of multiplying the matrices such that
the total number of operations is minimized. Here, we assume that the number of
operations to multiply a p x q matrix by a q r matrix is pqr.

In [1], [7], a dynamic programming algorithm is used to find an optimum order.
The algorithm needs O(n 3) time and O(n 2) space. In [2], Chandra proposed a heuristic
algorithm to find an order of computation which requires no more than 2 To operations
where To is the total number of operations to evaluate (1) in an optimum order. This
heuristic algorithm needs only O(n) time. Chin [3] proposed an improved heuristic
algorithm to give an order of computation which requires no more than 1.25 To. This
improved heuristic algorithm also needs only O(n) time.

In this paper we first transform the matrix chain product problem into a problem
in graph theory--the problem of partitioning a convex polygon into nonintersecting
triangles, see [9], [10], [11], [12]; then we state several theorems about the optimum
partitioning problem. Based on these theorems, an O(n log n) algorithm for finding
an optimum partition is developed.

2. Partitioning a convex polygon. Given an n-sided convex polygon, such as the
hexagon shown in Fig. 1, the number of ways to partition the polygon into (n-2)
triangles by nonintersecting diagonals is the Catalan number (see for example, Gould
[8]). Thus, there are 2 ways to partition a convex quadrilateral, 5 ways to partition a
convex pentagon, and 14 ways to partition a convex hexagon.

Let every vertex V of the polygon have a positive weight wi. We can define the
cost of a given partition as follows" The cost of a triangle is the product of the weights
of the three vertices, and the cost of partitioning a polygon is the sum of the costs of
all its triangles. For example, the cost of the partition of the hexagon in Fig. 1 is

(2) W1W2W3 dr- W1W3W6 q" W3W4W6"+" W4W5W6.
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FIG. 1

If we erase the diagonal from V3 to V6 and replace it by the diagonal from V1 to V4,
then the cost of the new partition will be

(3) W1W2W3-" W1W3W4-1- W1W4W6 q- W4W5W6.

We will prove that an order of multiplying n 1 matrices corresponds to a partition
of a convex polygon with n sides. The cost of the partition is the total number of
operations needed in multiplying the matrices. For brevity, we shall use n-gon to
mean a convex polygon with n sides, and the partition of an n-gon to mean the
partitioning of an n-gon into n- 2 nonintersecting triangles.

For any n-gon, one side of the n-gon will be considered to be its base, and will
usually be drawn horizontally at the bottom such as the side V1- V6 in Fig. 1. This
side will be called the base; all other sides are considered in a clockwise way. Thus,
V- V2 is the first side, V2- V3 the second side,.. and V5- V6 the fifth side.

The first side represents the first matrix in the matrix chain and the base represents
the final result M in (1). The dimensions of a matrix are the two weights associated
with the two end vertices of the side. Since the adjacent matrices are compatible, the
dimensions w x w2, w2x w3,’", wn- x wn can be written inside the vertices as
w x, w2,"’, w,. The diagonals are the partial products. A partition of an n-gon
corresponds to an alphabetic tree of n-1 leaves or the parenthesis problem of n- 1
symbols (see, for example, Gardner [6]). It is easy to see the one-to-one correspondence
between the multiplication of n- 1 matrices to either the alphabetic binary tree or
the parenthesis problem of n- 1 symbols. Here, we establish the correspondence
between the matrix-chain product and the partition of a convex polygon directly.

LEMMA 1. Any order of multiplying n- 1 matrices corresponds to a partition of
an n-gon.

Proof. We shall use induction on the number of matrices. For two matrices of
dimensions wl w2, w2 w3, there is only one way of multiplication; this corresponds
to a triangle where no further partition is required. The total number of operations
in multiplication is ww2w3, the product of the three weights of the vertices. The
resulting matrix has dimension wl w3. For three matrices, the two orders of multipli-
cation (M x M2) x M3 and Mx x (M2 x M3) correspond to the two ways of partitioning
a 4-gon. Assume that this lemma is true for k matrices where k <-n- 2, and we now
consider n 1 matrices. The n-gon is shown in Fig. 2.
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Let the order of multiplication be represented by

M=(M xM: x. x Mp_) x (M, x. x M,_);

i.e., the final matrix is obtained by multiplying a matrix of dimension (Wl X Wp) and a
matrix of dimension (wp x w,). Then in the partition of the n-gon, we let the triangle
with vertices V and V, have the third vertex V,. The polygon VI- V2 V, is a
convex polygon of p sides with base V1- V, and its partition corresponds to an order
of multiplying matrices M,. , Mp_, giving a matrix of dimension w Wp. Similarly,
the partition of the polygon Vp- Vp/ y V, with base Vp- V, corresponds to an
order of multiplying matrices M,,..., M,-1, giving a matrix of dimension Wp x w,.
Hence the triangle V1VpV, with base V1- V represents the multiplication of the two
partial products, giving the final matrix of dimension Wx X Wn. r]

LEMMA 2. The minimum numbers of operations needed to evaluate the following
matrix chain products are identical.

M xMz x.. x M,,_2 x M,,_,
M,, xM x x M,_3 x M,,_2,

M xM3 " xM,_ X M,,

where M has dimension w x w+ and w,,+ =- Wl. Note that in the first matrix chain,
the resulting matrix is o[ dimension W x w,. In the last matrix chain, the resulting matrix
is of dimension w2 x w. But in all the cases, the total number of operations in the
optimum orders of multiplication is the same.

Proof. The cyclic permutations of the n- 1 matrices all correspond to the same
n-gon and thus have the same optimum partitions. El
(This lemma was obtained independently in [4] with a long proof.)

From now on, we shall concentrate only on the partitioning problem.
The diagonals inside the polygon are called arcs. Thus, one easily verifies inductively

that every partition consists of n-2 triangles formed by n- 3 arcs and n sides.
In a partition of an n-gon, the degree of a vertex is the number of arcs incident

on the vertex plus two (since there are two sides incident on every vertex).
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LEMMA 3. In any partition of an n-gon, n _-->4, there are at least two triangles, each
having a vertex of degree two. (For example, in Fig. 1, the triangle V1 V2 V3 has vertex
V2 with degree 2 and the triangle V4 V5 V6 has vertex V5 with degree 2.) (See also [5].)

Proof. In any partition of an n-gon, there are n-2 nonintersecting triangles
formed by n- 3 arcs and n sides. And for any n _-> 4, no triangle can be formed by 3
sides. Let x be the number of triangles with two sides and one arc, y be the number
of triangles with one side and two arcs, and z be the number of triangles with three
arcs. Since an arc is used in two triangles, we have

(4) x + 2y + 3z 2(n 3).

Since the polygon has n sides, we have

(5) 2x+y=n.

From (4) and (5), we get

3x =3z+6.

Since z => 0, we have x
LEMMA 4. Let P and P’ both be n-gons where the corresponding weights of the

vertices satisfy wi <- w I. Then the cost of an optimum partition of P is less than or equal
to the cost of an optimum partition of P’.

Proof. Omitted.
If we use C(wl, w., w3,"’, Wk) to mean the minimum cost of partitioning the

k-gon with weights wi optimally, Lemma 4 can be stated as

C(w, w2,. ., Wk)<=C(w’, W,. ., W’k) ifwi<=wi.

We say that two vertices are connected in an optimum partition if the two vertices
are connected by an arc or if the two vertices are adjacent to the same side.

In the rest of the paper, we shall use V, V2," ", V, to denote vertices which
are ordered according to their weights, i.e., w x<= w2<= <- w,. To facilitate the
presentation, we introduce a tie-breaking rule for vertices of equal weights.

If there are two or more vertices with weights equal to the smallest weight wl,

we can arbitrarily choose one of these vertices to be the vertex V. Once the vertex

V1 is chosen, further ties in equal weights are resolved by regarding the vertex which
is closer to V1 in the clockwise direction to be of less weight. With this tie-breaking
rule, we can unambiguously label the vertices V, V2,’ , V, for each choice of Vx.
A vertex V is said to be smaller than another vertex V, denoted by V < V/, either
if wi < wj or if wi wj and < ]. We say that V is the smallest vertex in a subpolygon
if it is smaller than any other vertices in the subpolygon.

After the vertices are labeled, we define an arc V-V. to be less than another
arc V- Vq if

min (i, ) min p, q)
min (i, j) < min (p, q) or

max (i,/’) < max (p, q).

(For example, the arc V3-V9 is less than the arc V4-Vs.) Every partition of an
n-gon has n-3 arcs which can be sorted from the smallest to the largest into an
ordered sequence of arcs, i.e., each partition is associated with a unique ordered
sequence of arcs. We define a partition P to be lexicographically less than a partition
Q if the ordered sequence of arcs associated with P is lexicographically less than that
associated with Q.
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When there is more than one optimum partition, we use the l-optimum partition
(i.e., lexicographically-optimum partition) to mean the lexicographically smallest
optimum partition, and use an optimum partition to mean some partition of minimum
cost.

We shall use Va, Vb,’’" to denote vertices which are unordered in weights, and
Tjk to denote the product of the weights of any three vertices Vi, V. and Vk.

THEOREM 1. For every way ofchoosing V1, V2, (as prescribed), there is always
an optimum partition containing V1- V2 and VI- V3. (Here, V- V2 and V1- V3 may
be either arcs or sides.)

Proof. The proof is by induction, For the optimum partitions of a triangle and a
4-gon, the theorem is true. Assume that the theorem is true for all k-gons (3<-k <- n 1)
and consider the optimum partitions of an n-gon.

From Lemma 3, in any optimum partition, we can find at least two vertices having
degree two. Call these two vertices Vi and V.. We can divide this into two cases.

(i) One of the two vertices V (or V.) is not V, V2 or V3 in some optimum
partition of the n-gon. In this case, we can remove the vertex V with its two sides
and obtain an (n- 1)-gon. In this (n- 1)-gon, V, V2, V3 are the three vertices with
smallest weights. By the induction assumption, V is connected to both V2 and V3 in
an optimum partition.

(ii) Consider the complementary case of (i), in all the optimum partitions of the
n-gon, all the vertices with degree two are from the set {V1, V2, V3}. (In this case,
there will be at most three vertices with degree two in every optimum partition.) We
have the following three subcases:

(a) V V2 and V V3 in some optimum partition of the n-gon, i.e., both V2
and V3 have degree two simultaneously. In this case, we first remove V2 with its two
sides and form an (n 1)-gon. By the induction assumption, V1, V3 must be connected
in some optimum partition. If V1- V3 appears as an arc, it reduces to (i). So Vx- V3
must appear as a side of the (n- 1)-gon, and reattaching V2 to the (n- 1)-gon shows
that either V, V2 and V3 are mutually adjacent or V- V3 is a side of the n-gon. In
the former case, the proof is complete, so we assume that Va-V3 is a side of the
n-gon. Similarly, we can remove V3 with its two sides and show that V1, V2 are
connected by a side of the n-gon.

(b) V Va and V V2 in some optimum partition of the n-gon, i.e., V1 and V2
both have degree two simultaneously. In this case, we can first remove Vx and form
an (n- 1)-gon where V2, V3, V4 are the three vertices with smallest weights. By the
induction assumption, V2 is connected to both V3 and V4 in an optimum partition.
If V2- V3 or V2- V4 appears as an arc, it reduces to (i). Hence, V2- V3 and V2- V4
must both be sides of the n-gon. Similarly, we can remove V2 with its two sides and
form an (n- 1)-gon where VI, V3, V4 are the three vertices with smallest weights.
Again, V1 must be connected to V3 and V4 by sides of the n-gon. But for any n-gon
with n->_5, it is impossible to have V3 and V4 both adjacent to V and V2 at the same
time, i.e., V1 and V2 cannot both have degree two in an optimum partition of any
n-gon with n_->5.

(c) V Vx, Vo V3 in some optimum partition of the n-gon. By argument similar
to (b), we can show that V2 must be adjacent to V1 and V3 in the n-gon. The situation
is as shown in Fig. 3(a). Then the partition in Fig. 3(b) is cheaper because

T123 T12q

and C(wl, Wq, wy, wt, Wx, w,, W3) -< C(w2, Wq, Wy, Wt, Wx, Wp, W3) according to Lemma
4. I3
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FIG. 3

COROLLARY 1. For every way of choosing Vx, V,... (as prescribed), the
l-optimum partition always contains Va- Vz and V- V3.

Proof. It follows from Theorem 1 and the definition of the /-optimum
partition. 71

Once we know Vx- V and Vx- V3 always exist in the/-optimum partition, we
can use this fact recursively. Hence, in finding the /-optimum partition of a given
polygon, we can decompose it into subpolygolas by joining the smallest vertex with
the second smallest and third smallest vertices repeatedly, until each of these subpoly-
gons has the property that its smallest vertex is adjacent to both its second smallest
and third smallest vertices.
A polygon having .Va adjacent to Vz and V3 by sides will be called a basic polygon.
THEOREM 2. A necessary but not sufficient condition for Vz-V3 to exist in an

optimum partition of a basic polygon is

(6)
1 1 1 1

W1 W4 W2 W3

Furthermore, if V2- V3 is not present in the l-optimum partition, then V1, V4 are
always connected in the l-optimum partition.

Proof. If V2, V3 are not connected in the/-optimum partition of a basic polygon,
the degree of Va is greater than or equal to 3. Let V be a vertex in the polygon and
V, V be connected in the /-optimum partition. V4 is either in the subpolygon
containing Va, V2 and V or in the subpolygon containing V, V3 and Vo. In either
case, V4 will be the third smallest vertex in the subpolygon. From Corollary 1, V, V4
are connected in the /-optimum partition of the subpolygon and it also follows that
V, V4 are connected in the/-optimum partition of the basic polygon.

If V2, V3 are connected in an optimum partition, then we have an (n- 1)-gon
where V2 is the smallest vertex and V4 is the third smallest vertex. By Theorem 1,
there exists an optimum partition of the (n- 1)-gon in which V2, V4 are connected.
Thus by induction on n, we can assume that V4 is adjacent to V2 in the basic polygon
as shown in Fig. 4(a).
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(a) (b)
FIG. 4

The cost of the partition in Fig. 4(a) is

(7) T123-[" C(w2, w4," ", w,,. ., w3),

and the cost of the partition in Fig. 4(b) is

T124+ C(Wl, w4,""’, wt,’", w3).
According to Lemma 4,

(9) C(Wl, W4," ", Wt," ’’, W3) C(W2, W4," ", Wt," ", W3).

Since the weights of the vertices between ,V4 and V3 in the clockwise direction are
all greater than or equal to w4, the difference between the right-hand side and the
left-hand side of (9) is at least

T243- T143.
So the necessary condition for (7) to be no greater than (8) is

T123 q- T243 T124 -[- T134
or

1 1 1 1
e <__+. [3

W1 W4 W2 W3

LEMMA 5. In an optimum partition of an n-gon, let Vx, Vy, Vz and Vw be four
vertices of an inscribed quadrilateral V and Vz are not adjacent in the quadrilateral).
A necessary condition for Vx-V to exist is

1 1 1 1
(10)

Wx Wz W Ww

Proof. The cost of partitioning the quadrilateral by the arc Vx-Vz is

(11) Tyz + Tz,,

and the cost partitioning the quadrilateral by the arc Vy- Vw is

(12) Txyw + Trzw.
For optimality, we have (11)<_-(12) which is (10). 71
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Note that if strict inequality holds in (10), the necessary condition is also sufficient.
If equality holds in (10), the condition is sufficient for Vx Vz to exist in the/-optimum
partition provided min (x, z) < min (y, w). This lemma is a generalization of [3, Lemma
1] where Vy is the vertex with the smallest weight and Vx, Vw, Vz are three consecutive
vertices with Ww greater than both w, and w.

A partition is called stable if every quadrilateral in the partition satisfies (10).
COROLLARY 2. An optimum partition is stable but a stable partition may not be

optimum.
Proof. The fact that an optimum partition has to be stable follows from Lemma

5. Figure 5 gives an example that a stable partition may not be optimum.

(a) a stable partition (b) the optimum partition

FIG. 5

In any partition of an n-gon, every arc dissects a unique quadrilateral. Let
Vx, Vy, Vz, Vw be the four vectices of an inscribed quadrilateral and Vx- Vz be the
arc which dissects the quadrilateral. We define V,- Vz to be a vertical arc if (13) or
(14) is satisfied.

(13) min (Wx, Wz) < min (wy, Ww),

(14) min (Wx, Wz)= min (wr, Ww), max (w, Wz)_-< max (wy, Ww).

We define Vx- Vz to be a horizontal arc if (15) is satisfied

(15) min (Wx, Wz) > min (wr, Ww), max (Wx, Wz) < max (wr, Ww).

For brevity, we shall use h-arcs and v-arcs to denote horizontal arcs and vertical arcs
from now on.

COROLLARY 3. All arcs in an optimum partition must be either vertical arcs or
horizontal arcs.

Proof. Let Vx- Vz be an arc which is neither vertical nor horizontal. There are
two cases:

Case 1. min (w, w)= min (wy, Ww) and max (Wx, Wz)> max (w, Ww);
Case 2. min (Wx, Wz) > min (wr, Ww) and max (wx, Wz) >= max (wy, Ww).
In both cases, the inequality (10) in Lemma 5 cannot be satisfied. This implies

that the partition is not stable and hence cannot be optimum, l-1
THEOREM 3. Let V and Vz be two arbitrary vertices which are not ad]acent in a

polygon, and Vw be the smallest vertex ]rom Vx to Vz in the clockwise manner Vw
Vx, Vw Vz), and V be the smallest vertex from Vz to V in the clockwise manner
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FIG. 6

Vy Vx, Vy Vz). This is shown in Fig. 6, where without loss of generality we assume
that Vx < Vz and Vy < Vw. A necessary condition ]’or Vx- Vz to exist as an h-arc in the
l-optimum partition is that

Wy < Wx <=’Wz < Ww.

(Note that the necessary condition still holds when the positions of Vy and Vw are
interchanged.)

Proof. The proof is by contradiction. If w <- wy, Wx must be equal to the smallest
weight wl, and Vx- Vz can never satisfy (15). Hence, in order that V- Vz exist as
an h-arc in the/-optimum partition, we must have wy<wx <= Wz. Since Vy is the smallest
vertex from Vz to V in the clockwise manner and V < Vw, we must have Vy V1.

Assume for the moment that V3 < Vx < V. From Corollary 1, both V1- V2 and
V1- V3 exist in the/-optimum partition, and the two arcs would divide the polygon
into subpolygons. If V and V are in different subpolygons, then they cannot be
connected in the/-optimum partition. Without loss of generality, we can assume that
the polygon is a basic polygon. In this basic polygon, either V2- V3 or V1- V4 exists
in the/-optimum partition (Theorem 2).

If V2, V3 are connected, then Vx and Vz are both in a smaller polygon in which
we can treat V2 as the smallest vertex and repeat the argument. If V1, V4 are connected,
the basic polygon is again divided into two subpolygons and V and Vz both have to
be in one of the subpolygons and the subpolygon has at most n- 1 sides. (Otherwise
V- Vz can never exist in the/-optimum partition.) The successive reduction in the
size of the polygon will either make the connection Vx-Vz impossible, or force V
and Vz to become the second smallest and the third smallest vertices in a basic
subpolygon. Let V,, be the smallest vertex in this basic subpolygon. In order that
V- Vz appear as an h-arc, we must have w> w,,. From Theorem 2, the necessary
condition for Vx Vz (i.e., V2- V3) to exist in an optimum partition of the subpolygon
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1 1 1 1
+ => e

Wx Wz Wm Ww

Since Wx > w., the inequality is valid only if Wz < Ww. [3
COROLLARY 4. A weaker necessary condition for Vx- Vz to exist as an h-arc in

the l-optimum partition is that

V< V< Vz< V.

Proof. This follows from Theorem 3.
We call any arc which satisfies this weaker necessary condition a potential h-arc.

Let P be the set of potential h-arcs in the n-gon and H be the set of h-arcs in the
/-optimum partition, we have P=_H where the inclusion could be proper.

COROLLARY 5. Let Vw be the largest vertex in the polygon and Vx and Vz be its
two neighboring vertices. If there exists a vertex Vy such that Vy < Vx and Vy < Vz, then
Vx- Vz is a potential h-arc.

Proof. This follows directly from Corollary 4 where there is only one vertex
between Vx and Vz.

Two arcs are called compatible if both arcs can exist simultaneously in a partition.
Assume that all weights of the vertices are distinct, then there are (n- 1)! distinct
permutations of the weights around an n-gon. For example, the weights 10, 11, 25,
40, 12 in Fig. 5(a) correspond to the permutation wl, w2, w4, ws, w3 (where wl < w2 <
w3 < w4 < ws). There are infinitely many values of weights which correspond to the
same permutation. For example, 1, 16, 34, 77, 29 also corresponds to Wl, w2, w4, ws, w3
but its optimum partition is different from that of 10, 11, 25, 40, 12. However, all
the potential h-arcs in all the n-gons with the same permutation of weights are
compatible. We state this remarkable fact as Theorem 4.

THtSORtSM 4. All potential h-arcs are compatible.
Proof. The proof is by contradiction. Let Vx, Vr, Vz and Vw be the four vertices

described in Theorem 3. Hence, we have Vy < Vx < Vz < Vw and Vx Vz is a potential
h-arc. Let Vp-Vq be a potential h-arc which is not compatible to Vx-Vz, as shown
in Fig. 7. Without loss of generality, we can assume Vp < Vq. (The proof for the case
V < Vp is similar to that which follows.)

Since Vw is the smallest vertex between Vx and Vz in the clockwise manner, we
have Vz < Vw < Vq. Hence, we have either V < Vp < Vz < Vq or Vy < Vz < Vp < V.
Both cases violate Corollary 4 and Vp- Vq cannot be a potential h-arc.

Note that the potential h-arc Vx-Vz always dissects the n-gon into two subpoly-
gons and one of these subpolygons has the property that all its vertices except Vx and
Vz have weights no smaller than max (Wx, Wz). We shall call this subpolygon the upper
subpolygon of Vx Vz. For example, the subpolygon Vx Vw V in Fig. 7
is the upper subpolygon of V- V.

Using Corollary 4 and Theorem 4, we can generate all the potential h-arcs of a
polygon.

Let Vx-Vz be the arc defined in Corollary 5, i.e., V < V < V < Vw. The arc
Vx- Vz is a potential h-arc compatible with all other potential h-arcs in the n-gon.
Furthermore, there is no other potential h-arc in its upper subpolygon. Now consider
the (n-1)-gon obtained by cutting out Vw. In this (n- 1)-gon, let Vw, be the largest
vertex and Vx, and Vz, be the two neighbors of Vw, where V1 < Vx, < Vz, < Vw,. Then
Vx,- Vz, is again a potential h-arc compatible with all other potential h-arcs in the
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FIG. 7

n-gon and there is no other potential h-arc in its upper subpolygon which has not
been generated. This is true even if Vw is in the upper subpolygon of Vx,- Vz,. If
we repeat the process of cutting out the largest vertex, we get a set P of arcs, all of
which satisfy Corollary 4. The h-arcs of the/-optimum partition must be a subset of
these arcs.

The process of cutting out the largest vertex can be made into an algorithm which
is O(n). We shall call this algorithm the one-sweep algorithm. The output of the
one-sweep algorithm is a set $ of n-3 arcs. S is empty initially.

The one-sweep algorithm, Starting from the smallest vertex, say V1, we travel in
the clockwise direction around the polygon and push the weights of the vertices
successively onto the stack as follows (Wl will be at the bottom of the stack).

(a) Let Vt be the top element on the stack, Vt-1 be the element immediately
below Vt, and Vc be the element to be pushed onto the stack. If there are two or
more vertices on the stack and w > we, add V_I- V to S, pop V off the stack;
if there is only one vertex on the stack or wt <- w, push w onto the stack. Repeat
this step until the nth vertex has been pushed onto the stack.
(b) If there are more than three vertices on the stack, add Vt-1-V to $, pop
Vt off the stack and repeat this step, else stop.
Since we do not check for the existence of a smallest vertex whose weight is no

larger than those of the two neighbors of the largest vertex, i.e., the existence of the
vertex Vy in Corollary 4, not all the n 3 arcs generated by the algorithm are potential
h-arcs. However, it is not difficult to verify that the one-sweep algorithm always
generates a set $ of n- 3 arcs which contains the set P of all potential h-arcs which
contains the set H of all h-arcs in the/-optimum partition of the n-gon, i.e.,

where each inclusion could be proper. For example, if the weights of the vertices
around the n-gon in the clockwise direction are Wl, w2, , wn where w =< w2 =<" =<
wn, none of the arcs in the n-gon can satisfy Corollary 4 and hence there are no
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potential h-arcs in the n-gon. The one-sweep algorithm would still generate n-3 arcs
for the n-gon but none of the arcs generated is a potential h-arc.

3. Conclusion. In this paper, we have presented several theorems on the polygon
partitioning problem. Some of these theorems are characterizations of the optimum
partitions of any n-sided convex polygon, while the others apply to the unique
lexicographically smallest optimum partition. Based on these theorems an O(n)
algorithm for finding a near-optimum partition can be developed [12]. The cost of
the partition produced by the heuristic algorithm never exceeds 1.155 Copt, where
Copt is the optimum cost of partitioning the polygon. An O(n log n) algorithm for
finding the unique lexicographically smallest optimum partition will be presented in
Part II [13].
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