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OPTIMAL MULTI-WAY SEARCH TREES*

L. GOTLIEBf

Abstract. Given a set of N weighted keys, N + missing-key weights and a page capacity m, we describe
an algorithm for constructing a multi-way lexicographic search tree with minimum cost. The program runs in
time O(N3m) and requires O(N2m) storage locations. If the missing-key weights are zero, the time can be
reduced to O(N2m). A further refinement enables the factor m in the above costs to be replaced by log m.
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1. Introduction. In this paper, we consider the problem of constructing a search
tree for use in secondary storage. Because the access cost of the external memory is high
compared to internal processing speeds, keys are grouped for searching into storage
units called pages. Given a set of N keys with weights {Pi}, N + 1 missing-key weights
{q.}, and a page capacity m, we show how to construct a multi-way search tree which
minimizes the expected number of pages accessed during a search. Section 2 sets up the
problem and reviews Knuth’s dynamic programming technique for finding optimal
binary search trees [1]. Section 3 extends this method to produce an algorithm for
constructing optimal multi-way trees. The running time is O(N3m), and O(N2m)
storage locations required. If the q weights are absent, a "monotonicity" property
(expressed by Theorem 2, which is proved in 6) enables the running time to be reduced
to O(N2m); however a counterexample presented in 5 shows that this property need
not hold if any of the q’s are positive. 4 outlines a refinement whereby the factor m in
the above time and storage costs can be replaced by log m.

Variants of the problem considered here have been addressed by Itai [4] and by
Wood et al. [6]. Itai shows how to construct optimal multi-way code trees, that is, trees
in which the weights are confined to appear at the leaves only. Recently, Wood and his
colleagues have shown how to construct optimal multi-way search trees with a height
constraint, and also how to optimize multi-way trees when the cost of searching is
defined as a combination of page accesses and the time required to search within a page.
Their results have been derived independently of this work.

2. The problem. We are given keys K1 < K2 <"" <K, a page capacity m => 1,
and nonnegative weights {pl,"’", pv, qo,""", qN}, where

pi/W is the probability that Ki is the search argument,
qj/W is the probability of a search between Kj and Ki/l, 1 <= < N, and
W is the total weight, pl +" + pN + qo +’ + qv.
(qo/W is the probability that the search argument precedes K1, qlv/W that it
follows KN).
The problem is to construct an m + 1-way search tree (an example of which is

illustrated in Fig. 1), which minimizes the cost

N N., Pi level (pi)+ qi (level (qi)-1).
i=1 1=0

Fig. 1 shows an optimal 4-way tree (m 3) for the 15 most common names in the
Canadian census. The number accompanying each name (the p-weight) is the number of
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FIG. 1. Optimal 4-way search tree on 15 most common names in Canadian census.

times it occurred in a list of over a million names, while the numbers in the leaves (the q
weights) represent those list members falling alphabetically between pairs from the top
15; thus there were 309,686 names (with repetitions) between "Campbell" and
"Johnson", and 12, 127 preceeding "Anderson". Thus Level (pi) is actually the level of
Ki, while level (qj) is the level of a node representing a missing-key range.

Two points about Fig. 1 should be noted. First, each page which has pages (i.e.,
nodes with names) as descendants must be filled, or the cost could be reduced by
promoting names up to the unfilled pages. In other words, in an optimal tree, only leaf
pages may be unfilled. Second, the search cost of a q-weight is not the level of the leaf
labeled with that weight, but rather the level of the page which is the father of that
weight; for example, the cos.t of the leaf weighted 309,686 is 309,686 times the level of
the root, since the search for a name between "Campbell" and "Johnson" would stop at
the root page. Thus one is subtracted from level (qj) in the expresssion for the cost of the
tree. The level of the root is taken to be one, since we want the level of a page to reflect
its access cost.

For rn 1 (binary branching), a dynamic programming approach, employing the
principle that subtrees of an optimal tree must also be optimal, yields an O(N2)
construction algorithm [1]. Let t(i,f) denote an optimal tree on weights (q, p+l,

qi+l, , p, qi) (henceforth abbreviated (i,/’)), c(i, j) be the cost of this tree, and w(i, f)
be its weight, pi/x, +" + pi + qi +" + q. The idea is to compute c(0, N), starting with

c(i,i)=O, O<-i<-N,
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and using

(1) c(i,j)=w(i,j)+ min {c(i,h-1)+c(h,j)}, O<=i<j<-N.
i<hj

Each time (1) is performed, the key corresponding to an h which gives a minimum
is selected as r(i, j), the root of t(i, ]). The computational cost is proportional to

N j-1

2 (j-i),
i=1 i=0

which is roughly N3/6, and N2 storage locations are needed for the c(i, j)’s and r(i, j)’s.
The running time can be further reduced by using Knuth’s observation [1] that

r(i, ]- 1) -< r(i, j) <= r(i + 1,/);

that is, one need not move left in the key set, looking for a new root when a key is added
following the rightmost key in the tree, and vice-versa. This makes it possible to restrict
the range of h in (1), thereby reducing the running time to

N i-1
(2) Y. (r(i + 1, j)-r(i, j- 1)+ 1)

i=1 i=0

(To make this summation correct when ] 1, we adopt the convention that r(i, i) 0,
O<-_iNN; in fact, (1) is not needed when f-i= 1, since by definition, c(i,i+l)=
w(i, + 1), and r(i, + 1)= + 1.) After cancelling terms, the sum reduces to

N(N+ 1) N

+ E (r(i, N)- r(O, N- i))Nz,

since r(i, N)<-N and r(0, N-i):> 0, so the time is O(N2).
The algorithm for optimal m + 1-way trees, m > 1, is basically an extension of the

above technique. Let

i<r(i,], 1)<...<r(i,j,m) <-]

be the (indices of the) keys on the root page of the optimal m + 1-way tree t(i, ]) with
cost c(i, ]) and weight w(i, ]). We have

c(i,i)=O, O<-i<-N,

c(i; ])= w(i, j), 1 <-j-i <= m,
and for rn <j-i <-N, we must find an assignment for r(i, j, k) such that

c(i,j)-w(i,j)+c(i,r(i,j, 1)-1)
m--1

+ Y c(r(i,j,k),r(i,],k+l)-l)+c(r(i,j,m),j)
k=l

is a minimum.
The problem is carrying out this minimization. For each r(i, ]), there are (2,i)

choices for the root page, and when j- d, there are N- d + 1 c(i, j)’s and r(i, j)’s to
determine, namely for (i, j) ((0, d), (1, d + 1),. , (N- d, N)). Since j ranges from
m + 1 to N, a brute force approach which considers each possible candidate for the root
page of t(i, j) would take on the order of (N) steps. This cost is too large to be practical, so
a way of reducing the number of potential root pages per subtree is needed.
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3. A dynamic programming solution. Let T(i,/’, k), 1 <- k -<_ m, denote the set of
optimal k-rooted trees on weights (i, f), that is, optimal trees in which

i) there are exactly k keys on the root page,
and

ii) the k + 1 subtrees of the root page are (optimal) m + 1-way trees.
The basis for our construction algorithm is an observation similar to that made by

Itai for code trees [4]. We note that the cost of a search tree, expressed iteratively as Y iPi
level (pi) + lqJ (level (q.) 1), can also be expressed recursively, in aform which makes
it clear how to carry out minimization. For example, the cost of the tree in Fig. 1 can be
written

Cost (2-rooted tree on ("Anderson",..., "Martin"))

+ Weight ("Miller") + Weight (Right Subtree of "Miller")

+ Cost (Right Subtree of "Miller").

Now for the tree to be optimal, the right subtree of "Miller" must be optimal, as,

must the 2-rooted tree to the left; otherwise the total cost could be reduced by finding
better trees on the same key sets. Moreover, the choice of "Miller" as the rightmost key
on the root page must produce a cost no greater than any other (optimal 2-rooted tree,
rightmost root key, optimal 4-way subtree) combination. Therefore, given all optimal
4-way and 2-rooted trees for proper subsequences of ("Anderson",.. , "Williams"),
the problem of finding the optimal 4-way tree on the whole sequence is reduced to that
of choosing the rightmost key of the root page (i.e., that which gives the smallest cost
when substituted into the above formula).

More generally, let c(i,L k) be the cost of t(i, f, k)T(i,], k). Then for ]-i>-m,

c(i,],m)= min {c(i,h-l,m-1)+ph+W(h,f)+c(h,f,m)}.
i+rnhj

in other words, t(i, ], m) is the smallest cost concatenation of an optimal m 1-
rooted tree on the left, together with a single root and its (right) m + 1-way subtree.
(The weight of the right subtree, w(h, ]), must be added in because the tree starts at level
two, and therefore its stand-alone cost, c(h, j, m), does not reflect its access cost as a
subtree.) Similarly, t(i,j, m-l) can be determined from optimal m-2-rooted and
m-rooted subtrees, and in general, for 2 -<_ k -<_ m, f- ->_ k,

(3) c(i,,hk)= min {c(i,h-l,k-1)+ph+W(h,f)+c(h, Lm)}.
i+khj

(Note that + k is the lower bound, since the set of candidates for the rightmost root of a
k-rooted tree starts at the kth key from the left.)

The computation of c(i, ], 1) is slightly different since no concatenation of trees is
involved; rather a single root is chosen to minimize the cost of left and right subtrees.
We have, for < j,

(4) c(i,j, 1)=w(i,j)+ min {c(i,h-l,m)+c(h,j,m)}
i<hj

which is similar to (1), except that the subtrees are m + 1-way, rather than binary.
(The equivalence of the recursive formulation of cost, given by (3) and (4), with the

iterative expression iPi" level (pi)"" etc.) is easy to show. For trees with maximum
height one, (4) is trivially correct, and (3) is established by induction on k. Then,
assuming the equivalence for trees with maximum height less than h, (4) is proved for
trees with maximum height h, and (3) follows, again by induction on k.)
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Assuming then, that c(i, ], k) has been computed for 1 <_- k <- m and/"- < d, we can
compute c(i, ], k) for 1-<k-<m and ]-i =d, starting with (4) to get c(i, j, 1), and
followed by successive applications of (3) with k 2, 3,. ., m. (In the final step when
c(0, N, m) is to be determined, it is only necessary to use (3) once, since at this point
optimal trees with fewer than m keys on the root page are not needed; however the
savings are negligible.) The timing analysis is essentially the same as for the binary
algorithm: the cost of (4) is proportional to

Y E (J-i)=N3/6,
i=1 i=0

while for 2 -< k <- m, (3) takes

v i-k (N-k + 1)3
E Y. (J- i- k + 1) steps.
j=k i=0 6

The total cost is therefore approximately

E
(N-k + 1)3

k=l 6

which is O(N3m).
For 2 -< k -< m, let r(i, j, k) be the largest value of h that gives a minimum in (3), and

define r(i, j, 1) similarly for (4); r(i, j, k) is simply the largest possible key on a root page
of T(i, j, k). In 5 and 6, we show two facts about r(i, j, k):

1) During construction of an optimal k-rooted tree, the rightmost key in the root
can move left when a key is added at the right (alphabetically high) end of the key set. In
particular, r(i, j, k) may be less than r(i, ]- 1, k) ( 5).

2) If the missing-key weights (q’s) are all zero, then the following monotonicity
property holds (Theorem 2, 6):

r(i, ]- 1, k) <- r(i, j, k) <- r(i + 1, j, k).

Point (1) means that, in contrast with the situation for binary trees, r(i, f, k) can lie
outside [r(i, - 1, k), r(i + 1, , k)] and therefore, when q’s are present, the speed up in
running time from N3 to N2 cannot be applied. When the q’s are absent, (2) restricts the
search for the minimum in (3) and (4), making the total cost proportional to

Y E Y (r(i+l,j,k)-r(i,j-l,k)+l).
k=l ]=k i=o

(Again, it is convenient to let r(i, ], k) 1 if ] < k.) For each k, the inner double sum is

equivalent to (2) above (in fact, slightly smaller when k > 1), which is bounded by N2;
hence the running time is O(N2m).

The storage requirement is O(N2m) locations, since r(i, ], k) and c(i, ], k) are N by
N by m arrays. To see how the desired tree, t(0, N, m), is reconstructed from the
information in r, note that the keys on the root page of t(0, N, m) are given by the
following sequence:

r r(0, N, m)

r r(O, rk-1-1, m k + 1), for 2 <-_ k <- m.
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In other words, the rightmost key rl is r(0, N, m), the key second from the right is the
rightmost root key for the weights (0, rl 1 and so on. The root pages of the subtrees of
the root page, and hence ultimately the whole tree, are similarly determined.

An algorithm which uses (3) and (4) to compute optimal rn + 1-way search trees on
weights (qo, pt,""", pr, qr) is presented in [5].

4.. refinement. The time and space costs of the above algorithm can be reduced
using a technique employed by Itai for the construction of optimal multi-way code trees
[4, 7]. He observed that an optimal m-way code tree is the concatenation of an optimal
collection of s m-way trees, together with an optimal collection of m-s trees. Here we
cannot concatenate trees in the same way code trees are combined (there would be one
subtree too many), lut we can join them with a middle root; for example the tree of Fig.
1 can be regarded as the join of two optimal 1-rooted trees (with roots "Campbell",
"Miller"), together with the key "Johnson". Thus, for u + v k 1, k > 2,

(5) c(i,/’, k) min {c(i, h 1, u) + Ph + c(h, L v)}.
i+u<h<--j-v

This makes it possible to determine c(i, j, m) without computing all the intermediate
costs, c(i, j, 1), c(i, j, 2),. , c(i, , m 1). For example, suppose c(i, j, k) are available
for k =(1, 3, 7, 11, 12) and j-i <d; then for ]-i =d, c(i,], k) can be derived for the
same set of k’s by the following steps:

(1) use (4) to get c(i, j, 1),
(2) use (5) with u v 1 to get c(i, j, 3),
(3) use (5) with u v 3 to get c(i, j, 7),
(4) use (5) with u 7, v 3 to get c(i, , 11)
(5) use (3) with k 12 to get c(i, , 12).
More generally, let So, sl, ., st be any sequence which satisfies

(6) So 0, sl m,

and

(7) Sh 1 4- S 4- O<_i<__j<_h<_l.

For 1 -<_ h <- l, let left (h) and right (h) be, respectively, the and/" for which (7) holds,
that is, Sh "-Sleft(h)4-Sright(h) 4- 1. Finally, suppose c(i,],Sh) has been computed for
h e (1, 2, , l} and ] < d. Then the following rule is used to decide which of (3), (4)
or (5) to apply when computing c(i, j, Sh) for ]-- d and h 1 to

if left (h)= 0 then use (4)
else if right (h)= 0 then use (3) with k s(h)

else use (5) with u left (h) and v =right (h).

Sequences for which (6) and (7) hold are closely related to addition chains. An
addition chain of length for n > 1 is a sequence of integers 1 ao, a 1, , at n, such
that ah ai + aj, 0 <- <= j < h <- I. Given an addition chain for n rn + 1, note that the
sequence (a0- 1, a- 1,..., at- 1) satisfies (6) and (7), since

and

ao- 1 0, at- 1 m,

ah 1 (ai + aj) 1 14- (ai 1) +(ai 1), l<_h<_l.
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Let l(n) be the length of the shortest possible addition chain for n > 1. Given such a
chain, it is possible to construct an optimal m + 1-way tree in time O(N3l(m + 1)). As it
turns out, neither a minimal chain nor l(n) are easy to compute efficiently for n in
general [2, 4.6.3]; however the binary addition chain for n is easily derived from the
binary representation of that number, and has at most 2[logn] terms
((1, 2,.. , 2 tlogn]) plus a term for each "one" bit except the high order one). Thus the
sequence of k’s for which c(i,], k) must be computed need be no longer than
2 [log m + 1], which makes possible an O(N3 log m) construction algorithm (or
O(N2 log n), when the q’s are absent).

$. Failure ot monotonidty property in the general ease. In this section we show
that, during construction of an optimal multi-way search tree, the rightmost key in the
root can move left when a key is added at the right. Consider a set of 8 keys,
{A, B, ., H}, each weighted one, together with 9 missing-key weights q, all equal to
one except for q(8) (between G and H), which is 4. For convenience, these weights are
unnormalized; to get the actual probabilities, it is necessary to divide each weight by the
total. Thus the probability of a search for A is .

Fig. 2(b) shows a 3-way (m 2) tree which is optimal for these weights. The
rightmost key in the root is F; it is also r(0, 8, 2), the largest possible rightmost root,
since no other 3-way tree costs as little for this data. Now the algorithm outlined in 3
requires an optimal tree on (A, G) before it can determine one on (A, H), and such a
tree is illustrated in Fig. 2(a). This tree is also uniquely optimal for the weights given,
which makes G, the rightmost key in the root, equal to r(0, 7, 2). Thus the rightmost
root key shifts left from G, on keys (A, G), to F, on keys (A, H), and in particular,
r(0, 8, 2) _<- r(0, 7, 2), which shows that r(i, j, k) may lie outside the interval Jr(i, j- 1, k),
r(i + 1, j, k)]. (The number of keys in the root of the tree in Fig. 2 is not critical to the
example, and thus the result is true for optimal k-rooted trees as defined at the
beginning of 3.)

Cost 33

(a)

Cost 38

(b)

FIG. 2. Optimal trees on (A, G) and (A, H).

The example just presented affects an assumption made by Itai regarding the time
needed to construct optimal multi-way code trees [4, 7]. To see how, observe that if
the internal weights are ignored, the trees in Fig. 2 are 3-way code trees. The one in (a) is
the join of two 3-way trees together with the leaf weighted "4", while (b) is formed by
concatenating two 3-way trees with a rightmost tree consisting of weights (1, 4, 1). The
last weight before the rightmost tree in the least-cost concatenation is called the
breakpoint. For code trees, Itai assumed the equivalent of the monotonicity property,
namely that when a weight is added at the right, a breakpoint greater than or equal to
the previous one can always be found. But Fig. 2 shows that this need not be true, since
the breakpoint in (a) is the 7th leaf weight (following F), while it is the 6th (after E) in
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(b). Hence the dynamic programming construction procedure which he outlined is
O(N3 log m), not O(N2 log m) as claimed.

In [7-1 it is shown that, during construction, the rightmost root in a multi-way search
tree or code tree can shift the maximum possible number of keys away from the added
key. Thus the dependence on key set size of dynamic programming methods for
multi-way tree construction pi’esented so far is O(N3). However our counterexamples
to the monotonicity property rely on the existence of nonzero leaf (q) weights; in the
next section we show that when these weights are absent, the addition of a key at the
right cannot force the rightmost key in the root to move left.

6. Proof of monotonicity property when q’s absent. The purpose of this section is
to show that when qh 0, 0 <= h <- N, r(i,/, k), the largest key on the root page of all trees
in T(i,/, k), satisfies

r(i, j- 1, k)<-r(i, ], k)<-r(i + 1, ], k), k<j-i<_N, l<-k<-m.

The proof is a generalization of the one for binary trees outlined in [3, 6.2.2]; however
it should be noted that for binary trees, the result holds whether the q’s are zero or not.
Note also that to stay consistent with the general case, we will use (i, j) to denote the
weights (p/+l, P/), even though the absence of the q’s makes (i + 1, ]) more natural.
The following definitions are needed:

DEFINITION 1. Define AB to hold between nonempty sets of integers A, B if
a e A, b e B and b < a =), a e B and b A. Informally, if A, regarded as a sequence, is
"left" of B in terms of position, then AB holds if "overlapping" members are
common to both sets. The relation has the following property, which we state without
proof:

LEMMA 1. is transitive.
DEFINITION 2. R(i, , k), 1 <= k <= m, is the set of rightmost keys (henceforth called

rightmost roots) on the root pages of trees in T(i, j, k); in other words, it is the set of
+ k -<_ h -< for which (3) is minimized if k > 1, or (4) is minimized if k 1.

DEFINITIOr 3. L(i, , k) 1 <- k <= m, is the set of leftmost keys (leftmost roots) on the
root pages of trees in T(i,j, k). We have L(i,j, 1)=R(i,j, 1) for l<-j-i<=N, and for
2<-k<-m,k<j-i<-N,

L(i, ], k)={i<h <=]-k + llc(i, h-l, m)+ w(i, h-l)

+Ph + C (h, ], k 1) is a minimum}

Proofoutline. We first show that except for possible addition of the new key, the set
of rightmost roots does not change when the existing key set is augmented at its right
(alphabetically high) end by a key with weight zero (Lemma 2). The main theorem
(Theorem 1) is proven in two parts. In Lemma 4, weights (i, , j- 1) are fixed while Pi
is increased from x to y; in this case it is shown that there will always be a rightmost
root-> any key which is a rightmost root when pi x. Together with Lemma 2, this
shows that R (i, ]- 1, k)R (i, ], k), or, informally, that we need never move left in the
key set to look for a new rightmost root when a key is added at the right. The equivalent
result for leftmost roots is then used to show that the rightmost root does not have to
move right when a key is added at the left, thus completing the proof. Finally, Theorem
1 is used to prove Theorem 2, the desired result.

LEMMA 2. Let qh O, 0 <= h <= N. If Pi O, then R (i, ] 1, k) R (i, j, k) {j}, k <
j-iN.
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Proof. Since pj 0, adding it to a tree in T(i,/’- 1, k) cannot increase the cost, but
cannot lead to a better rearrangement either, or removing it would then leave a better
tree than the original, which was optimal. Therefore any tree in T(i, j- 1, k) can be
converted to one in T(i, ], k) by straight insertion of pj, which does not change the
rightmost key in the root. A similar argument shows that any tree in T(i, ], k) in which pj
is not the rightmost root must also be in T(i,/’- 1, k) when pj is removed.

The main theorem to be proved is
THEOREM 1. If qh O, 0 h <-N, then

and

R(i,i-1, k)R(i,j, k)R(i + 1,], k),

L(i, j- 1, k) L(i, /, k) L(i + 1,/’, k),

k<j-i<-N,l<-k<__m.

Proof. By induction on ]- > k.
Basis. If ]-i=k+l, then R(i,f-l,k)={]-l}, R(i+l,f,k)={]}, and

R(i, Lk)c_{]-l,.i}. Similarly L(i,]-l,k)={i+l}, L(i+l,Lk)={i+2}, and
L(i, ], k)

_
{i + 1, + 2}; hence the theorem holds trivially.

Induction. Assuming that the theorem holds for k < ] < d < N, 1 <_- k -<_ m, we
will show that it remains true for ]- -d.

LEMMA 3. It" u-w<d, and u<v<w, then R(u,w,k)R(v,w,k), and
L(u, v, k) L{u, w, k).

Proof. By the induction hypothesis and Lemma 1.

LEMMA 4. Let Rx(i,], k) denote the set o]’ rightmost roots when p=x >-0, and
Ry(i, ], k) be the corresponding set when p y > x, while weights (i, , ]- 1) remain
fixed; then Rx(i, ], k)Ry(i, ], k).

Proof. Let r Rx(i, ], k), T, be an optimal k-rooted tree with rightmost root r and
p x, and I, be the level of pi in Tx; similarly for s Rv(i, ], k), Tr, y and lv. Suppose
s < r. The lemma will be proved if we can modify Tx without changing its rightmost root
so that it is optimal for y, and similarly for Tr with respect to x.

The cost of Tx can be expressed as a linear function of Pi, mamely a + lx p, and
similarly, cost (Ty) b + ly p. Of the nine possible outcomes for a compared to b, lx
compared to ly, all contradict the definitions of T, and Ty except a b, lx ly, in which
case the Lemma is proved, and a < b, Ix > ly.

When a < b and I, > Iv, cost (T,) meets cost (Tr) at z > 0, and Fig. 3 shows the two
basic situations possible at this point. In 3(a), Tx is optimal for Pi <- z, while Tr is
optimal for p >-z. In 3(b), neither is optimal at z, because for x < p. < y, there are
intermediate trees (two in the figure) which are optimal and cost less than either T, or

Tr. We consider the case of (a) first.
In tree T,, let rl, r2, , fix be the sequence of rightmost roots along the path from

the root page down to the page containing p, and let sl,. ., st,, be the corresponding
sequence for T. Now s s < r r by assumption, and r, < st, ], since lx > l, and
rt,,- ], the index of the last key; thus there must be a level h such that rh > Sh and
rh+x < Sh+a. Both Tx and Ty are optimal at z, so rh+x Rz(rh, f, m) and Sh/l Rz(Sh, f, m).
Since Sh < rh <], and ] Sh <]-- d, we can apply Lemma 3 to get
Rz(Sh, ], m) R(rh, ], m). But rh+x <Sh+, SO by definition of , it follows that Sh+
Rz(rh), j, m) and rh+l Rz(Sh, f, m).



OPTIMAL MULTI-WAY SEARCH TREES 431

cost

0
0

(a) Tx, Ty optimal
where costs intersect

b

cost
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st(Ty) b + l p
ca

0 x xl z x2 x3 Y pj

(b) Tx, T not optimal
where costs intersect

FIG. 3. Cost of Tx, Ty as functions of Pi.

In other words, there is a rearrangement of Tx, call it T’, which is optimal for Pi z,
and has Sh+l (at level h + 1) as the rightmost root of the subtree for keys to the right of rh.
Now the subtree to the right of Sh/l, containing pj, can remain unchanged from Ty, since
Ty is also optimal at z, and this subtree starts at the same level as it did in Ty. Thus the
level of pj in T’ is l, and cost (T’x)= a’+ ly p. But cost (Ty)= b + ly Pi and both
agree at z; therefore a’ b, and T’, with rightmost root r, is optimal for y. Similarly we
can rearrange Ty, without changing its rightmost root s, to T, which has the same cost at
Tx. Thus r Ry(i, , k) and s R(i, , k).

If cost (T) meets cost (Ty) at a point where neither is optimal, then there is a
sequence of.trees T To, T1, ’, T Ty, and values x x 1, , Xl/l y, such that Tt
is optimal on [x, Xt+l], 0 _-< I =< I. (Fig. 3(b) illustrates the situation for 3.) Let rt(I) be
the rightmost root of Tt; for the sequence of roots (rt(O),.. , rt(1)), we have r rt(O)
and rt(l) s. If s < r, an induction argument shows that the sequence can be transformed
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so that s is the first term (i.e., s Rx(i, L k)), and r is the last (r Ry(i, L k)). The basis for
sequences of length two was established above, and the induction step is straightfor-
ward.

From Lemma 2, R(i,f-l,k)=Rx(i, Lk)-{f} if x=0, and from Lemma 4,
Rx(i,L k)Ry(i,L k) for x <y; hence R(i,f-l,k)R(i,L k), as desired. By sym-
metry, the equivalent of Lemmas 2 and 4 for leftmost roots can be used to show that
L(i, L k) L(i + 1, L k), 1 <= k <= m. Thus it remains to show

R(i, Lk)R(i+l,Lk) and L(i,]-l,k)L(i, Lk).

For k=l these are immediate, since R(i, L1)=L(i, L1). We will show
R(i,L k)R(i+l,L k) for k>l.

Let T1 e T(i, ], k) with rightmost root rl and leftmost root 11, and similarly for
T2 e T(i + 1, ], k), r2 and 12. Assume r2 <rl; 11 may be equal to, less than, or greater
than 12, and Fig. 4 illustrates the three cases.

(i + 12 r2

(i, + ll rl i)

(i, i+1 ll rl i)

(i, + 1 ll rl ])

T2

TI,/1 =/2

Tl, ll>12

T1, ll < t2

FIG. 4. ProvingR(i, Lk)R(i+l,Lk).

If ll 12, then since r2 and rl are both in R (/1, ], k 1), the subtrees on (/1, j) in
T1 and T2 can be switched; thus r2eR(i, j, k) and rl eR(i + 1, j, k). Suppose ll > 12.
Since from above, L(i,], k)L(i + l, j, k), there is a re-arrangement of T2 which is
optimal but has l as its leftmost root. In this tree, the keys to the right of ll can be
arranged as they are in T1, giving r i as the rightmost root. Thus r 1 R (i + 1, j, k) and a
similar re-arrangement of T1 gives r2eR(i,j, k). Finally, suppose 11</2; then
R(ll, j,k-1)R(12, j,k-1) by Lemma 3, and since r2<rl, r2 must also be in
R (/1, j, k 1) and rl in R (/2, ], k 1) by definition of . Therefore the k-1 rooted tree
to the right of 1, with rightmost root r 1, can be replaced by one with the same cost and
rightmost root r2, i.e., r2eR(i,j,k); a similar replacement in T2 gives rle
R(i+l,i,k).

A symmetric argument shows that L(i,]-l, k)L(i,], k), k> 1, and thus
completes the proof of the theorem. [3

The needed result is expressed by"
THEOREM 2. If qh 0, 0 <= h <= N, then r(i, , k), the largest possible rightmost root,

satisfies
r(i, ]- 1, k)<-r(i, L k)<-r( + 1, j, k), k<]-i<-N, l<-_k<-m.

Pro@ By induction on ]- > k.
If/" k + 1, then r(i, ] 1, k) ] 1, r(i + 1, L k) L and the only two possi-

bilities for r(i, ], k) are ] 1 or ], so the theorem holds. Assuming that the theorem holds
for k < ] < d < N, 1 _-< k <_- m, we will show that it remains true for ] d.

First, observe that from the induction hypothesis, r(i, ] 1, k) <- r(i + 1, ] 1, k) <
r(i + 1, ], k). To show the left inequality, suppose r e R (i, ], k)< r(i, ]- 1, k). Then since
r(i,]-l,k)eR(i,]-l,k) and R(i, ]-l, k)R(i, ], k) by Theorem 1, r(i,]-l,k)e
R(i, ], k), that is, the rightmost possible root in T(i, ], k)is >-r(i, ]- 1, k).
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To show r(i, L k)<=r( + 1, L k), suppose rR(i, L k)> r(i + 1, L k)R(i + 1, j, k).
By Theorem I we have R (i,/’, k) R (i + 1, L k), so r R (i + 1, j, k). But r is greater than
r(i + 1, L k), which by definition is the largest rightmost root, a contradiction. Therefore
any member of R(i, L k), and in particular, r(i, L k), is <=r(i + 1, L k). [3

7. Conclusion. The algorithm outlined in 3 employs "double" dynamic pro-
grammingmbuilding optimal trees on increasingly larger key sets, and at the same time
building trees with successively more keys on the root page. The technique is powerful"
even when the monotonicity property does not hold, it reduces the number of possible
root pages from () to N, which is independent of page capacity. In [5], the method is
used to construct optimal weighted B-trees. Since these have the property that a page
may have anywhere from the minimum number of keys allowable to the maximum, the
basic O(Nam) algorithm is not completely supplanted by the refinement of 4.
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