
Efficient Alphabet Partitioning Algorithms for

Low-complexity Entropy Coding

Amir Said (said@ieee.org)
Hewlett Packard Labs, Palo Alto, CA, USA

Abstract

We analyze the technique for reducing the complexity of entropy coding con-
sisting in the a priori grouping of the source alphabet symbols, and in dividing
the coding process in two stages: first coding the number of the symbol’s group
with a more complex method, followed by coding the symbol’s rank inside its
group using a less complex method, or simply using its binary representation.
Because this method proved to be quite effective it is widely used in practice,
and is an important part in standards like MPEG and JPEG. However, a the-
ory to fully exploit its effectiveness had not been sufficiently developed. In
this work, we study methods for optimizing the alphabet decomposition, and
prove that a necessary optimality condition eliminates most of the possible so-
lutions, and guarantees that dynamic programming solutions are optimal. In
addition, we show that the data used for optimization have useful mathematical
properties, which greatly reduce the complexity of finding optimal partitions.
Finally, we extend the analysis, and propose efficient algorithms, for finding
min-max optimal partitions for multiple data sources. Numerical results show
the difference in redundancy for single and multiple sources.

1 Introduction

There is a need to find out and study techniques for reducing entropy coding that have
wide application, and are valid for many measures of computational complexity. One
such general technique, which we call symbol grouping, uses the following strategy:

• The source alphabet is partitioned, before coding, into a small number of groups;

• Each data symbol is coded in two steps:

1. The group that it belongs (group number) is coded with a complex method;

2. The rank of that symbol inside that group (symbol index) is coded with a
simple method (e.g., its binary representation).

The effectiveness and usefulness of symbol grouping are now well established.
For example, it is employed for facsimile coding, and in the JPEG and MPEG stan-
dards [6, 8], where the magnitude category corresponds to the group number, and the
information in the extra bits corresponds to the symbol index. The same approach
is used in image coding methods like EZW and SPIHT (see [12] and its references),
where the wavelet coefficient significance corresponds to the group number, which is
coded with set-partitioning. The sign and refinement data, which define the symbol
index, can be coded using simply one bit per coefficient sign and refinement. Methods

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



entropy
encoder

entropy
decoder

�� �
� �

S S

Z Z

H(S|Z)

(a) General coding system using side information.

(b) Coding system using symbol grouping for complexity reduction.

data
merging

data
separation

entropy
encoder

entropy
decoder

code
selection

code
selection

low-cost
encoder

low-cost
decoder

� �� � � �

�

�

�

�

�

�

�

�

� �

S S

Z Z

C C

X X

G G

H(G|Z)

R(X|C)

Figure 1: Two alternative systems for data coding: the low-complexity version identifies and separates
the data that can be coded with lower computational cost.

that use this approach, but without producing embedded bit streams, have similar
compression efficiency [7, 10].

Fig. 1 shows how symbol grouping can be used for context-based entropy coding.
Let S be a random data source, which is to be coded using side information Z.
The optimal coding rate is the conditional entropy H(S|Z). If we have a one-to-one
transformation between S and two other random sources, G and X, we have [5]

H(S|Z) = H(G,X|Z) = H(G|Z) + H(X|G,Z). (1)

Note that, even with the help of side information Z, to improve compression and
efficiency we may want to aggregate data, and the alphabet of S can have a very
large number of symbols (e.g., millions).

In the symbol grouping case we have G and X corresponding to the group numbers
and symbol indexes. We aim to decompose the data samples in a way that we can
use a code C, and a low-complexity coding method with rate R(X|C), such that

R(X|C) − H(X|G, Z) ≤ εH(S|Z), 0 ≤ ε � 1, (2)

i.e., the relative loss in compression (relative coding redundancy) is very small.
The advantages of symbol grouping come from the combination of two factors.

First, using the binary representation to represent the symbol index is significantly
faster than any form of entropy coding. The second factor is defined by how the
complexity of coding grows with alphabet size [9]. Large data alphabets create several
practical problems, ranging from the effort to design and implement the code, to the

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



amount of memory necessary to store the codebooks, and the long time to gather
statistics sufficiently accurate for adaptive coding.

We minimize complexity by finding the optimal decomposition of S into G and
X that satisfies (2). We study this problem under the assumption that all symbols
in a group use the same (or nearly the same) number of bits, and thus the code C
corresponds roughly to the size of the group, in bits (cf. Section 3.3 for extensions).

Despite its widespread use, the theoretical analysis of symbol grouping did not
receive enough attention. The factors that enable remarkably small compression loss
are identified by Said and Pearlman [7], which proposed an heuristic algorithm for
finding good alphabet partitions in real time.

Chen et al. [11] analyze the application of symbol grouping for semi-adaptive
coding, and develop dynamic programming and heuristic solutions to the problem of
finding optimal groups. While there are similarities with this work, a very important
difference is that they reduce complexity by using Golomb codes for the symbol
indexes. This complicates the analysis significantly because many more probability
patterns are acceptable inside a group.

The main contributions of this work are the following: (a) A study of the optimal
alphabet partition problem, and a theorem that states a necessary optimality condi-
tion, greatly reducing the number of solutions to be tested; (b) A general dynamic
programming solution, plus a set of mathematical properties of the data and results
of the algorithm; (c) A study of the computational complexity of the solution algo-
rithms, demonstrating how mathematical properties can reduce the worst-case com-
plexity, and enable fast solutions for large alphabets (e.g., with millions of symbols);
(d) Analysis and algorithms for finding optimal alphabet partitions that minimize
the worst-case redundancy for multiple source probabilities, and numerical results
showing that we can indeed obtain good partitions for many distributions.

Reference [13]—available for downloading—contains more details and all the the-
orem proofs. This document is organized as follows. In Section 2 we introduce the
notation and the analysis of symbol grouping redundancy. In Section 3 we study
the problem of finding optimal partitions, present a theorem with a necessary opti-
mality condition, followed by the development of a dynamic programming problem
formulation, and the study of its mathematical properties. Section 4 discusses the
computational implementation and complexity of the alphabet partition algorithms.
Section 5 presents the extension to multiple data sources, and includes some numerical
results. Section 6 presents the conclusions.

2 Analysis of Symbol Grouping

We consider a random data source that generates independent and identically dis-
tributed symbols belonging to an alphabet A = {1, 2, . . . , Ns}, represented by a single
random variable S, with a probability mass function p(s). The vector p represents
the set of symbol probabilities, and ps = p(s) denotes the probability of data symbol
s ∈ A. The analysis can be extended to context-based coding by simply replacing
the probabilities with conditional probabilities.

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



Using the definition p log(1/p) = 0 when p = 0, the source entropy is

H(p) =
∑
s∈A

ps log2

(
1

ps

)
bits/symbol. (3)

We create a partition P = {G1,G2, . . . ,GNg} of the source alphabet A by defining

Ng nonempty sets of data symbols Gn, such that
⋃Ng

n=1 Gn = A, and Gm ∩ Gn = ∅ if
m �= n. Each set Gn is called the group of data symbols with number n. We represent
the group number of symbol s by the function

g(s) = {n : s ∈ Gn} , s = 1, 2, . . . , Ns. (4)

Representing the number of elements in the set Gn by | Gn|, we identify each data
symbol inside a group by defining the index of symbol s using a function x(s) that
assigns new numbers for each symbol in a group, such that⋃

s∈Gn

x(s) = {1, 2, . . . , | Gn|} , n = 1, 2, . . . , Ng, (5)

and we have a one-to-one mapping between s and the ordered pair (g(s), x(s)).
The probability of a group, ρn = Prob(g(s) = n), and the average probability of

the symbols in that group, p̄n, are

ρn =
∑
s∈Gn

ps, p̄n =
ρn

| Gn|
, n = 1, 2, . . . , Ng. (6)

We assume that all indexes of the group Gn are coded with the same number of
bits, log2 | Gn|. For practical applications we are mainly interested in dyadic partitions,
i.e., in the cases in which | Gn| is constrained to be a power of two. However, we believe
it is better to add this and other constraints later (cf. Section 3.3).

The bit rate of the simplified coding method is the entropy of the group numbers
plus an average of the fixed rates used to code the symbol indexes, while the loss due
to symbol grouping, called grouping redundancy and represented by �(P ,p), is the
difference between the coding rate and the source entropy [13]

�(P ,p) =

Ng∑
n=1

ρn

[
log2

(
1

ρn

)
+ log2 | Gn|

]
− H(p) =

Ng∑
n=1

∑
s∈Gn

ps log2

(
ps

p̄n

)
. (7)

Equation (7) shows that the grouping redundancy is in the form of a relative en-
tropy, or, equivalently, the Kullback-Leibler distance [5] between the original source
probability distribution, and a distribution in which the probabilities of all the sym-
bols inside each group Gn are equal to p̄n.

Several factors contribute to make the redundancy small, including the fact that
there is a cancellation of positive and negative terms in (7). It is easier to see this
fact with the help of the approximation [13]

�(P ,p) ≈ 1

ln(2)

Ng∑
n=1

p̄n

∑
s∈Gn

(1 − ps/p̄n)2

1 + (ps/p̄n)2/3
, (8)

A good alphabet partition can yield very small redundancy in a wide range of distri-
butions by exploiting all these properties [13].

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



3 Optimal Alphabet Partition

The optimal alphabet partition problem can be defined as the following: given a
random data source with alphabet A and symbol probabilities p, we want to find the
partition P∗ of A into Ng groups that minimizes the coding redundancy.

MinimizeP �(P,p)
subject to |P| = Ng.

(9)

There are many important practical problems that can be formulated as optimal
set-partitioning [1]. In general, finding the optimal solution can be an extremely
demanding computational task due to its combinatorial nature. Our problem is par-
ticularly complicated because its objective function is nonlinear, and can only be
computed when the group sizes and probabilities are fully defined. On the other
hand, it has many useful mathematical properties, like the following necessary opti-
mality condition [13].

Theorem 3.1 A partition P∗ is optimal only if for each group Gn, n = 1, 2, . . . , Ng

there is no symbol s ∈ A− Gn such that

min
i∈Gn

{pi} < ps < max
i∈Gn

{pi} . (10)

This means that we can pre-sort the symbols according to probability—which
can be done with O(Ns log Ns) complexity [4]—and then constrain the partitions to
include only adjacent symbols (linear partitions). In this case the Ng symbol groups
can be defined by the strictly increasing sequence of Ng + 1 thresholds T = (t0 =
1, t1, t2, . . . , tNg = Ns + 1), such that Gn = {s : tn−1 ≤ s < tn} and the redundancy
resulting from grouping (7) can be computed with

�(T ,p) =

Ng∑
n=1

tn−1∑
s=tn−1

ps log2

(
ps

p̄n

)
, (11)

p̄n =
1

tn − tn−1

tn−1∑
s=tn−1

ps, n = 1, 2, . . . , Ng. (12)

3.1 Optimal Partitions via Dynamic Programming

Using Theorem 3.1, we assume that p is monotonic, that the optimal linear partition
of the reduced alphabet with the first j symbols into i groups has redundancy equal
to �∗i,j, and represent the redundancy resulting from having the symbols i, i + 1, . . . , j
in a single group as

γi,j =

j∑
s=i

ps log2

(
[j − i + 1]ps

ρi,j

)
, 1 ≤ i ≤ j ≤ Ns, (13)

where ρi,j =
∑j

s=i ps.

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



Theorem 3.2 Given a source alphabet A with Ns symbols and monotonic symbol
probabilities p, the set of all minimal grouping redundancies, �∗i,j, can be recursively
computed using the dynamic programming recursion

�∗1,j = γ1,j, 1 ≤ j ≤ Ns, (14)

�∗i,j = min
i≤k≤j

{
�∗i−1,k−1 + γk,j

}
, 2 ≤ i ≤ j ≤ Ns. (15)

The recursion (15) provides only the value of the optimal solutions, not the op-
timal group sizes. They can be recovered if we store all the values of index k that
corresponds to the minimum in (15) when the value of �∗i,j is computed

κ∗(i, j) =

{
1, 1 = i ≤ j ≤ Ns,
min

{
k : �∗i,j = �∗i−1,k−1 + γk,j, i ≤ k ≤ j

}
, 2 ≤ i ≤ j ≤ Ns.

(16)

Note that with this definition the value of κ∗(i, j) is unique. The optimal group sizes
are computed by the standard method of backtracking the optimal decisions.

3.2 Mathematical Properties

The results in Section 3.1 already show that we can find all optimal alphabet partitions
using much less computational effort, but we delay the analysis of the computational
implementation and its complexity to Section 4. In this section we show that γi,j and
�∗i,j have a set of mathematical properties (related to the entropy function) that are
useful for further reduction of computational complexity (proofs in [13]).

Theorem 3.3 For any set of symbol probabilities p, the redundancy γi,j resulting
from creating a group with symbols i, i + 1, . . . , j, is such that, for all integer values
of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

γk,l ≤ γi,j. (17)

Theorem 3.4 For any monotonic set of symbol probabilities p1, p2, . . . , pNs, the re-
dundancy γi,j resulting from creating a group with symbols i, i+1, . . . , j, is such that,
for all integer values of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

γi,j + γk,l ≥ γi,l + γk,j. (18)

Theorem 3.3 shows that the matrix γi,j, assuming γi,j = 0 if j < i, is a monotonic
matrix, and Theorem 3.4 shows that its elements satisfy the quadrangle inequalities,
i.e., it is a Monge matrix. Both these properties had been shown to be useful for
designing faster algorithms for sorting and for dynamic programming (cf. Section 4).
The minimum redundancy values �∗i,j have similar properties, as shown below.

Theorem 3.5 For any set of monotonic symbol probabilities p, the minimum redun-
dancy resulting from grouping the first j symbols in i groups, �∗i,j, is such that, for all
integer values of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

�∗k,l ≤ �∗i,j. (19)

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



Theorem 3.6 For any set of monotonic symbol probabilities p, the minimum redun-
dancy �∗i,j, resulting from grouping the first j symbols in i groups, is such that, for all
integer values of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

�∗i,j + �∗k,l ≥ �∗i,l + �∗k,j. (20)

Theorem 3.7 For any set of monotonic symbol probabilities p with minimum group-
ing redundancy �∗i,j, the values of κ∗(i, j) (defined by (16)) are such that, for all integer
values of i, j, k and l satisfying 1 ≤ i ≤ k ≤ l ≤ j ≤ Ns, we have

κ∗(i, l) ≤ κ∗(i, j) ≤ κ∗(k, j). (21)

3.3 Additional Constraints

As explained in Section 2, practical applications may require all the groups to have a
number of symbols that is a power of two (dyadic partitions). Theorem 3.1 (necessary
optimality condition) and Theorem 3.2 (dynamic programming solution) are valid for
dyadic partitions too, but we need to penalize partitions with invalid number of
elements, which can be done replacing γi,j in (14) and (15) with

γ̃i,j =

{
γi,j, if j − i + 1 is a power of 2,
∞, otherwise.

(22)

Only a subset of the properties in Section 3.2 are also valid for dyadic partitions.
Using the same number of bits for all symbol indexes in a group has many practical

advantages, but it is not the only manner to reduce complexity. For any group size
we can use two numbers of bits to code all the possible symbol indexes. If | Gn| = m
we can assign the following number of bits for the symbol with index x

Λ(x,m) =

{
	log2 m
 , 1 ≤ x ≤ 2�log2 m� − m,
�log2 m� , 2�log2 m� − m < x ≤ m.

(23)

and apply dynamic programming, changing the value of the redundancy of single
groups from (13) to

γ̄i,j =

j∑
s=i

ps

[
Λ(s − i + 1, j − i + 1) + log2

(
ps

ρi,j

)]
, 1 ≤ i ≤ j ≤ Ns. (24)

4 Analysis of the Computational Complexity

The direct use of dynamic programming equation (15) for computing all the optimal
alphabet partitions (i.e., from one to Ns groups) requires the calculation of O(Ns

3)
terms. To recover all the optimal group sizes we need to store all values of κ∗(i, j),
which needs O(Ns

2) memory. If only the values �∗i,Ns
are desired, we can use the

fact that recursion (15) can be computed using only two rows at a time, i.e., O(Ns)
memory. When we need to compute the optimal solution for only one number of

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



groups, Ng, we still need to compute the first Ng − 1 rows of �∗i,j, so the complexity

is O(NgNs
2) operations, and O(NgNs

2) memory.
Note that the calculation of all values of γi,j does not add to the complexity

because they can be quickly computed, as stated in the following lemma.

Lemma 4.1 All values of γi,j needed for the dynamic programming recursions can be
computed from two arrays using O(Ns) memory and O(Ns) operations.

Using the mathematical properties of Section 3.2 we can reduce the computational
complexity significantly, using a technique similar to that proposed by Yao [2].

Theorem 4.2 All optimal partitions of an alphabet with Ns symbols can be computed
with O(Ns

2) operations and O(Ns
2) memory complexity.

If we need to know the optimal solution of only a few group sizes we need to
avoid spending time computing solutions that are not needed. Using the SMAWK
algorithm [3] we can reduce the complexity by computing one row at a time.

Theorem 4.3 The optimal partition of an alphabet with Ns symbols in Ng can be
computed with O(NgNs) operations and O(NgNs) memory complexity.

5 Optimal Partitions for Multiple Sources

Numerical experiments have shown [7] that the same alphabet partitions can be used
for several sources, with small relative loss. This shows that it may be possible to
find out partitions that are in a sense optimal for multiple data sources.

We define the data sources by the set of probability vectors {p1,p2, . . . ,pNp}, and
we consider the partition Q∗ that minimizes the maximum relative redundancy for
all the groups, i.e.,

MinimizeQ max
d=1,...,Np

{�(Q,pd)/H(pd)}
subject to |Q| = Ng.

(25)

We can use an extension of Theorem 3.1 if it is possible to find an order in which all
the probability vectors are monotonic (in practice, this is not uncommon). However,
we cannot use dynamic programming because the conditions for Theorem 3.2 are not
satisfied by the minimum of the maxima. Nevertheless, we can use the previous fast
algorithms for efficiently obtaining tight bounds for a branch-and-bound search, or
solving sub-problems for a cutting-plane Lagrangian optimization.

We tested the solutions for sources with truncated geometric distributions

ps,d =
(1 − ρd) ρs

d

1 − ρNs
d

, s = 0, 1, . . . , Ns, (26)

where each parameter ρd, d = 1, 2, . . . , Np, was computed to obtain a given source
entropy. Table 1 shows the results. We use Ns = 250, and source entropies from 1 to

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



H(pd) |Q∗| = |P∗| = 8 |Q∗| = |P∗| = 10 |Q∗| = |P∗| = 12
(bits/symbol) �(Q∗,pd) �(P∗,pd) �(Q∗,pd) �(P∗,pd) �(Q∗,pd) �(P∗,pd)

1.0 5.295 5.295 1.603 0.092 0.092 0.004
1.5 5.713 5.713 1.524 0.278 0.276 0.033
2.0 4.578 4.383 1.272 0.553 0.506 0.158
2.5 3.335 2.390 1.098 0.977 0.709 0.427
3.0 2.722 2.067 0.996 0.996 0.819 0.463
3.5 2.491 1.471 0.914 0.698 0.797 0.416
4.0 2.251 1.138 0.920 0.672 0.695 0.400
4.5 1.952 1.113 1.031 0.516 0.592 0.323
5.0 1.647 0.769 1.122 0.470 0.565 0.287
5.5 1.390 0.720 1.132 0.380 0.645 0.245
6.0 1.184 0.527 1.071 0.334 0.747 0.216

Table 1: Relative redundancy (% of source entropy) resulting from a partition optimized for multiple
sources, Q∗, compared with the redundancy of a partition optimized for a single source, P∗. Data sources
have 250 symbols, truncated geometric distribution.

6 bits/symbol. The optimal dyadic partitions for multiple sources are represented by
Q∗, while the optimal dyadic partition for a single source is represented by P∗. All
the redundancy values in the table are given as a percentage of the source entropy.

These results show that the most significant changes in redundancy happen when
the single source redundancy is very small. In all cases we find alphabet partitions
such that all the relative redundancies have values that are quite reasonable for prac-
tical applications.

6 Conclusions

We analyzed the symbol group technique for reducing the computational complexity
of entropy coding, and the problem of finding the partition of the source alphabet
(symbol groups) that maximizes the complexity reduction.

From particular properties of our optimization problem we show that necessary
optimality condition let us to solve the problem with much more efficient methods,
based on dynamic programming. Next, we present the dynamic programming recur-
sive equations, and a rich set of mathematical properties of the problem data and
of the optimal solutions. We show that these properties correspond to properties of
Monge matrices, which can be used in the design of more efficient dynamic program-
ming algorithms.

The analysis of the complexity of computating optimal alphabet partitions shows
that the direct implementation of the dynamic programming recursion needs O(Ns

3)
operations and O(Ns

2) memory to find all the optimal partitions of an alphabet with
Ns data symbols. We show that, by using the special properties of our problem, it can
be solved with O(Ns

2) operations and O(Ns
2) memory. In addition, methods to find

only the minimum redundancy values, without the information about the optimal
groups, require only O(Ns) memory. The complexity of finding only the optimal

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 



partition in Ng groups is shown to be O(NgNs) operations and O(NgNs) memory.
Finally, we consider the generalized problem of finding alphabet partitions that

are optimal for multiple sources, defining optimality as the minimization of the worst-
case relative redundancy, and propose algorithms for solving the problem. Numerical
results confirm the robustness of symbol grouping: the optimal solutions can yield—
with a small number of groups—very low redundancy for a set of sources with different
parameters.

References

[1] E. Balas and M. Padberg, “Set partitioning: a survey,” SIAM Review, vol. 18, pp. 710–
760, Oct. 1976.

[2] F.F. Yao, “Efficient dynamic programming using quadrangle inequalities,” Proc. ACM
Symp. on the Theory of Computing, pp. 429–435, April 1980.

[3] A. Aggarval, M.M. Klawe, S. Moran, P.Shor, and R. Wilber, “Geometric applications
of a matrix searching algorithm,” Algorithmica, vol. 2, pp. 195–208, 1987.

[4] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[5] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons,
New York, 1991.

[6] W.B. Pennebaker and J.L. Mitchell, JPEG: Still Image Data Compression Standard,
Von Nostrand Reinhold, New York, 1992.

[7] A. Said and W.A. Pearlman, “Low-complexity waveform coding via alphabet and
sample-set partitioning,” Proc. SPIE: Visual Communications and Image Processing,
SPIE vol. 3024, pp. 25–37, Feb. 1997.

[8] B.G. Haskel, A. Puri, and A.N. Netravali, Digital Video: an Introduction to MPEG-2,
Chapman & Hall, New York, 1997.

[9] A. Moffat, R.M. Neal, and I.H. Witten, “Arithmetic coding revisited,” ACM Trans.
Inform. Systems, vol. 16, pp. 256–294, July 1998.

[10] X. Zou and W.A. Pearlman, “Lapped orthogonal transform coding by amplitude and
group partitioning,” Proc. SPIE, vol. 3808, pp. 293–304, 1999.

[11] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu, “Optimal alphabet partitioning for
semi-adaptive coding of sources of unknown sparse distributions,” Proc. IEEE Data
Compression Conf., March 2003.

[12] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, Low-Complexity Image
Coding with a Set-Partitioning Embedded Block Coder,” IEEE Trans. Circuits and
Systems for Video Technology, Nov. 2004.

[13] A. Said, On the reduction of entropy coding complexity via symbol grouping:
Part I – redundancy analysis and optimal alphabet partition, Hewlett-Packard
Laboratories Report, HPL–2004–145, Palo Alto, CA, Aug. 2004 (available from
http://www.hpl.hp.com/techreports/2004/HPL-2004-145.pdf).

Proceedings of the 2005 Data Compression Conference (DCC’05) 
1068-0314/05 $ 20.00 IEEE 


