
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 6, JUNE 1998 561

An Efficient Algorithm for Row
Minima Computations on Basic

Reconfigurable Meshes
Koji Nakano, Member, IEEE, and Stephan Olariu, Member, IEEE

Abstract—A matrix A of size m � n containing items from a totally ordered universe is termed monotone if, for every i, j, 1 � i < j � m,
the minimum value in row j lies below or to the right of the minimum in row i. Monotone matrices, and variations thereof, are known
to have many important applications. In particular, the problem of computing the row minima of a monotone matrix is of import in
image processing, pattern recognition, text editing, facility location, optimization, and VLSI. Our first main contribution is to exhibit a
number of nontrivial lower bounds for matrix search problems. These lower bound results hold for arbitrary, infinite, two-dimensional
reconfigurable meshes as long as the input is pretiled onto a contiguous n � n submesh thereof. Specifically, in this context, we
show that every algorithm that solves the problem of computing the minimum of an n � n matrix must take W(log log n) time. The
same lower bound is shown to hold for the problem of computing the minimum in each row of an arbitrary n � n matrix. As a
byproduct, we obtain an W(log log n) time lower bound for the problem of selecting the kth smallest item in a monotone matrix, thus

extending the best previously known lower bound for selection on the reconfigurable mesh. Finally, we show an W loglogn1 6 time

lower bound for the task of computing the row minima of a monotone n � n matrix. Our second main contribution is to provide a
nearly optimal algorithm for the row-minima problem: With a monotone matrix of size m � n with m � n pretiled, one item per
processor, onto a basic reconfigurable mesh of the same size, our row-minima algorithm runs in O(log n) time if 1 � m � 2 and in

O m
n

m

log

log
loglog2 7 time if m > 2. In case m = n

e
 for some constant e, (0 < e � 1), our algorithm runs in O(log log n) time.

Index Terms—Monotone matrices, totally monotone matrices, search problems, row minima, reconfigurable meshes, basic
reconfigurable meshes, VLSI design, facility location problems, cellular system design.

——————————���F���——————————

1 INTRODUCTION

ECENTLY, in an attempt to reduce its large computa-
tional diameter, the mesh-connected architecture has

been enhanced with various broadcasting capabilities.
Some of these involve endowing the mesh with static buses,
that is, buses whose configuration is fixed and cannot
change; more recently, researches have proposed aug-
menting the mesh architecture with reconfigurable broad-
casting buses: These are high-speed buses whose configu-
ration can be dynamically changed in response to specific
processing needs. Examples include the bus automaton [25],
[26], the reconfigurable mesh [21], the mesh with bypass capa-
bility [12], the content addressable array processor [31], the re-
configurable network [7], the polymorphic processor array [16],
[20], the reconfigurable bus with shift switching [15], the gated-
connection network [27], [28], the PARBS [30], and the poly-
morphic torus network [13], [17]. We refer the interested
reader to the comprehensive survey paper of Nakano [22].

Among these architectures, the reconfigurable mesh
and its variants have turned out to be valuable theoreti-
cal models that allowed researchers to fathom the power

of reconfiguration and its relationship with the PRAM.
From a practical standpoint, however, the reconfigurable
mesh and its variants [21], [30] omit important properties of
physical architectures and, consequently, do not provide a
complete and precise characterization of real systems.
Moreover, these models are so flexible and powerful that
it has turned out to be impossible to derive from them
high-level programming models that reflect their flexibil-
ity and intrinsic power [16], [20]. Worse yet, it has recently
been shown that the reconfigurable mesh and the PARBS
do not scale and, as a consequence, do not immediately
support virtual parallelism [18], [19].

Motivated by the goal of developing algorithms in a
scalable model of computation, we adopt a restricted ver-
sion of the reconfigurable mesh that we call the basic recon-
figurable mesh (BRM, for short). Our model is derived from
the Polymorphic Processor Array (PPA) proposed in [16],
[20]: The BRM shares with the PPA all the restrictions on the
reconfigurability and the directionality of the bus system.
The BRM differs from the PPA in that we do not allow torus
connections. As a result, the BRM is potentially weaker
than the PPA. It is very important to stress that the pro-
gramming model developed in [16], [20] for the PPA also
applies to the BRM. In particular, all the broadcast primi-
tives developed in [16], [20], with the exception of those
using torus connections, can be inherited by the BRM. In
fact, all the algorithms developed in this paper could have
been just as easily written using the extended C language

1045-9219/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� K. Nakano is with the Department of Electrical and Computer Engineering,
Nagoya Institute of Technology, Showa-ku, Nagoya 466, Japan.
E-mail: nakano@elcom.nitech.ac.jp.

•� S. Olariu is with the Department of Computer Science, Old Dominion
University, Norfolk, VA 23529. E-mail: olariu@cs.odu.edu.

Manuscript received 13 Sept. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100297.

R

562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 6, JUNE 1998

primitives of [16], [20]. We opted for specifying our algo-
rithm in a more conventional fashion only to make the
presentation easier to follow.

Consider a two-dimensional array (i.e., a matrix) A of
size m � n with items from a totally ordered universe. Ma-
trix A is termed monotone if, for every i, j, 1 � i < j � m, the
smallest value in row j lies below or to the right of the
smallest value in row i, as illustrated in Table 1, where the
row minima are highlighted. A matrix A is said to be totally
monotone if every submatrix of A is monotone. The concepts
of monotone and totally monotone matrices may seem arti-
ficial and contrived at first. Rather surprisingly, however,
these concepts have found dozens of applications to prob-
lems in optimization, VLSI design, facility location prob-
lems, string editing, pattern recognition, computational ge-
ometry, and cellular system design, among many others. The
reader is referred to [1], [2], [3], [4], [5], [6], where many of
these applications are discussed in detail.

One of the recurring problems involving matrix search-
ing is referred to as row-minima computation [6]. In particu-
lar, Aggarwal et al. [2] showed that the task of computing
the row-minima of an m � n monotone matrix has a se-
quential lower bound of W(n log m). They also showed that
this lower bound is tight by exhibiting a sequential algo-
rithm for the row-minima problem running in O(n log m)
time. In the case where the matrix is totally monotone, the
sequential complexity is reduced to Q(m + n).

To the best of our knowledge, no time lower bound for
the row-minima problem has been obtained in parallel
models of computation, in spite of the importance of this
problem. The first main contribution of this paper is to pro-
pose a number of nontrivial time lower bounds for matrix
search problems. These lower bounds hold for general two-
dimensional reconfigurable meshes of infinite size, as long
as the input is pretiled onto a contiguous submesh of size
n � n. Specifically, in this context, we show that every algo-
rithm that solves the problem of computing the smallest
item of an n � n matrix must take W(log log n) time. The
same lower bound is shown to hold for the problem of
computing the minima in each row of an arbitrary n � n
matrix. As a byproduct, we obtain an W(log log n) time
lower bound for the problem of selecting the kth smallest
item in a monotone matrix. Previously, Hao et al. [10] have
obtained an W(log log n) lower bound for selection in arbi-
trary matrices on finite reconfigurable meshes. Thus, our
lower bound extends the result of [10] in two directions: We
show that the same lower bound applies to selection on
monotone matrices and on a reconfigurable mesh of an in-
finite size. Finally, we show an almost tight W log log n3 8
time lower bound for the task of computing the row
minima of a monotone n � n matrix. Our second main

contribution is to provide an efficient algorithm for the
row-minima problem: With a monotone matrix of size m � n
with m � n pretiled, one item per processor, onto a BRM of
the same size, our row-minima algorithm runs in O(log n)

time if 1 � m � 2 and in O mn
m

log
log log log4 9 time if m > 2. In

case m = ne for some constant e, (0 < e � 1), our algorithm
runs in O(log log n) time.

The remainder of this work is organized as follows:
Section 2 introduces the model of computations adopted
in this paper; Section 3 discusses a number of relevant
lower-bound results; Section 4 presents basic algorithms
that will be key in our subsequent row-minima algorithm;
Section 5 gives the details of our row-minima algorithm;
finally, Section 6 offers concluding remarks and poses
open problems.

2 THE BASIC RECONFIGURABLE MESH

A basic reconfigurable mesh (BRM, for short) of size m � n
consists of mn identical SIMD processors positioned on a
rectangular array with m rows and n columns. As usual, it
is assumed that every processor knows its own coordinates
within the mesh: We let P(i, j) denote the processor placed
in row i and column j, with P(1, 1) in the north-west corner
of the mesh.

Each processor P(i, j) is connected to its four neighbors
P(i - 1, j), P(i + 1, j), P(i, j - 1), and P(i, j + 1), provided they
exist, and has four ports N, S, E, and W, as illustrated in Fig. 1.
Local connections between these ports can be established,
subject to the following restrictions:

1)� In each time unit, at most one of the pairs of ports (N, S)
or (E, W) can be set; moreover,

2)�All the processors that connect a pair of ports must
connect the same pair;

3)� Broadcasting on the resulting subbuses is unidirectional.
For example, if the processors set the (E, W) connection,
then, on the resulting horizontal buses, all broadcast-
ing is done either “eastbound” or else “westbound,”
but not both.

We refer the reader to Figs. 2a and 2b for an illustration
of several possible unidirectional subbuses. The BRM is
very much like the recently proposed PPA multiprocessor
array, except that the BRM does not have the torus con-
nections present in the PPA. In a series of papers [16], [18],
[19], [20], Maresca and his coworkers demonstrated that
the PPA architecture and the corresponding programming

TABLE 1
ILLUSTRATING A MONOTONE MATRIX

2 13 6 10 11

5 3 10 9 5

10 6 9 8 22

20 9 4 8 17

16 21 17 9 19

Fig. 1. A basic reconfigurable mesh of size 4 � 4.

NAKANO AND OLARIU: AN EFFICIENT ALGORITHM FOR ROW MINIMA COMPUTATIONS ON BASIC RECONFIGURABLE MESHES 563

environment is not only feasible and cost effective to im-
plement, it also enjoys additional features that set it apart
from the standard reconfigurable mesh and the PARBS.
Specifically, these researchers have argued convincingly that
the reconfigurable mesh is too powerful and unrestricted to
support virtual parallelism under present-day technology. By
contrast, the PPA architecture has been shown to scale and,
thus, to support virtual parallelism [16], [18].

The BRM is easily shown to inherit all these attractive
characteristics of the PPA, including the support of virtual
parallelism and the C-based programming environment,
making it eminently practical. As in [16], we assume ideal
communications along buses (no delay). Although inexact,
a series of recent experiments with the PPA [16] and the
GCN [27], [28] seem to indicate that this is a reasonable
working hypothesis.

3 LOWER BOUNDS

The main goal of this section is to demonstrate nontrivial
lower bounds for several matrix search problems. Our
lower bound arguments do not use the restrictions of the
BRM, holding for more powerful reconfigurable meshes
that allow any local connections. In fact, our arguments
hold for arbitrary two-dimensional, reconfigurable meshes
of an infinite size, provided that the input is placed into a
contiguous n � n submesh thereof.

Formally, this section deals with the following problems:

PROBLEM 1. Given an n � n matrix pretiled one item per
processor onto an n � n submesh of an � � � recon-
figurable mesh, find the minimum item in the matrix.

PROBLEM 2. Given an n � n matrix pretiled one item per
processor onto an n � n submesh of an � � � recon-
figurable mesh, find the minimum item of each row.

PROBLEM 3. Given an n � n monotone matrix pretiled one item
per processor onto an n � n submesh of an � � � recon-
figurable mesh, find the minimum item of each row.

PROBLEM 4. Given an n � n totally monotone matrix pretiled
one item per processor onto an n � n submesh of an
� � � reconfigurable mesh, find the minimum item of
each row.

We propose to show that Problems 1 and 2 have an W(log
log n)-time lower bound and that Problem 3 has an
W log log n3 8-time lower bound. The lower bound for

Problem 4 is still open.

The proofs are based on a technique detailed in [11], [29]
that uses the following graph-theoretic result of Turán [8].
Recall that an independent set in a graph is a set of pairwise
nonadjacent vertices.

LEMMA 3.1. Let G = (V, E) be an arbitrary graph. G has an inde-
pendent set U such that

U
V

E V
�

+

2

2
.

This lemma is used in an implicit adversary argument to
bound from below the number of items in the matrix that
are possible choices for the minimum. Let V be the set of
candidates for the minimum at the beginning of the cur-
rent iteration and let E stand for the set of pairs of candi-
dates that are compared within the current iteration. The
situation benefits by being modeled by a graph G = (V, E)
with V and E representing, respectively, the vertices and
the edges of the graph. It is intuitively obvious that an
adversary can choose the outcome of the comparisons in
such a way that the next set of candidates is no larger
than the size of an independent set U in G. In other
words, for a set V of candidates and for a set E of pairs
that are compared by a minimum finding algorithm,
items in the independent set U have the potential of be-
coming the minimum. Consequently, all items in U are
still candidates for the minimum after comparing all
pairs in E.

To make the presentation easier to follow, we assume that
each time unit is partitioned into the following three stages:

PHASE 1: Bus reconfiguration. The processors set local
connections;

PHASE 2: Broadcasting. The processors send at most one
data item to each port, and receive one data item from
each port;

PHASE 3: Local computation. Every processor selects two
elements stored in its local memory, compares them
and changes its internal status.

We begin by proving the following lemma.

LEMMA 3.2. Every algorithm that solves Problem 1 requires
W(log log n) time.

PROOF. Let us evaluate the number of pairs that can be
compared by an algorithm in Phase 3 of time unit t.
Notice that in Phase 2 of a time unit, at most 4n items
can be sent to the outside of the submesh. Hence, al-
together, at most 4nt items can be sent before the exe-
cution of Phase 3 of time unit t. Therefore, the outside

of the submesh can compare at most 4
2 16 2 2nt n t�� �� �

pairs of items. The inside of the submesh can compare
at most n2 pairs in each Phase 3. Consequently, in

Phase 3 of time unit t, at most 16n2t2 + n2 � 17n2t2 pairs
can be compared by the � � � reconfigurable mesh.

Let ct be the number of candidates that can be the
minimum after Phase 3 of time unit t. Then, by virtue
of Lemma 3.1, we have,

 (a) (b)

Fig. 2. Examples of unidirectional horizontal subbuses.

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 6, JUNE 1998

ct � ct-1
2/(2 ¿ 17n2t2 + ct-1)

 � ct-1
2/(35n2t2). (since ct-1 � n2)

By applying the logarithm, we obtain

log log log log log

log log log

log log log .

c c n t

n i

n t

t t

i t i

i

t

t

� - + +

� - +

� - +

-

- -

=
Í

2 35 2 2

2 2 35 2

2 2 35

1

1

1

2 7

4 9
2 7

To complete the algorithm at the end of T time units,
cT must be less than or equal to one. Therefore, 2 log n
� 2T(log 35 + log T) must hold. In turn, this implies
that T ¶ W(log log n), as claimed. o

It is worth mentioning that Lemma 3.2 implies a similar
lower bound for the task of selection in monotone matrices.
To see this, note that given an arbitrary matrix A of size n � n
we can construct a monotone matrix A� of size n � (n + 1) by
simply adjoining to A a column vector of all of whose en-
tries are -�. It is now clear that the minimum item in A is
precisely the (n + 1)th smallest item in A�. Thus, we have
the following result.

LEMMA 3.3. Every algorithm that selects the kth smallest item in a
monotone matrix of size n � n requires W(log log n) time.

Previously, Hao et al. [10] have obtained an W(log log n)
lower bound for selection in arbitrary matrices on finite re-
configurable meshes. Thus, Lemma 3.3 extends the result of
[10] in two directions: First it shows that W(log log n) re-
mains the lower bound for selection on monotone matrices
and, second, it shows that the lower bound must hold even
for infinite reconfigurable meshes.

LEMMA 3.4. Every algorithm that solves Problem 2 requires
W(log log n) time.

PROOF. Suppose, to the contrary, that Problem 2 requires
o(log log n) time However, by using the algorithm of
Proposition 4.1 in Section 4, the minimum in the ma-
trix can be computed in O(1) further time. This con-
tradicts Lemma 3.2. o

LEMMA 3.5. Every algorithm that solves Problem 3 requires
W log log n3 8 time.

PROOF. Since there is an algorithm that solves Problem 3 in
O(log log n) time (see Section 5), we can assume that
the upper bound for Problem 3 is O(log log n). Assume
that a row-minima algorithm spent t - 1 time and has
found no row-minima so far and, now, it is about to
execute Phase 3 of time unit t, where t < e log log n for
some small fixed e > 0.

Proceeding as in the proof of Lemma 3.2, we see that
at most 17n2t2 pairs can be compared in Phase 3 of time
unit t. Now a simple counting argument guarantees

that at most n
t1 1 4- rows have been assigned at least

17 172 2 1 1 4 1 1 4 2n i n n i
i t- +�� �� = comparisons each in time

unit i (1 � i � t). Hence, at time i, at least n in
t

- -1 1 4 rows

have been assigned at most 17 1 1 4 2n i
t+ comparisons.

Assume that the topmost row was assigned at most

17 1 1 4 2n i
t+ comparisons in each time unit i (1 � i � t),

and let ci be the number of candidates in the top row
at the end of Phase 3 of time unit t.

c c n i c

c t n i c n

i i i

i i

t

t

� ¿ +�� ��
� �� �� �

-
+

-

-
+

-

1
2 1 1 4 2

1

1
2 2 1 1 4 2

1

2 17

35 from2 7.
By applying the logarithm, we have

log log log log log

log log log

log log log .

c c i n

n j

n i

i i
t

t t j i j

j

i

t i

� - + + +

� - - +

� - - +

-

- -

=
Í

2 35 2 1 1 4

1 2 4 2 35 2

1 1 2 2 35

1

1

1

4 94 9

4 9 4 9

4 9 2 7
Hence, for some small fixed e > 0, ce log log n > 1 for

large n. Therefore, at least n tn
t

- -1 1 4 rows, including
the topmost row, cannot find the row-minima in Phase 3

of time unit t. Consequently, at most tn
t1 1 4- rows can

find the row-minima in Phase 3 of time unit t. In turn,

this implies that there exist n tn n t
t t1 1 4 1 4-�� �� = con-

secutive rows that cannot find the row-minima in Phase
3 of time t. Therefore, we can find a submatrix of size

n t n t
t t1 4 1 4� such that all of the n

t1 4 row-minima are

in it but no row-minima is found. Let dt � dt be the size of

submatrix such that all dt row-minima are in it but no

row-minima is found at time t. Then, d d tt t

t
� -1

1 4 . In

addition, for large t, d d t dt t t

t t
� �- -1

1 4
1
1 8 holds. Thus,

for large t, we have: d dt t

t
� -1

1 8 . By applying the loga-
rithm twice, we can write

log log log log

log log

log log .

d d t

n i

n t

t t

i

t

� -

� -

� -

-

=
Í

1

1
2

3

3

3

Hence, in order to have dT � 1, it must be the case that

T n¶ W log log3 8 and the proof is complete. o

4 PRELIMINARIES

Data movement operations are central to many efficient
algorithms for parallel machines constructed as inter-
connection networks of processors. The purpose of this
section is to review a number of basic data movement
techniques for basic reconfigurable meshes.

Consider a sequence of n items a1, a2, ¤, an. We are inter-

ested in computing the prefix maxima z1, z2, ¤, zn, defined

for every j, (1 � j � n), by setting zj = max{a1, a2, ¤, aj}. Re-
cently, Olariu et al. [23] showed that the task of computing
the prefix maxima of a sequence of n numbers stored in the

NAKANO AND OLARIU: AN EFFICIENT ALGORITHM FOR ROW MINIMA COMPUTATIONS ON BASIC RECONFIGURABLE MESHES 565

first row of a reconfigurable mesh of size m � n can be solved

in O(log n) time if m = 1, and in O n
m

log
log4 9 time if 2 � m � n. Since

their algorithm is crucial for understanding our algorithm for
computing the row minima of a monotone matrix, we now
present an adaptation of the algorithm in [23] for the BRM.

To begin, we exhibit an O(1) time algorithm for com-
puting the prefix maxima of n items on a BRM of size n � n.
The idea of this first algorithm involves checking, for all j
(1 � j � n), whether aj is the maximum of a1, a2, ¤, aj. The
details are spelled out by the following sequence of steps.
The reader is referred to Figs. 3a, 3b, 3c, 3d, 3e, 3f, where the
algorithm is illustrated on the input sequence 7, 3, 8, 6.

Algorithm Prefix-Maxima-1;

STEP 1. Establish a vertical bus in every column j (1 � j � n - 1)
from P(1, j) to P(n + 1 - j, j); every processor P(1, j)
(1 � j � n - 1) broadcasts the item aj southbound along
the vertical bus in column j;

STEP 2. Establish a horizontal bus in every row i (1 � i � n - 1)
from P(i, n + 1 - i) to P(i, 1); every processor P(i, n + 1 - i)
(1 � i � n - 1) broadcasts the item an+1-i westbound
along the horizontal bus in row i;

STEP 3. At the end of Step 2, every processor P(i, j) (i + j � n + 1)
stores the items an+1-i and aj; every processor P(i, j)

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 3. Illustrating algorithm Prefix-Maxima-1.

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 6, JUNE 1998

(i + j � n + 1) sets a local variable bi,j as follows:

b
a a

i j
n i j

, =
<%&'

+ -0
1

1if
otherwise.

STEP 4. Every processor P(i, j) (i + j � n) with bi,j = 1 connects
its ports E and W; every processor P(i, j) (i + j � n)
with bi,j = 0 broadcasts a 0 eastbound; every processor
P(i, n + 1 - i) (1 � i � n - 1) that receives a 0 from its W
port sets bi,n+1-i to 0;

STEP 5. Every processor P(i, j) (i + j � n) connects its ports N
and S; every processor P(n + 1 - i, i) (1 � i � n - 1)
broadcasts bn+1-i,i northbound on the bus in column i;
every processor P(1, i) (1 � i � n - 1) copies the value
received into b1,i;

STEP 6. Every processor P(1, i),(1 � i � n) with b1,i = 1 sets zi
to ai; every processor P(1, i) (1 � i � n - 1) with b1,i = 0
connects its ports E and W; every processor P(1, i) (1 �
i � n - 1) with b1,i = 1 broadcasts ai eastbound; every
processor P(1, i) (1 � i � n - 1) with b1,i = 0 sets zi to the
value received from its port W.

The correctness of the algorithm above is easily seen.
Thus, we have the following result.

PROPOSITION 4.1. The prefix maxima of n items from a totally
ordered universe stored one item per processor in the first
row of a basic reconfigurable mesh of size n � n can be
computed in O(1) time.

Next, following [23], we briefly sketch the idea involved
in computing the prefix maxima of n items a1, a2, ¤, an on a
BRM of size m � n with 2 � m � n. Begin by partitioning the
original mesh into submeshes of size m � m, and apply Pre-
fix-Maxima-1 to each such submesh of size m � m.

We further combine groups of m consecutive submeshes of
size m � m into a submesh of size m � m2, then combine
groups of m consecutive submeshes of size m � m2 into a
submesh of size m � m3, and so on. Note that if the prefix
maxima of a group of m consecutive submeshes are known,
then the prefix maxima of their combination can be com-
puted essentially as in Prefix-Maxima-1. For details, we
refer the reader to [23].

To summarize the above discussion, we state the fol-
lowing result:

PROPOSITION 4.2. The prefix maxima of n items from a totally
ordered universe stored in one row of a basic reconfigurable
mesh of size m � n with 2 � m � n can be computed in

O n
m

log
log4 9 time.

Proposition 4.2 has the following important consequence.

PROPOSITION 4.3. Let e be an arbitrary constant in the range 0 <
e � 1. The prefix maxima of n items from a totally ordered
universe stored one item per processor in the first row of a
basic reconfigurable mesh of size ne � n can be computed in
O(1) time.

For later reference we now solve a particular instance of the
row-minima problem, that we call the selective row minima
problem. Consider an arbitrary matrix A of size K � N stored,
one item per processor, in K consecutive rows of a BRM
of size M � N. For simplicity of exposition, we assume

that A is stored in the first K rows of the platform, but
this is not essential. The goal is to compute the minima
in rows 1 1 2 1 1, , , ,K K K K+ + - +K of A. We pro-
ceed as follows:

Algorithm Selective-Row-Minima;

STEP 1. Partition the BMR into N/K submeshes R1, R2, ¤,

RN/K each of size K � K as illustrated in Fig. 4; further

partition each submesh Ri (1 � i � N/K) into sub-
meshes R R Ri i i k, , ,, , ,1 2 K each of size K K� ;

STEP 2. Compute the minimum in the first row of each

submesh Ri,j in O(1) time using Proposition 4.3; let
a a ai i i K, , ,, , ,1 2 K be the minima in the first row of

R R Ri i i K, , ,, , ,1 2 K , respectively; by using appropri-

ately established horizontal buses, we arrange for

every ai,j 1 � �j K3 8 to be moved to the processor

in the first row and j K th column of Ri,j;

STEP 3. We now perceive the original BRM of size M � N as
consisting of K submeshes T T T K1 2, , ,K each of size

M
K

N� ; the goal now becomes to compute for every i,

1 � �i K3 8, the minimum of row i K- +1 10 5 of A

in Ti; it is easy to see that, after having established ver-
tical buses in all columns of the BRM, all the partial
minima in row i K- +1 10 5 2 � �i K3 8 of A can be

broadcast southbound to the first row of Ti;
STEP 4. Using the algorithm of Proposition 4.2, compute the

minimum in the first row of each Ti 1 � �i K3 8 in

O ON K
M K

N
M

log log
log log

log
log

-
-

�� �� = 4 9 time.

Fig. 4. Illustrating algorithm Selective-Row-Minima.

NAKANO AND OLARIU: AN EFFICIENT ALGORITHM FOR ROW MINIMA COMPUTATIONS ON BASIC RECONFIGURABLE MESHES 567

Thus, we have proven the following result.

LEMMA 4.4. The task of computing the minima in rows
1 1 2 1 1, , , ,K K K K+ + - +K of an arbitrary matrix
of size K � N stored one item per processor in K rows of a

BRM of size M � N can be performed in O N
M

log
log4 9 time.

5 THE ALGORITHM

The goal of this section is to present the details of an efficient
algorithm for computing the row-minima of an m � n
monotone matrix A. The matrix is assumed pretiled one item
per processor onto a BRM 5 of the same size, such that for
every i, j (1 � i � m; 1 � j � n) processor P(i, j) stores A(i, j).

We begin by stating a few technical results that will come
in handy later on. To begin, consider a subset i1, i2, ¤, ip of
the rows of A and let j(i1), j(i2), ¤, j(ip) be such that, for all
k (1 � k � p) A(ik, j(ik)) is the minimum in row rk. Since the
matrix A is monotone, we must have

j(i1) � j(i2) � ¤ � j(ip).

Let A1, A2, ¤, Ap be the submatrices of A defined as follows:

•� A1 consists of the intersection of the first i1 - 1 rows
with the first j(i1) columns of A;

•� for every k (2 � k � p - 1) Ak consists of the intersection
of rows ik-1+1 through ik - 1 with the columns j(ik•1)
through j(ik);

•� Ap consists of the intersection of rows ip + 1 through m
with the columns j(ip) through n.

The following result will be used again and again in the
remainder of this section.

LEMMA 5.1. Every matrix Ak (1 � k � p) is monotone.

PROOF. First, let k be an arbitrary subscript with 2 � k � p.
and refer to Fig. 5. Let Bk consist of the submatrix of
A consisting of the intersection of rows ik-1 + 1
through ik - 1 with columns j(ik-1) through j(ik). Simi-
larly, let Ck be the submatrix of A consisting of the in-
tersection of rows ik-1+1 through ik - 1 with columns
j(ik-1) through j(ik).

Since the matrix A is monotone and since A(ik-1,
j(ik-1)) is the minimum in row ik-1, it follows that none
of the minima in rows ik-1 + 1 through ik - 1 can occur
in the submatrix Bk. Similarly, since A(ik, j(ik)) is the
minimum in row ik, no minima in rows ik-1 + 1 through
ik - 1 can occur in the submatrix Ck. It follows that the

minima in rows ik-1 + 1 through ik - 1 must occur in
the submatrix Ak. Consequently, if Ak is not monotone,
then we violate the monotonicity of A.

A perfectly similar argument shows that A1 and Ap
are also monotone, completing the proof of the
lemma. o

The matrices Ak (1 � k � p) defined above pairwise share
a column. The following technical result shows that one can
always transform these matrices such that they involve dis-
tinct columns. For this purpose, consider the matrix �Ak ob-

tained from Ak by replacing for every i, (ik-1 + 1 � i � ik - 1),

entry Ak(i, j(ik-1)) of Ak with min{Ak(i, j(ik-1)), Ak(i, j(ik-1) + 1)}

and by dropping column j(ik). In other words, �Ak is ob-

tained from Ak by retaining the minimum values in its
first and next column and then removing the last col-

umn. The last matrix �Ap is taken to be Ap. The following

result, whose proof is omitted, will be used implicitly in
our algorithm.

LEMMA 5.2. Every matrix �Ak (1 � k � p) is monotone.

In outline, our algorithm for computing the row-minima
of a monotone matrix proceeds as follows. First, we solve
an instance of the selective row minima whose result is
used to partition the original matrix into a number of
monotone matrices, as described in Lemmas 5.1 and 5.2.
This process is continued until the row minima in each of
the resulting matrices can be solved directly. If m = 1, then
the problem has a trivial solution running in Q(log n) time,
which is also best possible even on the more powerful re-
configurable mesh [23].

We shall, therefore, assume that m � 2.

Algorithm Row-Minima(A);

STEP 1. Partition 5 into m submeshes T T T m1 2, , ,K each

of size m n� such that, for every i, 1 � �i m3 8 , Ti

involves rows i m- +1 10 5 through i m of 5, as il-
lustrated in Fig. 6;

STEP 2. Using the algorithm of Lemma 4.4 compute the
minima of the items in the first row of every submesh

Ti 1 � �i m3 8 in O n
m

log
log4 9 time;

STEP 3. Let c c c m1 2, , ,K be the columns of 5 containing the

minima in T T T m1 2, , ,K , respectively, computed in

Step 2. The monotonicity of A guarantees that

c c c m1 2� � �K . Let Ri 1 � �i m3 8 be the submesh

of 5 consisting of all the processors P(r, c) such that

i m r i m- + � �1 20 5 and ci � c � ci+1. In other

words, Ri consists of the intersection of rows

i m i m i m- + - +1 2 1 30 5 0 5, , ,K with columns ci,

ci + 1, ci + 2, ¤, ci+1 as illustrated in Fig. 6;

STEP 4. Partition the mesh 5 into submeshes S S S m1 2, , ,K

with Si of size m � (ci+1 - ci), as illustrated in Fig. 7; for

Fig. 5. Illustrating the proof of Lemma 5.1.

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 6, JUNE 1998

log log m iterations, repeat Steps 1-3 above in each

submesh Si.

The correctness of the algorithm being easy to see, we
now turn to the complexity. Steps 1-3 have a combined

complexity of O n
m

log
log4 9 . In Step 4, ci+1 - ci � n and so, by

Lemma 4.4, each iteration of Step 4 also runs in O n
m

log
log4 9

time. Since there are, essentially, log log m such iterations,

the overall complexity of the algorithm is O mn
m

log
log log log4 9.

To summarize our findings, we state the following result:

THEOREM 5.3. The task of computing the row-minima of a mono-
tone matrix of size m � n with 1 � m � n pretiled one item
per processor in a BRM of the same size can be solved in

O(log n) time if m = 1, 2, and in O mn
m

log
log log log4 9 time if

m > 2.

By writing m = ne for some constant e, 0 < e � 1, Theorem 5.3
yields the following result.

COROLLARY 5.4. For every constant 0 < e � 1, the task of computing
the row-minima of a monotone matrix of size m � n with
m = ne, pretiled one item per processor in a BRM of the
same size, can be solved in O (log log n) time.

6 CONCLUSIONS AND OPEN PROBLEMS

We have shown that the problem of computing the row-
minima of a monotone matrix can be solved efficiently on
the basic reconfigurable mesh (BRM)—a weaker variant of
the recently proposed Polymorphic Processor Array [16].

Specifically, we have exhibited an algorithm that, with a
monotone matrix A of size m � n (1 � m � n) stored in a
BRM of the same size, as input solves the row-minima
problem in O(log n) time in case m ¶ O(1), and in

O mn
m

log
log log log4 9 time, otherwise. In particular, if m = ne for

some fixed constant e, (0 < e � 1), our algorithm runs in
O(log log n) time.

One of our main contributions was to propose a number
of nontrivial time lower bounds for matrix search problems.
These lower bounds hold for general two-dimensional re-
configurable meshes of infinite size, as long as the input is
pretiled onto an n � n submesh thereof. Specifically, in this
context we show that every algorithm that solves the prob-
lem of computing the smallest item of an n � n matrix, or
the smallest item in each row of an n � n matrix, must take
W(log log n) time. This result implies an W(log log n) time
lower bound for the problem of selecting the kth smallest
item in a monotone matrix, extending the result of [10] in
two directions: We show that the same lower bound applies
to selection on monotone matrices and on a reconfigurable
mesh of an infinite size. Finally, we showed an W log log n3 8
time lower bound for the task of computing the row minima
of a monotone n � n matrix. These are the first nontrivial lower
bounds of this kind known to the authors.

A number of problems remain open. First, there is a dis-
crepancy between the time lower bound we obtained for
the task of computing the row-minima of a monotone ma-
trix and the upper bound provided by our algorithm. Nar-
rowing this gap will be a hard problem that we leave for
future research. Second, no nontrivial lower bounds for the
problem of computing the row-minima of a totally mono-
tone matrix are known to us. This promises to be an exciting
area for future research. Yet another problem of interest
would be to solve the row-minima problem for the special
case of totally monotone matrices. Trivially, our algorithm

Fig. 6. Illustrating the partition into submeshes Ti and Ri.

Fig. 7. Illustrating the submeshes Si.

NAKANO AND OLARIU: AN EFFICIENT ALGORITHM FOR ROW MINIMA COMPUTATIONS ON BASIC RECONFIGURABLE MESHES 569

for monotone matrices also works for totally monotone
ones. Unfortunately, to date, we have not been able to find a
nontrivial lower bound for this problem.

ACKNOWLEDGMENT

The authors wish to thank Mike Atallah for many use-
ful comments and for pointing out a number of relevant
references. This work was supported in part by U.S.
National Science Foundation Grants CCR-9407180 and
CCR-9522093, and by ONR Grant N00014-97-1-0526.

REFERENCES

[1]� A. Aggarwal and M.M. Klawe,” Applications of Generalized
Matrix Searching to Geometric Problems,” Discrete Applied
Mathematics, vol. 27, pp. 3–23, 1990.

[2]� A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber,
“Geometric Applications of a Matrix-Searching Algorithm,” Algo-
rithmica, vol. 2, pp. 195–208, 1987.

[3]� A. Aggarwal and J. Park, “Notes on Searching in Multidimen-
sional Monotone Arrays,” Proc. 29th Ann. Symp. Foundations of
Computer Science, pp. 497–512, Oct. 1988.

[4]� A. Apostolico, M.J. Atallah, L.L. Larmore, and S. McFaddin, “Effi-
cient Parallel Algorithms for String Editing and Related Prob-
lems,” SIAM J. Computing, vol. 19, pp. 968–988, 1990.

[5]� M.J. Atallah, “A Faster Parallel Algorithm for a Matrix Searching
Problem,” Algorithmica, vol. 9, pp. 156–167, 1993.

[6]� M.J. Atallah and S.R. Kosaraju, “An Efficient Parallel Algorithm
for the Row Minima of a Totally Monotone Matrix,” J. Algorithms,
vol. 13, pp. 394–413, 1992.

[7]� Y. Ben-Asher, D. Peleg, R. Ramaswani, and A. Schuster, “The
Power of Reconfiguration,” J. Parallel and Distributed Computing,
vol. 13, pp. 139–153, 1991.

[8]� C. Berge, Graphs and Hypergraphs, pp. 280–282. Amsterdam:
North-Holland, 1973.

[9]� R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
New York: Wiley and Sons, 1973.

[10]� E. Hao, P.D. Mackenzie, and Q.F. Stout, “Selection on the Recon-
figurable Mesh,” Proc. Fourth Symp. Frontiers of Massively Parallel
Computation, pp. 38–45, McLean, Va., Oct. 1992.

[11]� J. JáJá, An Introduction to Parallel Algorithms, pp. 188–189. Reading,
Mass.: Addison Wesley, 1992.

[12]� D. Kim and K. Hwang, “Mesh-Connected Array Processors with
Bypass Capability for Signal/Image Processing,” Proc. Hawaii
Conf. System Sciences, Maui, Hawaii, Jan. 1988.

[13]� H. Li and M. Maresca, “Polymorphic-Torus Network,” IEEE
Trans. Computers, vol. 38, pp. 1,345–1,351, 1989.

[14]� H. Li and M. Maresca, “Polymorphic-Torus Architecture for
Computer Vision,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 11, pp. 233–243, 1989.

[15]� R. Lin and S. Olariu, “Reconfigurable Buses with Shift Switch-
ing—Concepts and Applications,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 6, pp. 93–102, 1995.

[16]� M. Maresca, “Polymorphic Processor Arrays,” IEEE Trans. Parallel
and Distributed Systems, vol. 4, pp. 490–506, 1993.

[17]� M. Maresca and H. Li, “Connection Autonomy in SIMD Comput-
ers: A VLSI Implementation,” J. Parallel and Distributed Computing,
vol. 7, pp. 302–320, 1989.

[18]� M. Maresca and H. Li, “Virtual Parallelism Support in Reconfigu-
rable Processor Arrays,” UCB–ICSI Technical Report 91–041,
Univ. of California at Berkeley, July 1991.

[19]� M. Maresca and H. Li, “Hierarchical Node Clustering in Poly-
morphic Processor Arrays,” UCB–ICSI Technical Report 91–042,
Univ. of California at Berkeley, July 1991.

[20]� M. Maresca, H. Li, and P. Baglietto, “Hardware Support for Fast
Reconfigurability in Processor Arrays,” Proc. Int’l Conf. Parallel
Processing, vol. I, pp. 282–289, St. Charles, Ill., 1993.

[21]� R. Miller, V.K.P. Kumar, D. Reisis, and Q.F. Stout, “Parallel Com-
putations on Reconfigurable Meshes,” IEEE Trans. Computers,
vol. 42, pp. 678–692, 1993.

[22]� K. Nakano, “A Bibliography of Published Papers on Dynamically
Reconfigurable Architectures,” Parallel Processing Letters, vol. 5,
pp. 111-124, 1995.

[23]� S. Olariu, J.L. Schwing, and J. Zhang, “Fundamental Data Move-
ment on Reconfigurable Meshes,” Int’l J. High Speed Computing,
vol. 6, pp. 311–323, 1994.

[24]� S. Olariu, J.L. Schwing, and J. Zhang, “Fundamental Algorithms
on Reconfigurable Meshes,” Proc. 29th Ann. Allerton Conf. Comm.,
Control, and Computing, pp. 811–820, 1991.

[25]� J. Rothstein, “On the Ultimate Limitations of Parallel Processing,”
Proc. Int’l Conf. Parallel Processing, pp. 206–212, 1976.

[26]� J. Rothstein, “Bus Automata, Brains, and Mental Models,” IEEE
Trans. Systems, Man, and Cybernetics, vol. 18, pp. 522–531, 1988.

[27]� D.B. Shu, L.W. Chow, and J.G. Nash, “A Content Addressable, Bit
Serial Associate Processor,” Proc. IEEE Workshop VLSI Signal Proc-
essing, Monterey, Calif., Nov. 1988.

[28]� D.B. Shu and J.G. Nash, “The Gated Interconnection Network for
Dynamic Programming,” Concurrent Computations, S.K. Tewsburg
et al., eds. Plenum Publishing, 1988.

[29]� L.G. Valiant, “Parallelism in Comparison Problems,” SIAM J.
Computing, vol. 4, pp. 348-355, 1975.

[30]� B.F. Wang and G.H. Chen, “Constant Time Algorithms for the
Transitive Closure Problem and Its Applications,” IEEE Trans.
Parallel and Distributed Systems, vol. 1, pp. 500–507, 1990.

[31]� C.C. Weems, S.P. Levitan, A.R. Hanson, E.M. Riseman, J.G. Nash,
and D.B. Sheu, “The Image Understanding Architecture,” Int’l J.
Computer Vision, vol. 2, pp. 251–282, 1989.

Koji Nakano received the BE, ME, and PhD de-
grees from Osaka University, Japan, in 1987,
1989, and 1992, respectively. In 1992-1995, he
was a research scientist at Advanced Research
Laboratory, Hitachi Ltd. Since 1995, he has
worked at Nagoya Institute of Technology, Japan.
He is currently an associate professor with the
Department of Electrical and Computer Engineer-
ing. His research interests include parallel algo-
rithms and architectures, computational complex-
ity, and graph theory.

Stephan Olariu received the MSc and PhD de-
grees in computer science from McGill University,
Montreal, in 1983 and 1986, respectively. In 1986,
he joined Old Dominion University, where he is
now a professor of Computer Science.

Dr. Olariu has published extensively in vari-
ous journals, book chapters, and conference
proceedings. His research interests include im-
age processing and machine vision, parallel
architectures, design and analysis of parallel
algorithms, computational graph theory, compu-

tational geometry, and mobile computing.
Dr. Olariu is an associate editor of the International Journal of Com-

puter Mathematics and serves on the editorial boards of the Journal of
Parallel and Distributed Computing, VLSI Design, and Parallel Algo-
rithms and Applications.

