
Efficient Matrix Chain Ordering in Polylog Time* 
(Extended Abstract) 

Phillip G. Bradford Gregory J. E. Rawlins Gregory E. Shannon 
Department of Computer Science 

Indiana University 
215 Lindley Hall 

Bloomington, Indiana 47405 
1 bradford, rawlins, Shannon )@cs.indiana.edu 

Abstract 

This paper gives an O(lg3 n)-time and n/lg n pro- 
cessor algorithm for solving the mat& chain order- 
ing problem and forfinding optimal triangulations of a 
convez polygon on the Common CRCW PRAM model. 
This algorithm works by finding shortest paths in ape- 
cia1 digraphs modeling dynamic programming tables. 
Also, a key  part of the algorithm i a  improved by  com- 
puting row minima of a totally monotone matriz, thir 
leta the algorithm run in O(1g'n) time with n pro- 
cesaors on the EREW PRAM or even O(1g'nlglgn) 
time with n/lg lg n processors an the CRCW PRAM. 

1 Introduction 

The matriz chain ordering problem (MCOP) is to 
find the cheapest way to multiply a chain of n matri- 
ces, where the matrices are pairwise compatible but 
of varying dimensions [2, 91. The MCOP is often the 
focus of dynamic programming research and pedagogy 
because of its amenability to an elementary dynamic 
programming solution. Until recently none of this 
work has given an efficient (linear-processor) polylog- 
arithmic time algorithm for the MCOP. 

This paper is an improvement of Ramanan's 
O(lg4 n) time and n processor solution [17, 181 as well 
as the O(lg4 n) time and n/lg n processor solution due 
to Bradford, Rawlins and Shannon [7] (which is a cor- 
rection and update of [5]). Our approach follows [5,6], 
recasting the MCOP as a shortest path problem in a 
graph modeling a dynamic programming table. This 
graph has O(n2) nodes and with an all-pairs short- 
est paths algorithm finding a shortest path in this 
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graph results in a n6/lgn processor MCOP algorithm 
which is just like Rytter's [lg]. Reducing the num- 
ber of nodes to O(n) using a tree decomposition and 
applying an all-pah shortest path algorithm gives an 
n3/lg n processor and polylog time algorithm. 
In this paper, we convert the successive applications 

of the brute force all-pairs shortest paths algorithm to 
successive applications of parallel partial prefix and 
binary search algorithms. As in the n3/lgwprocessor 
algorithm, the applications of the prefix and binary 
search algorithms are controlled by a rake-compress 
paradigm operating on a tree based decomposition of 
the original graph. All of this results in a polylog- 
time (O(lg3 n)) and linear-processor (n/lg n) parallel 
algorithm for MCOP on the Common CRCW PRAM. 

Elementary dynamic programming algorithms se- 
quentially solve the matrix chain ordering problem in 
O(n3) time [2, 91. However, the best serial solution 
of the MCOP is Hu and Shing's O(n1gn) algorithm 
[14, 151. Valiant et al. [20] gave algorithms taking 
8(lg2n) time and n9 processors to solve problems 
such as the MCOP. Rytter [19] gave more efficient 
parallel algorithms for a similar class of optimization 
problems costing O(lg2 n) time with n6/lgn proces- 
sors. Huang et al. [13] and Galil and Park 12 gave 
algorithms that can solve the MCOP in O(lg n) time 
using ns/lgs n and n6/lg6 n processors respectively. In 
[6], an algorithm was given that takes O(lg3n) time 
and n3/lgn processors and Czumaj, in [lo], gave an 
algorithm that takes O(lg3n) time and n'/lg3n pro- 
cessors. In [17] and [18] Ramanan independently gives 
an O(lg4 n) time and n processor algorithm for soh- 
ing the MCOP on the CREW PRAM. Ramanan eves 
an extended abstract of his n processor and O(lg4n) 
time CREW PRAM algorithm for solving the MCOP 
in [lq, his full version is in [l8]. A version of our 
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O(lg‘ n) time and n/lgn processor algorithm is in [q. 
Section 2 shows how to interpret the MCOP as a 

shortest path problem as in [6] and summarises this 
n3/lgn processor algorithm. Section 3 isolates this al- 
gorithm’s n3/lg n processor bottlenecks which are due 
to an all-pairs shortest paths algorithm. Section 4 re- 
places this shortest path algorithm with parallel prefix 
and an all-pairs comparison algorithm. Finally, sec- 
tion 5 replaces the all-pairs comparison algorithm with 
applications of parallel prefix and binary search, then 
with the row minima problem )on a totally monotone 
matrix. 

2 An O(lg3n) Time and n3/lgn Proces- 
sor MCOP Algorithm 

This section briefly reviews the polylog time and 
n3/lgn processor MCOP Algorithm from [SI. 

Let T be an n x n dynamic programming table 
for the matrix chain ordering problem, it has entries 
T[i ,  k] representing the cheapest cost of the matrix 
products M; 0 - - e  0 Mk. For any such T there is a 
graph Dn where the cost of a shortest path to node 
(i ,  k), denoted sp(i, k), is the same as the final value of 
T[i ,  k]. Given a chain of n matrices finding a shortest 
path from (0,O) to (1,n) in D,, solves the MCOP [6]. 

known as unit edges, together with the edges, 

((i, j )  ( i , t )  : 1 < i < j < t 5 n}u 
{ ( s , t )  $ ( i , t )  : 15 i < s < t  5 n} 

known as jumpers, sec the jumper from (1,2) to 
(1,4) in figure 1. The unit edge (i ,  j) + (i ,  j + 1) r e p  
resents the product (Mio--.oMj)oMj+1 and weighs 
f ( i ,  j, j + 1) = wiw,+lw,+a which is taken as the cost 
of multiplying a wi  x w,+l matrix and a wj+1 x to,+-, 
matrix. Similarly, the unit edge (i, j) t (i - 1, j) 
represents the product Mi-1 0 (Mi 0 0 Mj) and 
costs f ( i  - 1,i - 1, j) = wi-lwiwj+l. A shortest 
path to ( i ,k )  through the jumpers (i ,  j) ( i , k )  
and ( j  + 1, k) fi (i ,  k) both represent the product 
(Mio...oMj)o(M,+lo~..oMk) and these jumpers 
weigh sp( j  + 1, k )  + f ( i ,  j, k) and sp(i ,  j) + f(i, j, k) 
respectively. Where f ( i ,  j, k) = wiwj+lwk+l and 
sp(j + 1,k) is the cost of a shortest path to node 
( j  + 1, k). See figure 1. 

Theorem 1 (Duality Theorem [SI) If a shortest 
path from (0,O) to (i ,  k) contains the jumper (i, j) 
( i , k )  then there is a dual shortest path containing the 
jumper ( j  + 1, k) fi (i ,  k). 

A D,, graph has C3(na) nodes, now we sketch some 
techniques that show we can solve the MCOP with 
O(n) nodes of a 0, graph. 

Given an associative product with the level of each 
parenthesis known, then for each parenthesis find its 
matching parenthesis by solving the all nearest smaller 
value (ANSV) problem [4]: Given wl, wp, . . ., w,,, for 
each w find the largest j such that 1 5 j < i ,  and 
smallest k where i < L 5 n, so that wj < wi and 
Wk < wi if such values exist. Let’s call this pair of 
indices, if they exist, an ANSV match. In On, a critical 
node is ( i ,  k) such that [wi, Wk+l] is an ANSV match. 

By solving the ANSV problem we can compute 
all critical nodes of On. Figure 2 shows a weight 
list where dashed lines representing four key ANSV 
matches. The four corresponding critical nodes are 

Figure 1: The Weighted Graph Dr circled in Dn. 

CRCW PRAM and in [e, 161 on a EREW PRAM: 
In our nomenclature, [4] shows on a common 

0, has vertices, 

Theorem 2 Computing all critical nodes costs O(1gn) 
time with n/lgn processors. 

Two critical nodes on the same diagonal are cum- 
patible if no vertices other than (0,O) can reach both of 
them by a unit path. Since a path of critical nodes r e p  
resents a parenthesisation, all critical nodes are com- 
patiblc. Also, Dn has at most n - 1 critical nodes 

and edges, 

((i, j) -, (i, j + 1) : 1 5 i 5 j < n} U 

((i, j) t (i  - 1, j) : 1 < i 5 j 5 n} U 

{ ( O , O ) / ’ ( i , i ) :  I<i<n} 
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Figure 2: Two Leaf Subgraphs Inside an Band Sub- 
graph with Critical Nodes Shown 

and there is at least one path from (0,O) to (1, n) that 
includes all critical nodes [SI. 

All vertices and edges that can reach (i, t) by a unit 
path form the subgraph D(i , t ) .  If D(i ,  j )  has a mono- 
tonic weight list w i , .  . . , wj+l,  then D(i ,  j )  is mono- 
tonic. A band is a canonical subgraph DC;:', which 
contains the maximal unit edge-connected path of crit- 
ical nodes beginning at  critical node ( j ,  k )  and termi- 
nating at critical node (i, t) with the vertex set 

WP(i, t)l- V [ W  + 1, k - 1)11 U ((0,o)) 

and associated edges. A canonical subgraph of the 
form D:j:f'+l,, is a leafcanonical subgraph and is writ- 
ten D(il*) and has the same nodes and edges as D(i ,  t). 
Figure 2, shows two leaf subgraphs nested inside of a 
band subgraph. From here on p denotes the path of 
critical nodes in band or leaf canonical subgraphs. 

If D(i ,u )  has a monotone list of weights w, 5 
w;+l 5 * * - 5 wu+l, then a shortest path from (0,O) 
to (i,u) is the straight unit path (0,O) /" (i,i) + 
(i, i+ 1) + - * * 4 (i, U), that costs ~i cy=i+l wjwj+l.  
On the other hand, if D(i,  t) has no critical nodes, 
then its associated weight list is monotonic. As in 
[14, 15, 61 let 1l.L.i : ~ 6 1 1  = ~ ~ ~ ~ w j w j + l ,  which is 
easily computable using differences of parallel partial 
prefixes llwl : will for 2 5 i 5 n + 1. This is useful 
since the unit path (i, j) + - - + (i, k) costs 

willwj+l : wk+111 = wi(llw1 : wk+lll - llwl : wj+lll)- 

Suppose ( j ,  k )  and (i ,  t )  are two critical nodes in 
a canonical graph such that from ( j ,  I C )  we can reach 
(i,t) by a unit path, that is i 5 j 5 k 5 t ,  then the 
angular paths of ( j ,  A )  and (i ,  t )  are, (see figure 3) 

( j , k ) ~ ( i , k ) + . . . + ( i , t )  

and 
( j , k ) ~ ( j , t ) . r . . . f ( i , t ) .  

Figure 3: Two Angular Paths 

Theorem 3 ([SI) In a canonical subgraph the shortest 
path between any two critical nodes that contains no 
other critical nodes is a n  angular path or edge. 

In addition, any shortest path not including critical 
nodes is a straight path of unit edges. Thus, any 
shortest path to a critical node that contains no other 
critical nodes is a straight path of unit edges [6]. 

Now a polylog time algorithm for finding short- 
est paths to all critical nodes in D(l8") leaf graphs 
is given. This algorithm takes O(lgz m) time and uses 
m3/lg m processors. 

First compute the parallel partial prefixes llwl : will 
for 2 5 i 5 m + 1. Now find all critical nodes, then in 
constant time using m processors compute the costs of 
all of the unit paths to nodes in p. Next compute the 
cost of the O(m2) angular paths in constant time with 
mz processors. Finally, compute the shortest path to 
each node in p by treating every angular path as an 
edge and applying a parallel all-pairs shortest path 
algorithm. 

In Dn, a canonical tree joins all of the canonical 
subgraphs. Initially, for every leaf D('ij) the critical 
node (i, j )  is the tree leaf (i, j ) .  h e a l  t r e e d e s  
are either isolated critical nodes or (i, t )  and ( j ,  k )  in 
the band Dlj;i\. Tree edges are straight unit paths 
connecting tree nodes and jumpers may reduce the 
cost of tree edges [SI. 

Given an instance of the MCOP with the weight 
list lI = wl ,  ~ 2 , .  . then cyclically rotating it 
getting lz and finding an optimal parenthesisation for 
I2 gives an optimal solution to the original instance 
of the MCOP with l 1 ,  [14, 111. So in the rest ofthis 
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paper let w1 denote the smallest weight in any weight 
list. 

A result of Hu and Shing [14] gives the following. 

Corollary 1 (Atomicity Corollary [SI) 
Given a weight list w l ,  . . ., w,,+l, with the three smallest 
weights wl ,wj+l ,  and wh+l, such that 1 < j < k - 1, 
then the critical nodes (1, j) and ( 1 , k )  are in a shortest 
path from (0,O) to (1,n) in  D,. 

For this Corollary to work, it is central that if 
wl ,w ,+ l ,  and wh+1 are the three smallest weights, 
then j + 1 > 2 and k > j + 1. This means generally 
Corollary 1 cannot be applied in a canonical subgraph. 
But, Corollary 1 can be used to break 0, into a tree 
of canonical graphs. 

\Q ....e........... 

...+ 

Figure 4: A Tree of Canonical Leaf Graphs, the Circles 
Denote Internal Tree Nodes 

If D, has fewer than n - 1 critical nodes, then 0, 
may have disconnected canonical trees and monotone 
subgraphs. But, there is at least one path joining these 
subtrees and at the same time we can discount the 
monotone subgraphs [6]. The relationships canonical 
graphs may have all follow directly from critical nodes 
and tree nodes. 

4 ( i , v )  along row i 
initially costs willwj+l : w,+111 where w; < wu+l < 
w , + ~ ,  are the three smallest weights in D(i , v ) .  Let 
denote a shortest path of critical nodes in D ( j  + 1, U) 
from ( j  + 1, U) back to (0,O). Edge minimizing the 
unit path along the ith row to the critical node ( i , v )  
is done as follows, first let L = wi))wi+l : w,+lll and 
W(( i ,k )  * ( i , u ) )  = sp(k + 1,u) + f ( i , k , u )  and 
(k + 1, U) E V [ D ( j  + 1, v ) ] ,  then compute 

The tree edge (i,j) 4 

willwk+l : %+111 + w((i, k) * (i, U)) }. 
Since the three smallest weights in D(i , v )  are w; < 
w,+i < wj+l,  by Corollary 1 the cheapest cost to 
critical node (i, v )  is now in A[i,  IJ] .  

Theorem 4 ([SI) When edge minimizing a tree edge 
(i,j) + a . .  + ( i , v )  in a canonical subgraph we only 
have to consider jumpers (i, k )  ( i , t )  such that ( E  + 

Theorem 4 allows the use of tree contraction tech- 
niques to be applied where the raking operation is edge 
minimization and band merging. 

The critical node ( i ,u)  in the band D::!;; is the 
front critical node. In general Theorem 4, holds when 
ji is a shortest path through a band from the front 
critical node back to (0,O). Also, Theorem 4 holds 
for leaves in the canonical tree that, after raking, have 
become conglomerates of other leaves, bands, and iso- 
lated critical nodes. Here, jumpers derived from crit- 
ical nodes in different subtrees are independent so we 
can minimize tree edges with them simultaneously. 

Assume that all critical nodes (i,j) in tree leaves 
have the minimumcost back to (0,O) stored in sp(i ,  j). 
Compute these values using an all-pairs shortest path 
parallel algorithm. There is an ordering of the leaves 
that prevents the simultaneous raking of two adjacent 
leaves by Corollary 1. 

Given two nested bands, say Dij:"?, is nested around 

Dt;,'#';, that is j 5 IC < t 5 U. Without loss, say 

any trees between $"?, and Di:,':; have been con- 
tracted, then joining these bands costs O(lg2 n) time 
with n3/lg n processors using edge minimizing and 
band merging with an all pairs min-path algorithm [SI. 

1 , t )  E VF]. 

3 The Structure of Shortest Paths in 
Canonical Subgraphs 

This section highlights the n3/lg n processor bot- 
tlenecks of the algorithm in section 2. 

For each critical node in a 0, graph there are two 
pointers called front-ptr and back-ptr. The costs asso- 
ciated with front-ptr are coat-of-front-ptr and cost-to- 
front; the cost associated with back-ptr is cost-to-back. 
These costs have the obvious values associated with 
them. Initially, the pointers connect critical nodes and 
tree edges in the canonical tree. 

There are three parts in the algorithm of [6] that 
use n3/lgn processors. All other parts of that algo- 
rithm use a total of n/lg n processors and O(lg n) time. 
These three bottlenecks are: Finding minimal paths to 
critical nodes in D('8") graphs, see figure 5a. Merging 
two bands, see figure 5b. Merging two bands that have 
contracted canonical trees between them. In figure 5c, 
contracted trees A and B are used to edge minimise 
the unit paths marked by "Min-A" and "Min-B." 
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Figure 5: Bottlenecks 1, 2 and 3 for the n3/lgn Pro- 
cessor Algorithm 

Let p denote a minimal path in any such band and 
is made up of super critical nodes. Such a minimal 

path must be critical nodes interspersed with angular 
paths, by Theorem 3. A D('lm) graph can be broken 
into nested bands. Therefore by starting with con- 
stant width bands in a D('lm) graph and recursive 
double the band merging algorithm while performing 
tree collapsing we can treat bottlenecks 2 and 3 as a 
special case of bottleneck 1. Hence, from here on band 
merging is the focus. 

Any angular edge is equivalent to some jumper in 
a straight line unit path by Theorem 1. Since the fol- 
lowing measures the contribution of jumpers to min- 
imal paths along straight unit paths we can use it 
to get the contribution (if any) of angular edges to 
minimal paths. Take a node ( s , t )  E Vb], where 
s p ( s , t )  is the minimal path with respect to a band, 
then in row i compare the contribution of the jumper 
( i , s  - 1) a ( i , t )  with the associated unit path 

Given ( s , t )  E V[ss], take row i above p with the 
( i , s - l ) - - * . . - +  (4 t ) .  

jumper ( i ,  s - 1 )  (i, t), define 

&(s , t )  = wiJJwr : W*+l lJ  - 
[ SP(4 t )  + f ( i ,  8 - 1, t )  1 

So, if A;(s, t) > 0, then the jumper (i ,  s - 1) (i, t) 
provides a cheaper path along row i than the unit path 
(i, s - 1) 4 . - -+ (i, t). Given two nested bands, we 
want to find the jumpers that make the unit paths in 
the outer band the cheapest so we can compute the 
shortest path from the front critical node of the outer 
band back to (0,O). 

4 An O(lg2n) Time and n2/lgn Proces- 
sor MCOP Algorithm 

This section uses an induction invariant to break 
through the bottlenecks of the last section. 

In figure 6 is the induction invariant for merging two 
neighboring bands. Let D::::] and Dlil:\ be two such 

bands with paths of critical nodes labeled p:;;:; and 

pk,?). respectively. Let 4:::; and #i,:\, be made by 
two linked lists of back-ptrs along super critical nodes 
and shortest paths forward form all critical nodes by 
linked lists of trees of front-pits. 

1. All critical nodes in both bands have their 
front-ptre in trees of shortest paths that 
eventually go to super critical nodes which go 
to the front critical nodes of their respective 
bands. 
In the two bands shortest paths back to (0,O) 
of super critical nodes are known. 
These shortest paths of super critical nodes 
are made of linked lists of back-ptrs from 
the front critical nodes of each band back 
through their respective bands to (0.01. 

2. 

Figure 6: Inductive Invariant for Band Merging 

Figure 7: ( s , t )  
(r ,  y) -, - - - 4 (r, U )  in p 

Vk] and the Angular Edge (z,y) fi 

Theorem 5 Given a critical node (s, t) between the m- 
per critical node ( q y )  and critical node (r,u) and say 
i < r < s < a and row i is above row r ,  t ha t  is w; < w,, 
where rows i and r are above p then 

than (r,  s - 1) s (r,t) does 

than (i ,  s - 1) a (i,t) does 

if (r, z - 1) s (r, y) makes row r cheaper 

then (i ,  2 - 1) ==+ (i, y) makes row i cheaper 

See figures 7 and 8 to illustrate Theorem 5. 
Two angular edges above p, say (a, y) ft (r, y) 4 

compatible if they don't cross each other. A symmetric 
definition holds for angular paths below p. Theorem 6 
shows that when merging two bands and computing 
shortest paths forward, only compatible angular edges 
need to be considered. Figure 9 shows two conflicting 
angular paths. 

... --., (r,u) and ( i , j )  ft (s,j) -+ .-. + (4 are 



r-1 x-1 Y t 

r-1 x-1 Y t 

Figure 8: Two Jumpers in Different Rows 

I / -----P 

Figure 9: Conflicting Angular Paths Between Two 
Bands Being Merged 

Theorem 6 (Main  Theorem) 
In merging two nested bands computing shortest paths 
forward from super critical nodes of the inner band, we 
can consider only compatibly nested angular edges. 

It is important to notice that Theorem 6 only holds 
when merging two bands. When merging two bands 
and computing shortest paths forward between them 
all angular edges are compatible. Hence the front 
pointers form a tree which is consistent with the linked 
list of back pointers. 

Theorem 7 Given two super critical nodes ( v , z )  and 
(a,y) where r < s < a < U and  wr < wr such that rows 
s and r are above p ,  then we have 

if ( r ,  z - 1) + (r,  y) makes row r cheaper 

then (3, a - 1) + (s, y) makes row s cheaper 
than (r ,u - 1) * (r,z) does 

than ( s , u  - 1) (s,z) does 

See figure 10 to illustrate Theorem 7. 
While merging D[j:ij and diBt) to form 4:;)) the 

next lemma shows that we only need minimal path 
values backwards to (k, s) from super critical nodes. 
Hence, the back-ptm can form a linked list and com- 
pute the cost-to-back weights by a pointer jumping 
partial parallel prefix. 

(k+) 

Row r 
x-1 v-1 Y 

Row s 
x-1 v-1 Y 

Figure 10: Two Jumpers in Different Rows 

Lemma 1 Take $:] and $2,;; in D[i:$ and D(”*) W) 
respectively, for nomsuper critical nodes, say (u ,z )  E 
Vkt,:))] and ( u , ~ )  e V&i:))], then we don’t need min- 
imal paths back to ( k ,  s). 

Every critical node haa a shortest path to the front 
critical node of the band it is in that eventually goes 
through a super critical node. For every critical node 
we want to maintain a shortest path forward during 
band merging. This is because some angular path 
from some future inner band may terminate at  any 
critical node. Therefore, after finding each super crit- 
ical node’s minimal cost to the front of the outer band 
then do a tree partial prefix sum from the critical 
nodes to the super critical node so we know their min- 
imal paths to the front of the outer band. 

Theorem 8 In 4;;;)) the front pointers form a tree and 
the back pointers form a linked list. 

Theorem 8 shows the inductive invariant holds given 
the appropriate data structures. 

The algorithm in figure 11 costs O(1gn) time and 
n2/lg n processors for merging two bands. Adding the 
cost of recursive doubling and tree contraction which 
together can be done in O(lg n) time making the total 
cost O(lg2 n) time and n2/lgn processors. The for 
loops labeled by 1 in figure 11 find the shortest path 
from the front critical node of the outer band back to 
(0,O) through both bands. Thia is the only part of 
the algorithm that uses n2/lgn processors. And the 
base case for the recursive doubling is established by 
breaking the canonical subgraphs into bands of con- 
stant width. 

5 Efficient Polylog Time MCOP Algo- 
rit hms 

This section reduces the processor complexity of the 
band merging algorithm of section 4 with a parallel 
divide and conquer form of binary search. 
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In a band, if (i, z) =+ (i, y) is minimal in row i and 
(s, z) =$ (sly) is minimal in row s, then ( F ,  z) 
( r ,  y) is minimal in row t for all r ,  i 5 r 5 a. A proof 
of this follows from Theorems 5 and 7. 

Theorem 9 gives a parallel divide and conquer bi- 
nary search algorithm that finds the jumpers that min- 
imize each unit path edge in a canonical graph. 

Theorem 9 Suppose that r i s  the row in the  outer band 
such that the dual of (r,z) (r,y) gives a shortest 
path forward from the super critical node (z - 1,y) of 
the inner band to the front node of t h e  outer band then, 

0 It is sufficient to consider only larger nested jumpers 
in any  row s below row r ,  that is w. > w,, 

0 It is sufficient to consider only smaller nested 
jumpers in any row i above row r ,  that is wi < wr. 

A proof of this theorem comes directly from Theorems 
5, 6 and 7, also see figures 8 and 10. 

This next algorithm replaces the two for loops in 
step 1 in the algorithm of figure 11. Say each band has 
m critical nodes, the next procedure finds the jumpers 
that edge minimize the unit paths in the outer band. 
As before, begin assuming the inductive invariant. 

1. Find the middle super critical node in the inner 
band, say (z - 1,y). 

2. Using m/lg m processors and in O(lg m) time find 
a shortest path forward from (z - 1,y) to the 
front of the outer band. Say this shortest path 
forward is from the super critical node (z - 1,y) 
and has an angular edge between the two bands 
that terminates in row r .  Let X = ( r , z )  =j 

(r1 Y). 

3. Split the jumpers into two sets, 

(a) those smaller than or equal to X call them S, 
these are nested inside X = ( r ,  z) 3 ( r ,  y) 

(b) those larger than or equal to X call them L, 
these are nested around X = (r, z) ---4 (r, y) 

4. Do the following two steps in parallel: 

(a) assign IS1 processors to rows r up through 1 
and recurse starting at step 1 with S 

(b) assign ILI processors to rows r down through 
m and recurse starting at step 1 with L 

This algorithm finds what jumpers minimize what 
unit paths. It takes O(1g’n) time and uses n/lgn 
processors in the worst case. Considering the cost of 

the recursive doubling and the tree contraction, gives 
the O(lg3 n) time and n/lg n processor matrix chain 
ordering algorithm. 

We also mention that with a little more work The- 
orem 9 shows that the problem of merging two bands 
is reducible to the problem of finding row minima in 
a totally monotone matrix. Hence, by Aggarwal and 
Park [l] and by Atallah and Kosaraju [3] we can run 
our algorithm in O(1g’ n Ig lg n) time using n/lg lg n 
processors on the CRCW model or in O(1g’n) time 
using n processors on the EREW PRAM respectively. 

Take two adjacent nested bands, say DIf:l;’ nested 
around D:;,:), such that the inductive invariant holds 
for each bank 

1. for all super critical nodes (2, y) E V@L:::] 
in parallel do 

for all angular edges from (z, y) to all 
( u , z )  E Vb[i;))] in parallel do 

Find the angular edge connecting the bands 
from (z, y) that gives a shortest path 
all the way to (i, U), for each of these new 
edges compute coat-of-front-ptrs. 
For the super critical nodes in $,:\ 
put the angular edge that gives them a 
shortest path forward to (i, U) in M. 

2. for all angular edges in M in parallel do 
Find the shortest path N from ( i , u )  back to 
(0,O) through DI:;:). 

Using pointer jumping build the Lack-ptm 
giving any new super critical nodes 
and compute the values of coat-to-back for 
each new super critical node. 

for all nodes in the path N in parallel do 

3. for all nowsuper critical nodes in 
$’,:)! in parallel do 

Using pointer jumping expand the tree of 
front-ptm through the new angular 
edges in M and their minimal values 
to (i, U). This gives trees joined by a linked 
list through the super critical nodes. 
Now find the shortest path to ( i , u )  for 
all non-super critical nodes in pi;,:)) by 
computing a partial prefix in a rooted tree. 
Also compute all of the new coatto-front 
values using a parallel partial prefix. 

Figure 11: Algorithm for Merging Two Bands 
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