
Efficient Matrix Chain Ordering in Polylog Time*
(Extended Abstract)

Phillip G. Bradford Gregory J. E. Rawlins Gregory E. Shannon
Department of Computer Science

Indiana University
215 Lindley Hall

Bloomington, Indiana 47405
1 bradford, rawlins, Shannon)@cs.indiana.edu

Abstract

This paper gives an O(lg3 n)-time and n/lg n pro-
cessor algorithm for solving the mat& chain order-
ing problem and forfinding optimal triangulations of a
convez polygon on the Common CRCW PRAM model.
This algorithm works by finding shortest paths in ape-
cia1 digraphs modeling dynamic programming tables.
Also, a key part of the algorithm i a improved by com-
puting row minima of a totally monotone matriz, thir
leta the algorithm run in O(1g'n) time with n pro-
cesaors on the EREW PRAM or even O(1g'nlglgn)
time with n/lg lg n processors an the CRCW PRAM.

1 Introduction

The matriz chain ordering problem (MCOP) is to
find the cheapest way to multiply a chain of n matri-
ces, where the matrices are pairwise compatible but
of varying dimensions [2, 91. The MCOP is often the
focus of dynamic programming research and pedagogy
because of its amenability to an elementary dynamic
programming solution. Until recently none of this
work has given an efficient (linear-processor) polylog-
arithmic time algorithm for the MCOP.

This paper is an improvement of Ramanan's
O(lg4 n) time and n processor solution [17, 181 as well
as the O(lg4 n) time and n/lg n processor solution due
to Bradford, Rawlins and Shannon [7] (which is a cor-
rection and update of [5]). Our approach follows [5,6],
recasting the MCOP as a shortest path problem in a
graph modeling a dynamic programming table. This
graph has O(n2) nodes and with an all-pairs short-
est paths algorithm finding a shortest path in this

'Please address correspondence t o Phil Bradford.

graph results in a n6/lgn processor MCOP algorithm
which is just like Rytter's [lg]. Reducing the num-
ber of nodes to O(n) using a tree decomposition and
applying an all-pah shortest path algorithm gives an
n3/lg n processor and polylog time algorithm.
In this paper, we convert the successive applications

of the brute force all-pairs shortest paths algorithm to
successive applications of parallel partial prefix and
binary search algorithms. As in the n3/lgwprocessor
algorithm, the applications of the prefix and binary
search algorithms are controlled by a rake-compress
paradigm operating on a tree based decomposition of
the original graph. All of this results in a polylog-
time (O(lg3 n)) and linear-processor (n/lg n) parallel
algorithm for MCOP on the Common CRCW PRAM.

Elementary dynamic programming algorithms se-
quentially solve the matrix chain ordering problem in
O(n3) time [2, 91. However, the best serial solution
of the MCOP is Hu and Shing's O(n1gn) algorithm
[14, 151. Valiant et al. [20] gave algorithms taking
8(lg2n) time and n9 processors to solve problems
such as the MCOP. Rytter [19] gave more efficient
parallel algorithms for a similar class of optimization
problems costing O(lg2 n) time with n6/lgn proces-
sors. Huang et al. [13] and Galil and Park 12 gave
algorithms that can solve the MCOP in O(lg n) time
using ns/lgs n and n6/lg6 n processors respectively. In
[6], an algorithm was given that takes O(lg3n) time
and n3/lgn processors and Czumaj, in [lo], gave an
algorithm that takes O(lg3n) time and n'/lg3n pro-
cessors. In [17] and [18] Ramanan independently gives
an O(lg4 n) time and n processor algorithm for soh-
ing the MCOP on the CREW PRAM. Ramanan eves
an extended abstract of his n processor and O(lg4n)
time CREW PRAM algorithm for solving the MCOP
in [lq, his full version is in [l8]. A version of our

c 1

234
0-8186-5602-6/94 0 1994 IEEE

-~

mailto:cs.indiana.edu

O(lg‘ n) time and n/lgn processor algorithm is in [q.
Section 2 shows how to interpret the MCOP as a

shortest path problem as in [6] and summarises this
n3/lgn processor algorithm. Section 3 isolates this al-
gorithm’s n3/lg n processor bottlenecks which are due
to an all-pairs shortest paths algorithm. Section 4 re-
places this shortest path algorithm with parallel prefix
and an all-pairs comparison algorithm. Finally, sec-
tion 5 replaces the all-pairs comparison algorithm with
applications of parallel prefix and binary search, then
with the row minima problem)on a totally monotone
matrix.

2 An O(lg3n) Time and n3/lgn Proces-
sor MCOP Algorithm

This section briefly reviews the polylog time and
n3/lgn processor MCOP Algorithm from [SI.

Let T be an n x n dynamic programming table
for the matrix chain ordering problem, it has entries
T[i , k] representing the cheapest cost of the matrix
products M; 0 - - e 0 Mk. For any such T there is a
graph Dn where the cost of a shortest path to node
(i , k), denoted sp(i, k), is the same as the final value of
T[i , k]. Given a chain of n matrices finding a shortest
path from (0,O) to (1,n) in D,, solves the MCOP [6].

known as unit edges, together with the edges,

((i, j) (i , t) : 1 < i < j < t 5 n}u
{ (s , t) $ (i , t) : 15 i < s < t 5 n}

known as jumpers, sec the jumper from (1,2) to
(1,4) in figure 1. The unit edge (i , j) + (i , j + 1) r e p
resents the product (Mio--.oMj)oMj+1 and weighs
f (i , j, j + 1) = wiw,+lw,+a which is taken as the cost
of multiplying a wi x w,+l matrix and a wj+1 x to,+-,
matrix. Similarly, the unit edge (i, j) t (i - 1, j)
represents the product Mi-1 0 (Mi 0 0 Mj) and
costs f (i - 1,i - 1, j) = wi-lwiwj+l. A shortest
path to (i ,k) through the jumpers (i , j) (i , k)
and (j + 1, k) fi (i , k) both represent the product
(Mio...oMj)o(M,+lo~..oMk) and these jumpers
weigh sp(j + 1, k) + f (i , j, k) and sp(i , j) + f(i, j, k)
respectively. Where f (i , j, k) = wiwj+lwk+l and
sp(j + 1,k) is the cost of a shortest path to node
(j + 1, k). See figure 1.

Theorem 1 (Duality Theorem [SI) If a shortest
path from (0,O) to (i , k) contains the jumper (i, j)
(i , k) then there is a dual shortest path containing the
jumper (j + 1, k) fi (i , k).

A D,, graph has C3(na) nodes, now we sketch some
techniques that show we can solve the MCOP with
O(n) nodes of a 0, graph.

Given an associative product with the level of each
parenthesis known, then for each parenthesis find its
matching parenthesis by solving the all nearest smaller
value (ANSV) problem [4]: Given wl, wp, . . ., w,,, for
each w find the largest j such that 1 5 j < i , and
smallest k where i < L 5 n, so that wj < wi and
Wk < wi if such values exist. Let’s call this pair of
indices, if they exist, an ANSV match. In On, a critical
node is (i , k) such that [wi, Wk+l] is an ANSV match.

By solving the ANSV problem we can compute
all critical nodes of On. Figure 2 shows a weight
list where dashed lines representing four key ANSV
matches. The four corresponding critical nodes are

Figure 1: The Weighted Graph Dr circled in Dn.

CRCW PRAM and in [e, 161 on a EREW PRAM:
In our nomenclature, [4] shows on a common

0, has vertices,

Theorem 2 Computing all critical nodes costs O(1gn)
time with n/lgn processors.

Two critical nodes on the same diagonal are cum-
patible if no vertices other than (0,O) can reach both of
them by a unit path. Since a path of critical nodes r e p
resents a parenthesisation, all critical nodes are com-
patiblc. Also, Dn has at most n - 1 critical nodes

and edges,

((i, j) -, (i, j + 1) : 1 5 i 5 j < n} U

((i, j) t (i - 1, j) : 1 < i 5 j 5 n} U

{ (O , O) / ’ (i , i) : I<i<n}

235

Figure 2: Two Leaf Subgraphs Inside an Band Sub-
graph with Critical Nodes Shown

and there is at least one path from (0,O) to (1, n) that
includes all critical nodes [SI.

All vertices and edges that can reach (i, t) by a unit
path form the subgraph D(i , t) . If D(i , j) has a mono-
tonic weight list w i , . . . , wj+l, then D(i , j) is mono-
tonic. A band is a canonical subgraph DC;:', which
contains the maximal unit edge-connected path of crit-
ical nodes beginning at critical node (j , k) and termi-
nating at critical node (i, t) with the vertex set

WP(i, t)l- V [W + 1, k - 1)11 U ((0,o))

and associated edges. A canonical subgraph of the
form D:j:f'+l,, is a leafcanonical subgraph and is writ-
ten D(il*) and has the same nodes and edges as D(i , t).
Figure 2, shows two leaf subgraphs nested inside of a
band subgraph. From here on p denotes the path of
critical nodes in band or leaf canonical subgraphs.

If D(i ,u) has a monotone list of weights w, 5
w;+l 5 * * - 5 wu+l, then a shortest path from (0,O)
to (i,u) is the straight unit path (0,O) /" (i,i) +
(i, i+ 1) + - * * 4 (i, U), that costs ~i cy=i+l wjwj+l.
On the other hand, if D(i, t) has no critical nodes,
then its associated weight list is monotonic. As in
[14, 15, 61 let 1l.L.i : ~ 6 1 1 = ~ ~ ~ ~ w j w j + l , which is
easily computable using differences of parallel partial
prefixes llwl : will for 2 5 i 5 n + 1. This is useful
since the unit path (i, j) + - - + (i, k) costs

willwj+l : wk+111 = wi(llw1 : wk+lll - llwl : wj+lll)-

Suppose (j , k) and (i , t) are two critical nodes in
a canonical graph such that from (j , I C) we can reach
(i,t) by a unit path, that is i 5 j 5 k 5 t , then the
angular paths of (j , A) and (i , t) are, (see figure 3)

(j , k) ~ (i , k) + . . . + (i , t)

and
(j , k) ~ (j , t) . r . . . f (i , t) .

Figure 3: Two Angular Paths

Theorem 3 ([SI) In a canonical subgraph the shortest
path between any two critical nodes that contains no
other critical nodes is a n angular path or edge.

In addition, any shortest path not including critical
nodes is a straight path of unit edges. Thus, any
shortest path to a critical node that contains no other
critical nodes is a straight path of unit edges [6].

Now a polylog time algorithm for finding short-
est paths to all critical nodes in D(l8") leaf graphs
is given. This algorithm takes O(lgz m) time and uses
m3/lg m processors.

First compute the parallel partial prefixes llwl : will
for 2 5 i 5 m + 1. Now find all critical nodes, then in
constant time using m processors compute the costs of
all of the unit paths to nodes in p. Next compute the
cost of the O(m2) angular paths in constant time with
mz processors. Finally, compute the shortest path to
each node in p by treating every angular path as an
edge and applying a parallel all-pairs shortest path
algorithm.

In Dn, a canonical tree joins all of the canonical
subgraphs. Initially, for every leaf D('ij) the critical
node (i, j) is the tree leaf (i, j) . h e a l t r e e d e s
are either isolated critical nodes or (i, t) and (j , k) in
the band Dlj;i\. Tree edges are straight unit paths
connecting tree nodes and jumpers may reduce the
cost of tree edges [SI.

Given an instance of the MCOP with the weight
list lI = wl , ~ 2 , . . then cyclically rotating it
getting lz and finding an optimal parenthesisation for
I2 gives an optimal solution to the original instance
of the MCOP with l 1 , [14, 111. So in the rest ofthis

236

paper let w1 denote the smallest weight in any weight
list.

A result of Hu and Shing [14] gives the following.

Corollary 1 (Atomicity Corollary [SI)
Given a weight list w l , . . ., w,,+l, with the three smallest
weights wl ,wj+l , and wh+l, such that 1 < j < k - 1,
then the critical nodes (1, j) and (1 , k) are in a shortest
path from (0,O) to (1,n) in D,.

For this Corollary to work, it is central that if
wl ,w ,+ l , and wh+1 are the three smallest weights,
then j + 1 > 2 and k > j + 1. This means generally
Corollary 1 cannot be applied in a canonical subgraph.
But, Corollary 1 can be used to break 0, into a tree
of canonical graphs.

\Qe...........

...+

Figure 4: A Tree of Canonical Leaf Graphs, the Circles
Denote Internal Tree Nodes

If D, has fewer than n - 1 critical nodes, then 0,
may have disconnected canonical trees and monotone
subgraphs. But, there is at least one path joining these
subtrees and at the same time we can discount the
monotone subgraphs [6]. The relationships canonical
graphs may have all follow directly from critical nodes
and tree nodes.

4 (i , v) along row i
initially costs willwj+l : w,+111 where w; < wu+l <
w , + ~ , are the three smallest weights in D(i , v) . Let
denote a shortest path of critical nodes in D (j + 1, U)
from (j + 1, U) back to (0,O). Edge minimizing the
unit path along the ith row to the critical node (i , v)
is done as follows, first let L = wi))wi+l : w,+lll and
W((i ,k) * (i , u)) = sp(k + 1,u) + f (i , k , u) and
(k + 1, U) E V [D (j + 1, v)] , then compute

The tree edge (i,j) 4

willwk+l : %+111 + w((i, k) * (i, U)) }.
Since the three smallest weights in D(i , v) are w; <
w,+i < wj+l, by Corollary 1 the cheapest cost to
critical node (i, v) is now in A[i, IJ] .

Theorem 4 ([SI) When edge minimizing a tree edge
(i,j) + a . . + (i , v) in a canonical subgraph we only
have to consider jumpers (i, k) (i , t) such that (E +

Theorem 4 allows the use of tree contraction tech-
niques to be applied where the raking operation is edge
minimization and band merging.

The critical node (i ,u) in the band D::!;; is the
front critical node. In general Theorem 4, holds when
ji is a shortest path through a band from the front
critical node back to (0,O). Also, Theorem 4 holds
for leaves in the canonical tree that, after raking, have
become conglomerates of other leaves, bands, and iso-
lated critical nodes. Here, jumpers derived from crit-
ical nodes in different subtrees are independent so we
can minimize tree edges with them simultaneously.

Assume that all critical nodes (i,j) in tree leaves
have the minimumcost back to (0,O) stored in sp(i , j).
Compute these values using an all-pairs shortest path
parallel algorithm. There is an ordering of the leaves
that prevents the simultaneous raking of two adjacent
leaves by Corollary 1.

Given two nested bands, say Dij:"?, is nested around

Dt;,'#';, that is j 5 IC < t 5 U. Without loss, say

any trees between $"?, and Di:,':; have been con-
tracted, then joining these bands costs O(lg2 n) time
with n3/lg n processors using edge minimizing and
band merging with an all pairs min-path algorithm [SI.

1 , t) E VF].

3 The Structure of Shortest Paths in
Canonical Subgraphs

This section highlights the n3/lg n processor bot-
tlenecks of the algorithm in section 2.

For each critical node in a 0, graph there are two
pointers called front-ptr and back-ptr. The costs asso-
ciated with front-ptr are coat-of-front-ptr and cost-to-
front; the cost associated with back-ptr is cost-to-back.
These costs have the obvious values associated with
them. Initially, the pointers connect critical nodes and
tree edges in the canonical tree.

There are three parts in the algorithm of [6] that
use n3/lgn processors. All other parts of that algo-
rithm use a total of n/lg n processors and O(lg n) time.
These three bottlenecks are: Finding minimal paths to
critical nodes in D('8") graphs, see figure 5a. Merging
two bands, see figure 5b. Merging two bands that have
contracted canonical trees between them. In figure 5c,
contracted trees A and B are used to edge minimise
the unit paths marked by "Min-A" and "Min-B."

237

Figure 5: Bottlenecks 1, 2 and 3 for the n3/lgn Pro-
cessor Algorithm

Let p denote a minimal path in any such band and
is made up of super critical nodes. Such a minimal

path must be critical nodes interspersed with angular
paths, by Theorem 3. A D('lm) graph can be broken
into nested bands. Therefore by starting with con-
stant width bands in a D('lm) graph and recursive
double the band merging algorithm while performing
tree collapsing we can treat bottlenecks 2 and 3 as a
special case of bottleneck 1. Hence, from here on band
merging is the focus.

Any angular edge is equivalent to some jumper in
a straight line unit path by Theorem 1. Since the fol-
lowing measures the contribution of jumpers to min-
imal paths along straight unit paths we can use it
to get the contribution (if any) of angular edges to
minimal paths. Take a node (s , t) E Vb], where
s p (s , t) is the minimal path with respect to a band,
then in row i compare the contribution of the jumper
(i , s - 1) a (i , t) with the associated unit path

Given (s , t) E V[ss], take row i above p with the
(i , s - l) - - * . . - + (4 t) .

jumper (i , s - 1) (i, t), define

&(s , t) = wiJJwr : W*+l lJ -
[SP(4 t) + f (i , 8 - 1, t) 1

So, if A;(s, t) > 0, then the jumper (i , s - 1) (i, t)
provides a cheaper path along row i than the unit path
(i, s - 1) 4 . - -+ (i, t). Given two nested bands, we
want to find the jumpers that make the unit paths in
the outer band the cheapest so we can compute the
shortest path from the front critical node of the outer
band back to (0,O).

4 An O(lg2n) Time and n2/lgn Proces-
sor MCOP Algorithm

This section uses an induction invariant to break
through the bottlenecks of the last section.

In figure 6 is the induction invariant for merging two
neighboring bands. Let D::::] and Dlil:\ be two such

bands with paths of critical nodes labeled p:;;:; and

pk,?). respectively. Let 4:::; and #i,:\, be made by
two linked lists of back-ptrs along super critical nodes
and shortest paths forward form all critical nodes by
linked lists of trees of front-pits.

1. All critical nodes in both bands have their
front-ptre in trees of shortest paths that
eventually go to super critical nodes which go
to the front critical nodes of their respective
bands.
In the two bands shortest paths back to (0,O)
of super critical nodes are known.
These shortest paths of super critical nodes
are made of linked lists of back-ptrs from
the front critical nodes of each band back
through their respective bands to (0.01.

2.

Figure 6: Inductive Invariant for Band Merging

Figure 7: (s , t)
(r , y) -, - - - 4 (r, U) in p

Vk] and the Angular Edge (z,y) fi

Theorem 5 Given a critical node (s, t) between the m-
per critical node (q y) and critical node (r,u) and say
i < r < s < a and row i is above row r , t ha t is w; < w,,
where rows i and r are above p then

than (r, s - 1) s (r,t) does

than (i , s - 1) a (i,t) does

if (r, z - 1) s (r, y) makes row r cheaper

then (i , 2 - 1) ==+ (i, y) makes row i cheaper

See figures 7 and 8 to illustrate Theorem 5.
Two angular edges above p, say (a, y) ft (r, y) 4

compatible if they don't cross each other. A symmetric
definition holds for angular paths below p. Theorem 6
shows that when merging two bands and computing
shortest paths forward, only compatible angular edges
need to be considered. Figure 9 shows two conflicting
angular paths.

... --., (r,u) and (i , j) ft (s,j) -+ .-. + (4 are

r-1 x-1 Y t

r-1 x-1 Y t

Figure 8: Two Jumpers in Different Rows

I / -----P

Figure 9: Conflicting Angular Paths Between Two
Bands Being Merged

Theorem 6 (Main Theorem)
In merging two nested bands computing shortest paths
forward from super critical nodes of the inner band, we
can consider only compatibly nested angular edges.

It is important to notice that Theorem 6 only holds
when merging two bands. When merging two bands
and computing shortest paths forward between them
all angular edges are compatible. Hence the front
pointers form a tree which is consistent with the linked
list of back pointers.

Theorem 7 Given two super critical nodes (v , z) and
(a,y) where r < s < a < U and wr < wr such that rows
s and r are above p , then we have

if (r , z - 1) + (r, y) makes row r cheaper

then (3, a - 1) + (s, y) makes row s cheaper
than (r ,u - 1) * (r,z) does

than (s , u - 1) (s,z) does

See figure 10 to illustrate Theorem 7.
While merging D[j:ij and diBt) to form 4:;)) the

next lemma shows that we only need minimal path
values backwards to (k, s) from super critical nodes.
Hence, the back-ptm can form a linked list and com-
pute the cost-to-back weights by a pointer jumping
partial parallel prefix.

(k+)

Row r
x-1 v-1 Y

Row s
x-1 v-1 Y

Figure 10: Two Jumpers in Different Rows

Lemma 1 Take $:] and $2,;; in D[i:$ and D(”*) W)
respectively, for nomsuper critical nodes, say (u ,z) E
Vkt,:))] and (u , ~) e V&i:))], then we don’t need min-
imal paths back to (k , s).

Every critical node haa a shortest path to the front
critical node of the band it is in that eventually goes
through a super critical node. For every critical node
we want to maintain a shortest path forward during
band merging. This is because some angular path
from some future inner band may terminate at any
critical node. Therefore, after finding each super crit-
ical node’s minimal cost to the front of the outer band
then do a tree partial prefix sum from the critical
nodes to the super critical node so we know their min-
imal paths to the front of the outer band.

Theorem 8 In 4;;;)) the front pointers form a tree and
the back pointers form a linked list.

Theorem 8 shows the inductive invariant holds given
the appropriate data structures.

The algorithm in figure 11 costs O(1gn) time and
n2/lg n processors for merging two bands. Adding the
cost of recursive doubling and tree contraction which
together can be done in O(lg n) time making the total
cost O(lg2 n) time and n2/lgn processors. The for
loops labeled by 1 in figure 11 find the shortest path
from the front critical node of the outer band back to
(0,O) through both bands. Thia is the only part of
the algorithm that uses n2/lgn processors. And the
base case for the recursive doubling is established by
breaking the canonical subgraphs into bands of con-
stant width.

5 Efficient Polylog Time MCOP Algo-
rit hms

This section reduces the processor complexity of the
band merging algorithm of section 4 with a parallel
divide and conquer form of binary search.

239

In a band, if (i, z) =+ (i, y) is minimal in row i and
(s, z) =$ (sly) is minimal in row s, then (F , z)
(r , y) is minimal in row t for all r , i 5 r 5 a. A proof
of this follows from Theorems 5 and 7.

Theorem 9 gives a parallel divide and conquer bi-
nary search algorithm that finds the jumpers that min-
imize each unit path edge in a canonical graph.

Theorem 9 Suppose that r i s the row in the outer band
such that the dual of (r,z) (r,y) gives a shortest
path forward from the super critical node (z - 1,y) of
the inner band to the front node of t h e outer band then,

0 It is sufficient to consider only larger nested jumpers
in any row s below row r , that is w. > w,,

0 It is sufficient to consider only smaller nested
jumpers in any row i above row r , that is wi < wr.

A proof of this theorem comes directly from Theorems
5, 6 and 7, also see figures 8 and 10.

This next algorithm replaces the two for loops in
step 1 in the algorithm of figure 11. Say each band has
m critical nodes, the next procedure finds the jumpers
that edge minimize the unit paths in the outer band.
As before, begin assuming the inductive invariant.

1. Find the middle super critical node in the inner
band, say (z - 1,y).

2. Using m/lg m processors and in O(lg m) time find
a shortest path forward from (z - 1,y) to the
front of the outer band. Say this shortest path
forward is from the super critical node (z - 1,y)
and has an angular edge between the two bands
that terminates in row r . Let X = (r , z) =j

(r1 Y).

3. Split the jumpers into two sets,

(a) those smaller than or equal to X call them S,
these are nested inside X = (r , z) 3 (r , y)

(b) those larger than or equal to X call them L,
these are nested around X = (r, z) ---4 (r, y)

4. Do the following two steps in parallel:

(a) assign IS1 processors to rows r up through 1
and recurse starting at step 1 with S

(b) assign ILI processors to rows r down through
m and recurse starting at step 1 with L

This algorithm finds what jumpers minimize what
unit paths. It takes O(1g’n) time and uses n/lgn
processors in the worst case. Considering the cost of

the recursive doubling and the tree contraction, gives
the O(lg3 n) time and n/lg n processor matrix chain
ordering algorithm.

We also mention that with a little more work The-
orem 9 shows that the problem of merging two bands
is reducible to the problem of finding row minima in
a totally monotone matrix. Hence, by Aggarwal and
Park [l] and by Atallah and Kosaraju [3] we can run
our algorithm in O(1g’ n Ig lg n) time using n/lg lg n
processors on the CRCW model or in O(1g’n) time
using n processors on the EREW PRAM respectively.

Take two adjacent nested bands, say DIf:l;’ nested
around D:;,:), such that the inductive invariant holds
for each bank

1. for all super critical nodes (2, y) E V@L:::]
in parallel do

for all angular edges from (z, y) to all
(u , z) E Vb[i;))] in parallel do

Find the angular edge connecting the bands
from (z, y) that gives a shortest path
all the way to (i, U), for each of these new
edges compute coat-of-front-ptrs.
For the super critical nodes in $,:\
put the angular edge that gives them a
shortest path forward to (i, U) in M.

2. for all angular edges in M in parallel do
Find the shortest path N from (i , u) back to
(0,O) through DI:;:).

Using pointer jumping build the Lack-ptm
giving any new super critical nodes
and compute the values of coat-to-back for
each new super critical node.

for all nodes in the path N in parallel do

3. for all nowsuper critical nodes in
$’,:)! in parallel do

Using pointer jumping expand the tree of
front-ptm through the new angular
edges in M and their minimal values
to (i, U). This gives trees joined by a linked
list through the super critical nodes.
Now find the shortest path to (i , u) for
all non-super critical nodes in pi;,:)) by
computing a partial prefix in a rooted tree.
Also compute all of the new coatto-front
values using a parallel partial prefix.

Figure 11: Algorithm for Merging Two Bands

240

Acknowledgments [ll] L. E. Deimel, Jr. and T. A. Lampe: "An Invari-
ance Theorem Concerning Optimal Computation
of Matrix Chain Products," North Carolina State
Univ. Tech Report # TR79-14.

Conversations with Alok Aggarwal, Artur Czumaj,
Larry Larmore and Kunsoo Park were helpful and en-
joyable. [12] Z. Galil and K. Park: "Parallel Dynamic Pro-

gramming," Manuscript, 1992.

References [13] S.-H. S. Huang, H. Liu, V. Viswanathan: "Par-
allel Dynamic Programming," Proceedings of the
2nd IEEE Symposium o n Parallel and Distributed
Processing, 497-500, 1990.

[l] A. Aggarwal and J. Park: "Parallel Searching
Multidimensional Monotone Arrays," to appear
in the Journal of Algorithms and parts of 2gth
FOCS, 497-512, 1988.

[2] A. V. Aho, J. E. Hopcroft and J. D. Ullman: The
Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[3] M. J. Atallah and S. R. Kosaraju: "An Efficient
Parallel Algorithm for the Row Minima of a To-
tally Monotone Matrix," 394-403, SODA 1991.

[4] 0. Berkman, D. Breslauer, Z. Galil, B. Schieber
and U. Vishkin: "Highly Parallelizable Prob-
lems," STOC, 309-319, 1989.

[5] P. G. Bradford: "Efficient Parallel Dynamic Pro-
gramming," Technical Report # 352, Indiana
University, April 1992.

[6] P. G. Bradford: "Efficient Parallel Dynamic Pro-
gramming," Extended Abstract in the Proceed-
ings of the 30th Allerton Conference, 185-194,
1992. Full version submitted.

[7] P. G. Bradford, G. J. E. Rawlins and G. E. Shan-
non: "Matrix Chain Ordering in Polylog Time
with n/lg n Processors," Technical Report # 360,
Indiana University, December, 1992. An update
of this full version has been submitted.

[8] D. Z. Chen: "Efficient Geometric Algorithms on
the EREW PRAM," Proceedings of the 28th
Allerton Conference, 1990, full version submit-
ted.

[9] T. H. Cormen, C. E. Leiserson and R. L. Rivest:
Introduction t o Algorithms, McGraw Hill, 1990.

[14] T. C. Hu and M. T. Shing: "Computation of Ma-
trix Product Chains. Part I," SIAM J. on Com-
puting, Vol. 11, No. 3, 362-373, 1982.

[15] T. C. Hu and M. T. Shing: "Computation of Ma-
trix Product Chains. Part 11," SIAM J. on Com-
puting, Vol. 13, No. 2, 228-251, 1984.

[16] S. K. Kim: "Optimal Parallel Algorithms on
Sorted Intervals," TR 90-01-04, Department of
Computer Science and Engineering, University of
Washington, Seattle, WA, 1990.

[17] P. Ramanan: "An Efficient Parallel Algorithm for
Finding an Optimal Order of Computing a M-
trix Chain Product," Technical Report, WSUCS-
92-2, Wichita State University, June, 1992.

[18] P. Ramanan: "An Efficient Parallel Algorithm for
the Matrix Chain Product Problem," Technical
Report, WSUCS-93-1, Wichita State University,
January, 1993. Submitted for publication.

[19] W. Rytter: "On Efficient Parallel Computa-
tion for Some Dynamic Programming Problems,"
Theoretical Computer Science, Vol. 59, 297-
307, 1988.

[20] L. G. Valiant, S . Skyum, S. Berkowitz and C.
Rackoff: "Fast Parallel Computation of Polyno-
mials Using Few Processors," SIAM J. on Com-
puting, Vol. 12, No. 4, 641-644, Nov. 1983.

[lo] A. Czumaj: "Parallel algorithm for the ma-
trix chain product and the optimal triangulation
problem," STA CS, Springer Verlag, LNCS # 665,
294-305, 1993.

241

