Efficient Minimum Cost Matching Using Quadrangle Inequality

Alok Aggarwal *

Amotz Bar-Noy™

Samir Khuller * Dina Kravets }

Baruch Schieber®

Abstract

We present efficient algorithms for finding a mini-
mum cost perfect matching, and for solving the trans-
portation problem in bipartite graphs, G = (Red U
Blue, Red x Blue), where |Red| = n, |Blue| = m,
n < m, and the cost function obeys the quadran-
gle inequality. Our first results assume that all the
red points and all the blue points lie on a curve
that is homeomorphic to either a line or a circle
and the cost function is given by the Euclidean dis-
tance along the curve. We present a linear time
algorithm for the matching problem that is simpler
than the one in [KL75). We generalize our method
to solve the corresponding transportation problem in
O((m + n)log(m + n)) time, improving on the previ-
ously known algorithm in [KL75).

Our next result is an O(nlog m) algorithm for min-
imum cost matching when the cost array is a bitonic
Monge array. An example of this is when the red
points lie on one straight line and the blue points
lie on another straight line (that is not necessar-
ily parallel to the first one). Finally, we provide a
weakly polynomial algorithm for the transportation
problem in which the associated cost array is a bitonic
Monge array. Our algorithm for this problem runs in
O(mlog(3_i~, a;)) time, where a; is the supply avail-
able at the ith source, b; is the demand at the jth
sink, and Y i, ai > Z?:l b;.

*IBM Research Division, T. J. Watson Research Center,
Yorktown Heights, NY 10598.
Email: {aggarva,amotz,sbar}@watson.ibm.com.

TDept. of Computer Science, University of Maryland,
College Park, MD 20742.
Email: samir@cs.umd.edu. Supported in part by NSF grants
CCR-8906949, CCR-9111348 and NSF-9103135. Part of this
research was done while this author was visiting the IBM T. J.
Watson Research Center.

‘Dept. of Computer Science, New Jersey Institute of
Technology, University Heights, Newark, NJ 07102.
Email: dina@cis.njit.edu. Supported while at MIT, in part
by the Air Force under Contract AFOSR-89-0271, the Defense
Advanced Research Projects Agency under Contracts NO0O014-
87-K-825 and N0O0014-89-J-1988.

0-8186-2900-2/92 $3.00 © 1992 IEEE

583

1 Introduction

Given a complete bipartite graph G = (Red U
Blue, Red x Blue), where |Red| = n, |Blue| = m and
n < m, a perfect maiching on G is a subset of the
edges M C FE such that for all red nodes p, exactly
one edge of M is incident to p and for all blue nodes
g, at most one edge of M is incident to q. Given a
cost function defined on the edges of G, a minimum
cost perfect maiching on G is a perfect matching on G
of minimum cost.

The best known algorithm for this problem for ar-
bitrary bipartite graphs (with m + n nodes and mn
edges) takes O(n(mn + mlogm)) time. This time
complexity can be achieved by using the Hungar-
ian method [Kuh55, AMO89, GTT89]. Since this
problem has a relatively high time complexity, re-
searchers have investigated special cases. For exam-
ple, Vaidya [Vai89] shows that the minimum cost per-
fect matching among 2n points in the Euclidean plane
can be computed in O(n®?log* n) time. For the case
where n = m, the red and blue points lie on a con-
vex polygon (respectively, simple polygon), and the
distance between two points is simply the Euclidean
distance, Marcotte and Suri [MS91] show that a min-
imum cost matching can be computed in O(nlogn)
time (respectively, O(n log? n) time). Note that these
papers assume that n = m, in spite of the fact that
the situation n < m arises in many matching prob-
lems. The only paper that considers the n < m case
is by Karp and Li [KL75]. They investigated the
case where the points lie on either a line or a circle,
and the cost function is given by the Euclidean dis-
tance along the corresponding curve. For this prob-
lem, they obtained a linear time algorithm for mini-
mum weight matching, assuming that the points are
given in sorted order. {See also [WPMK86).) In this
paper, we continue the investigation along the lines
of [KL75, WPMK86, Vai89, MS91]. As in [KL75], we
do not assume that n equals m.

For the transportation problem we assume that
each blue point i has supply a;, and each red point
j has demand b;, where 312 a; > Y7_ bj. A fea-

sible transportation is an assignment of supplies from
blue points to red points such that all the demands are
satisfied. The cost of moving one unit of supply from a
blue point to a red point is given by the cost function
defined on the edges. A minimum cost transportation
is a feasible one with minimum cost.

Hoffman [Hof63], following the French mathemati-
cian Gaspard Monge (1746-1818), considered a spe-
cial case of the transportation problem in which the
cost array forms an n X m Monge array. (The en-
try a[z, j] of the cost array is the cost of the edge be-
tween red point i and blue point j.) An n x m array
A = {ali, j]} is Monge if for all i1, iz, j1, and j; satis-
fyingl<#i<iz<nand1<j1 <ja<m,

a[ille] + a[i2vj2] S a[ilvjl’] + a[i27j1] .

Hoffman [Hof63] shows that if the cost array asso-
ciated with a transportation problem is Monge and
the total supply is the same as the total demand,
then a simple greedy algorithm solves the transporta-
tion problem in linear time. However, in reality, a
more reasonable assumption is that the total supply
is greater than or equal to the total demand. In this
paper we consider special cases of the transportation
problem in which the total supply may be greater than
the total demand.

The remainder of this section lists the main results
of this paper and their applications.

Our first results are for case where the red and blue
points lie on a curve that is homeomorphic to either a
line or a circle and the cost function is the Euclidean
distance along the curve. For this case, we give a
linear time algorithm for computing the minimum cost
matching that is simpler than the one given by Karp
and Li [KL75]. Our algorithm can be extended to
the corresponding transportation problem, where each
blue point has integral supply and each red point has
integral demand. (We assume that the sum of the
supplies exceeds the sum of the demands.) For this
transportation problem we develop an algorithm with
an O((m + n)log(m + n)) running time. To achieve
this bound, we exploit some underlying properties of
the matching. This improves on the O((m+n)?) time
algorithm of Karp and Li [KL75].

Our matching algorithm for the points on the circle
can also be applied to the case where the red and the
blue points form the vertices of a convex wnimodal
polygon [AM86]. A polygon is unimodal if for ev-
ery vertex, the distances from it to all other vertices
form a sequence that is first non-decreasing and then
non-increasing when the polygon is traversed in clock-
wise order starting at that vertex. As an application,

584

we note that the case when the points lie on the cir-
cle arises in pattern recognition when feature sets of
different objects are compared. We refer the reader
to [WPR84, WPMKS86] for a detailed discussion of this
application.

Our next result is for the case when the cost ar-
ray forms an n x m bitonic Monge array. An array
is bitonic if the entries in every row form a monotone
non-increasing sequence that is followed by a mono-
tone non-decreasing sequence. For the bitonic Monge
array, we present an O(nlogm) time algorithm for
computing a minimum cost matching. Notice that the
cost array for the sorted red and blue points on a line
forms a bitonic Monge array!. As a matter of fact,
this is true even for a more general case where the red
points lie on one straight line and the blue points lie
on another straight line (that is not necessarily paral-
lel to the first one). Hence this result can be applied
to the problem of connecting power lines (or connect-
ing clock lines) in VLSI river routing [MC80, Won91].
In this problem, n terminals that lie on a straight line
need to be connected to any n of the m power (or
clock) terminals that lie on a parallel line, and the
total amount of wire used should be minimized. (An-
other approach is to construct a Steiner tree, but then
it is harder to accommodate current density limita-
tions or the clock-skew, and therefore this approach is
rarely used.)

Our results for bitonic Monge arrays can be ap-
plied to the transportation problem. We provide a
weakly polynomial algorithm for the transportation
problem when the associated cost array is a bitonic
Monge array. Our algorithm for this problem runs in
O(mlog(Y_i~, a:)) time where a; is the supply avail-
able at the ith source, b; is the demand at the jth
sink, and 302 @i > Z;"=1 b;.

Finally, we remark that the following problem ap-
peared in an exam for an algorithms course taught by
C. E. Leiserson [Lei91]: given m pairs of skis with
heights s1,...,s;m and n < m skiers with heights
t1,...,tn, assign skis to skiers so that the sum of the
absolute differences of the heights of each skier and
his/her skis is minimized. Observe that there is a
fairly simply O(nm) dynamic programming algorithm
for this problem (which we believe was the intent of
the problem in the exam). The algorithm by Karp and
Li [KL75] as well as our algorithm solve this problem
in O(mlogm) time.

All our results use the quadrangle inequality in a
crucial manner. Because of the many applications,

10Observe that the cost array for the points on a circle is not
bitonic Monge.

we hope that this paper will generate more interest
towards the understanding of minimum cost bipartite
matching and transportation for useful special cases.
For example, the three important problems that we
were not able to solve are: (i) An efficient computation
of the minimum cost matching when the cost array is
(staircase) Monge; a special case of this is when the
red and blue points form a convex polygon. (ii) An
efficient computation of the minimum cost matching
when the red and blue points form a simple polygon.
(iii) The transportation problem when the underlying
cost array is Monge and the total supply is greater
than the total demand.

2 Minimum matching on a circle

In this section we present our algorithm for the
minimum cost perfect matching problem for the case
where the red points and the blue points lie on a circle
and the cost function is the Euclidean distance along
the arcs of the circle. For the sake of simplicity, we
assume that all the points are distinct. The algorithm
and all the proofs are analogous for points on the line.
Furthermore, these results hold for points on any curve
homeomorphic to a circle or a line, as long as the cost
function is the distance along the curve. The results
also hold for the case where all the points are vertices
of a convex unimodal polygon and the cost is the Eu-
clidean distance between points.

Consider a circle with red and blue points. Any
two points p and ¢ split the circle into two arcs
(see Figure 1), one going clockwise from p to ¢,
and one going counterclockwise from p to ¢. Let
cw(p, q) (respectively, ccw(p, q)) be the clockwise (re-
spectively, counterclockwise) arc from p to ¢. Let
z(p, q) refer to the shorter of cw(p,q) and cew(p, q).
The distance between p and ¢, d(p, q), is defined to be
the length of z(p, q).

We say that two edges in the matching M, (p,q) €
M and (p',q') € M, cross each other if z(p,q) N
z(p',q¢') # 0, z(p,q) € z(p',¢'), and 2(p', ') £ z(p, 9)-
We call a matching nested if no two edges in the match-
ing cross each other. In other words, a matching is
nested if for any two edges in the matching: (p,q) € M
and (p',¢") € M, z(p,q) Nz (p’, ¢') # O implies that ei-
ther z(p,¢) C z(p',¢’) or z(¢’,¢') C z(p, 9).

Lemma 1 There ezists a nested minimum cost per-
fect matching for poinis on a circle.

Proof: Let M be any minimum cost perfect match-
ing. We show how to uncross any pair of crossed edges

585

of M to get another minimum cost perfect match-
ing with fewer edge crossings. Let (p,q) € M and
(?,¢') € M be some crossed pair of edges, where
p,P € Red and ¢,¢' € Blue. Consider a matching
M =M —{(p,9), (¢} + {(p,¢), (¥, 9)}, which
is simply the matching M with (p,¢) and (¢’,¢’) un-
crossed. First, we show that the cost of M’ is less than
or equal to the cost of M.

Case 1: ¢ € z(p,q) and ¢ € z(p’,¢') (see Figure 2
(a)). We obtain a contradiction by showing that
M’ costs less than M. This is because
d(p,q')+d(p', q) = [d(p,q) —d(¢’, 9)) + [d(¢', ¢') -
d(¢',9)] < d(p,) + d(¢', ¢').

Case 2: p' € z(p,q) and ¢ € z(p’,¢’) (see Figure 2
(b)). Here we show that the cost of M’ is at most
the cost of M.
d(p,q) +d(p',q")
= [d(p,p') +d(p',)] + [d(¥', ¢) + d(q, ¢')]
= [d(p,p') + d(p, ¢) + d(q,¢")] + [d(¥', 0)]
2 d(p,¢') +d(¥',).

We now argue that whenever M’ costs the same as
M in Case 2, then M’ has fewer edge crossings than
M. In particular, we show that if some edge (s,t) € M
crosses either (p',q) or (p,q’), it must have crossed
either (p, ¢) or (p',¢’). This completes the proof, since
we have uncrossed (p,q) and (p’,¢’) and, hence, the
number of edge crossings in M’ must be at least one
fewer that in M. The following case analysis proves
the above claim.

Case 2.1: (s,t) crosses only (p, q), i.e. s,t € cw(p,q’).
W.l.o.g, assume s € cw(p’,q) and t € ccw(p', q).
If t € cw(p, p'), then (s,1) crosses (p’,q'). Other-
wise, ¢ € cw(q,¢') and (s,t) crosses (p, q).

Case 2.2: (s,t) crosses only (p,q'), 1.e. s,t & cw(p', q).
W .lo.g, assume s € cw(p,q'), and t € ccw(p, ¢').
If s € cw(p,p’), then (s,t) crosses (p,q). Other-
wise, s € cw(q, ¢') and (s,t) crosses (p, ¢’).

Case 2.3: (s,t) crosses both (p',q) and (p,¢).
W.lo.g, assume s € cw(p’,q) N cw(p,q’)
cw(p’,q) and ¢t € cew(p,qg') N ccw(p,q)
ccw(p,q’). In this case (s,t) crosses both (p,q)
and (¢/,4').

n

For p € Red, define the left pariner (respeciively,
right pariner) of p, denoted by ¢, (respectively, r;), to
be the first blue point ¢ counterclockwise (respectively,
clockwise) from p, such that going counterclockwise
(respectively, clockwise) from p to ¢ on the circle, there
are as many red points as blue points.

Lemma 2 In a nested minimum cost perfect match-
ing, every red point is maiched to either its left partner
or its right partner.

Proof: (By contradiction.) W.l.o.g, suppose that
(p,9) € M, z(p,q) = cw(p, q), and ¢ # .

Case 1: r, € z(p,q) (see Figure 3 (a)). From the
definition of the right partner, there must be a
red point p’ € z(p, q) such that (p’,¢’) € M and

¢’ & z(p,q). Then (p, q) crosses (p',q'), a contra-
diction.

Case 2: 7, € z(p, q) (see Figure 3 (b)). Since there is
an equal number of red and blue points in z(p, rp),
one blue point ¢’ in z(p,r,) or rp itself, is ei-
ther not matched or matched with some p’ not
in z(p,rp). If ¢’ is not in M, then M — {(p,q)} +
{(p,q')} costs less than M, a contradiction. If
(?',4') € M, then p' € z(rp, q) since M is nested.
Therefore, M — {(p,q), (¢, a")} + {(p.¢), (¥, 0)}
gives a cheaper matching than M, a contradic-
tion.

| |

Define the chain C = (v, uy,v1,u2,vg,. .., ug, vg)
to be an alternating chain of points if the following
conditions hold:

1. {u1,uz,...,ux} C Red and {vo,v1,v2,...,vx} C

Blue;

2. the blue point vg is the left partner of u; and the
blue point vi is the right partner of uy;

3. the blue point v; is the left partner of u;4; and the
right partner of ;, for each 1 <7<k —1; and

4. the chain C is maximal.

Note that since C is maximal, either vg is not a right
partner and vg is not a left partner of any red point,
or vg i1s the same as vy.

Observe that in the case of points on a line, a chain
may not necessarily start at a blue point.

Lemma 3 Each red point belongs to a unique alter-
nating chain, and any two chains are disjoint.

Proof: To see why the lemma is true, observe the
following property. Consider a blue point v;. We claim
that only one red point can have v; as its left partner.
Suppose that two red points r, and r; have v; as their
left partner. Assume that we have v;,7,, 7 in clock-
wise order. Between r, and v; there is an equal num-
ber of red and blue points. If v; is the left partner of

586

75, then due to the presence of r, (a red point) there
must be an excess blue point between r; and ;. In
this case, this blue point must be the left partner of
rp, yielding a contradiction. The same property is true
for right partners. With this observation it is easy to
see why the lemma is true. B

The following theorem is implied by Lemma 2 and
Lemma 3 and is the key for our algorithm.

Theorem 4 Consider the points of a single chain in
a nested minimum cost matching. There is one un-
matched blue point in the chain. All the red points to
the left of this blue point are matched to their left part-
ners, and the red points to the right of this blue point
are maiched to their right partners.

Note that the theorem holds when the chain is a
cycle, i.e., v9 = vi. In this case, the unmatched blue
point in the chain is either vy or vg.

The algorithm

Step 1: Sort all the blue and red points (together) in
some direction around the circle, say clockwise.

Step 2: Compute £, and r, for each red point p. We
show how to compute the rp’s using a stack (finding
the €,’s is analogous). Starting with any red point,
we proceed clockwise around the circle. Any time we
encounter a red point, we push it onto the stack. Any
time we encounter a blue point ¢, we pop the last red
point p from the stack and set ¢ = r,,. If at any point
the stack becomes empty, we push the clockwise-next
red point onto it, ignoring any blue points that this
action causes us to skip.

Step 3: Compute all the alternating chains. This can
be done by keeping links between the red points and
their partners. Starting with any red point that is not
already contained in a chain, we simply trace the left
and right links until we encounter the blue endpoints
of the chain.

Step 4: For each alternating chain C =
(vo, u1,v1,ug, V2, ..., Uk, V), decide which blue point
is free as follows. We compute M, which is the cost of
the matching with the blue point v; being unmatched.
We first compute M (this is easy), and then compute
M, from ME. This involves changing the matched
edge (Yiy1,vi1) to (tig1,v;). It takes O(k) time to
compute M (where k is the length of the chain), and
O(k) time to compute all the other Ms. If i* is the
index that gives the smallest value for M, the points
u; on C with 7 < i* match to their left partners, and
the others match to their right partners.

The correctness of this algorithm essentially follows
from Theorem 4. As for time complexity, it is not hard

to verify that each step, except for sorting the points,
can be done in linear time. We obtain the following
theorem.

Theorem 5 (Complexity) The algorithm runs in
linear time if the points are given sorted in some di-
rection along the circle.

Our algorithm can be parallelized. The parallel
time complexity is O(log m) time with m processors

on an EREW PRAM.

3 Transportation problem on a line

We now consider the transportation problem, where
the sources and sinks are on a straight line, with in-
teger supplies and demands. The algorithm for this
problem runs in O((m+n)log(m+n)) steps where the
number of sources (blze nodes) is m, and the number
of sinks (red nodes) is n. We assume that a; is the in-
teger supply at the ith source node (blue node), and b,
is the integer demand at the jth sink node (red node),
and that Z:’_‘__l a; > E;’__,l b;j. Due to lack of space
we only outline the high-level ideas behind this algo-
rithm. We describe the algorithm for the line, since
it is simpler, and we note that the algorithm for the
circle is very similar.

As in the case for the red/blue points on the line,
we proceed to define left partners and right pariners
for the red points. We view each red node j as a clus-
ter of b; red points, and each blue node ¢ as a cluster of
a; blue points. (Keep in mind the distinction between
nodes and points.) Left partners and right partners of
the red points are now defined exactly as before. We
can assume that in each cluster the points are placed
infinitesimally close to each other. Since there is a
large number of red/blue points, we do not compute
the partners explicitly; but these are maintained im-
plicitly for clusters of points, and can be implicitly
computed by keeping track of the supplies and de-
mands of the nodes as they are pushed and popped
from the stack. This takes time linear in the number
of nodes. Each blue point p has at most one left part-
ner and one right partner (as before). In other words,
at most one red point from the left and one red point
from the right may choose p as its partner.

Each blue node is now “split” into sub-nodes. Blue
points p and ¢ are in the same sub-node, if ¢, and
£, are red points corresponding to the same red node,
and r, and 74 are red points corresponding to the same
red node. This gives us the property that each blue
sub-node can have at most one left partner and at

587

most one right partner. The number of blue sub-nodes
could exceed m (the number of blue nodes), but is
O(m + n). From now on we will refer to both nodes
and sub-nodes simply as nodes. As before, we have
the property that in any minimum cost solution to
the transportation problem each red point is supplied
by either its left partner or its right partner.

We briefly review the main steps of the algorithm.
The input to this algorithm is the set of nodes, along
with the location and demand/supply of each node.
We also assume that the left and right partners of
each blue node have been computed.

A chain C, as before, is an alternating chain of
points. The leftmost point of a chain is called the
root of the chain. We define a “bundle of chains” to
be a maximal collection of chains that visit the same
nodes (and also start and end at points in the same
nodes). The width of each bundle of chains is the num-
ber of chains in that bundle. The leftmost node of the
bundle of chains is called the root of the bundle.

Bundles of chains that start with a red node and
end with a blue node can be handled by a scan of
the nodes. Consider a red node i, with demand b;.
Suppose £; of the points in node i have left part-
ners, and r; of the points have right partners. Clearly,
ri + £; > b; (since there are more supply points than
demand points). The rightmost (b; — £;) points in i’s
cluster have no left partners and must match to their
right. These are chains starting at a red node, and we
match these red points to the right. This will match off
some of the blue points, thus leaving other red points
without left partners — starting new chains. In a scan
of the red points from left to right we can handle all
chains that have a red left endpoint. Similarly, in a
scan of the red points from right to left we can handle
all the chains with a red right endpoint.

The difficult case is in handling bundles of chains
that start and end with blue nodes (and processing
them all simultaneously). In this situation the bundle
of chains starts and ends with a blue node, and the
chains could match in any direction.

We now process the blue nodes from left to right.
During the execution of the algorithm, correspond-
ing to each blue node we have a set of bundles go-
ing through the blue node. The set will be stored in
a data-structure that will enable the required opera-
tions to be done efficiently. Each element in the set is
a bundle that goes through that blue node with the
following information:

1. The “shifting” cost of the bundle of chains — the
total length of the edges from red nodes to their
left partners minus the total length of the edges

from red nodes to their right partners.
2. The root node of the bundle of chains.
3. The width of the bundle (number of chains).

Bundles of chains with negative shifting costs clearly
want to match to their left. Clearly, if for a chain with
the least shifting cost in the set we decide to match it
to the right, then we will decide the same for the rest
of the chains in the set.

The algorithm scans blue nodes from left to right.
In this scan, if at any time a red point decides to
match to its left, it can be matched off, since it does
not affect any future matches. We now describe the
computation that is done when we scan over a blue
node p.

Step 1: If the set of bundles of p is not empty, then
remove the elements with the smallest shifting costs
from the set as long as these shifting costs are nega-
tive. These bundles of chains prefer to match to their
left, and can be matched off. This releases the cor-
responding blue points in p’s cluster that are on the
chains just matched to the left. These blue points are
going to be roots of new chains since they have no left
partners.

Step 2: If the set of bundles of p is not empty, the re-
maining elements in the set all have a positive shifting
cost, and so far prefer to match to their right. The
blue successor of a blue point ¢ is defined to be the
right (blue) partner of the right (red) partner of q.
If blue successors exist, we continue to extend these
chains by examining the blue successors of the blue
points in the current set. We put an element in the set
of each node that contains blue successors of the blue
points that are in the current set. This involves locat-
ing the sets to insert elements into, and inserting them
efficiently into the sets by spending time proportional
to the number of nodes that contain blue successors
(and not in the number of chains in the current set).
Notice that for this step we also need to update the
shifting costs of the chains that are inserted in the set
of any particular blue node; but all these are changed
by the same amount. Moreover, all the elements that
are being inserted have smaller shifting costs than the
elements already in the set. For the points that have
no blue successors, we have reached the end of the
chains, and we match the red points in these chains to
the right.

Step 3: Create new elements corresponding to the
points in p that have no left partners. (Some of these
may be the points that were made free in Step 1.) We
examine the blue successors of these blue points, and
put an element in the set of each node that contains

588

blue successors of these blue points. The shifting cost
of these bundles of chains is easy to compute. Clearly,
these bundles have a smaller shifting cost than bundles
that were added to the blue successors in Step 2, and
thus are the smallest elements in the set.

The data structure used to implement the sets is a
2-3 tree. All the required operations accessing the data
structure can be implemented in O(log(m + n)) time,
giving us a total running time of O((n+m)log(n+m)).

Theorem 6 The transportation problem with integer
supplies and demands for points on a line can be solved
in O((n + m)log(n + m)) time.

4 Minimum cost matching in bitonic
Monge arrays

In this section we describe an O(nlogm) time al-
gorithm for finding a minimum cost perfect matching
in bitonic Monge arrays.

4.1 Preliminaries and notations

A matching in an n x m array A = {aft,j]} is a
sequence of n entries, a[l, 1], ..., a[n, jn], where j;, #
Ji, for all 1 < 4; < i3 < n. A minimum cost matching
is a matching where .., a[i, j;] is minimized. The
following lemma defines the structure of one of the
minimum cost matchings in a Monge array.

Lemma 7 There ezists a minimum cost maiching in
a Monge array A, such that the entries form a gener-
alized diagonal; that is, for all iy < iz, if aft1,j1] end
afiy, j2] are two entries in the maiching, then j; < jo.

Proof: Consider a minimum cost matching M for A,
and suppose that M includes two entries a[iy, jo] and
afig, j1] such that 7, < 43 and j; < jp. By the Monge
property, a[ilyjl] + a[iZ:j2] S a’["lyj?] + (l[iz,jl].
Thus, the matching M’ obtained by replacing the en-
tries a[i1, j2] and afiz, j1] of M by aliy, j1] and alia, j2]
costs at most the same as M. If M’ costs less than M,
we have a contradiction. Otherwise, M’ is a different
minimum matching. We can continue in this manner
until the resulting matching forms a generalized diag-
onal. B

Given Lemma 7, it is easy to see that the case n =
m is solved by just taking the main diagonal as the
solution. However, the problem is not so simple when
n < m. The best known algorithm when n < m is
a dynamic programming algorithm that runs in time

O(mn).

Let A be an n x m bitonic Monge array. For 1 <
Jj <m—n+1, define D; to be the jth (full) diagonal
in A; that is, D; consists of the entries a[1, j], a{2, 7 +
1]),...,a[n, j+n—1]. Define D; (i) to be the ith element
in this diagonal, i.e., D;j(i) = afi,j + i — 1]. Define
D;(t,b) to be elements of D; between rows ¢t and b,
i.e., D;(t,b) consists of entries aft, j+t—1],alt+1,5+
t),...,a[b,j+b-1].

4.2 The algorithm

Let A be a bitonic Monge array. From Lemma 7,
it follows that there exists a minimum cost match-
ing in A that only contains elements from the set
{D1,Ds,...,Dn—nt1}. Consequently, instead of con-
sidering the entire array, we may consider only the set
of elements that belong to these diagonals.

Our algorithm uses the “divide and conquer”
paradigm. The input to each step of the recursion is
an array B of size (b—t+1) x (r — £+ 1) that contains
elements in the set {Dy(t,b),...,D,(t,b)}. Define k to
be the index of the middle diagonal of B, k = l_%’—lj
The output is a separating row s, ¢ < s < b, that to-
gether with the middle diagonal of B, splits B into
four quadrants such that there exists a minimum cost
matching for B that is inside the top left quadrant
and the bottom right quadrant (quadrants II and IV
in Figure 4). In other words, there exists a mini-

mum cost matching for B in which rows ¢,...,s are
matched with entries in B’ = {D,(t,s),...,Di(¢,s)},
and rows s + 1,...,b are matched with entries in

B" = {Dr4i(s +1,8),...,D (s + 1,b)}. Since quad-
rants IT and IV do not share any columns of B it fol-
lows that the minimum cost matching for B can be
found by two recursive calls: one to an array B’ of
size (s —t+ 1) x (k — £+ 1) and one to an array B”
of size (b —s) x (r— k).

The algorithm for finding the separating row in B
has (b—t + 1) stages. In stage = > 1, we process row
(t — 1 + z) to determine the separating row, s, for
the subarray given by rows ¢,...,t — 1+ z. Initially,
so =t — 1 and finally s = s3_¢41. In stage ¢ > 1, the
separating row s, is set either tot — 14z or to s;_;,
according to the following criterion. Let V(i),42) =

SiL:, Di(i), and let W(iy, i2) = Y02, Diya(i).

t—14+z HV(s;or+1,t—1+12)
Sy — <W(sgm1 +1,t—1+2z)
Sr—-1 otherwise

The justification for the definition of s, is provided in
Lemma 10.

589

We claim that each stage takes constant time. To
see this, notice that if s,y =t — 2+ z, then

V(sz—1+1,t—1+12)
W(sz—1+1,t —1+1z)

Die(t—1+1z)
'D};.H(t - 1+1:)

Otherwise,

V(isz—1+1,t—142)=V(sgy + 1,1 -2+ 2) +
Di(t - 1+12)

W1+ 1Lt —14+2)=W(spo1+1,t—24+2)+
Dk+1(t -1+ :C)

Hence, it takes constant time to compute each
V(i1,42) and W(iy,i2), and the separating row can
be found in O(b — t) time.

Starting with an array B consisting of diagonals
Dy, ..., Dm_n41, we get the following recurrence rela-
tion for the running time of our algorithm. Let T(a, b)
denote the running time of the algorithm on a matrix
with a rows and b diagonals.

Tn,m—-n+1)=
T (s, l_m;"J +1)+T(n-s, l"";"]) + O(n).

It is not hard to see that T(n,1) = O(n) since in
this case the minimum cost matching is simply the
given diagonal. The solution of the recurrence implies
the following theorem.

Theorem 8 (Complexity) The time complezity of
the algorithm is O(nlogm).

The algorithm can be parallelized. The parallel
time complexity is O(log® m) time with n/logm pro-
cessors on an EREW PRAM.

4.3 Correctness

The correctness proof is based on the following
lemma. For 1 < £ < » < m —n + 1, consider
the sub-array B that consists of the elements in
{De(t,b), ..., Dr(t,b)}. Let U; = 3oo_, D;(d).

Lemma 9 Suppose thal the minimum element in row
t is 1o the right or on D, (i.c., the column index of the
mintmum element in row t is at least r) and that the
minimum element in row b is o the left or on Dy (i.c.,
the column indez of the minimum element in row b is
at most £+ b —1). Then, the sequence U, ..., U, is
bitonic.

Proof: Consider three consecutive diagonals and

denote their elements by z,,...,z, v1,...,¥., and
Z1,...,2c, respectively, where ¢ = b —t 4+ 1. Let
X=Y_,z,Y =% 4, and Z = i 7. We

claim that Y —X < Z-Y. Consequently, the sequence
of the differences between the diagonals is a monotonic

non-decreasing sequences and, therefore, the sequence
of diagonals is bitonic.

It remains to prove the above claim. For all ¢, 1 <
i < ¢ — 1, the Monge property gives: y; + yiy1 <
2; + Ti41, OL, Yit1 — Tig1 S 2y — Yi- We can write
Y — X and Z - Y as follows:

Y-X =(yi—z1)+(y2—z2)+(ys—z3)+ - -+ (ye—z)

Z-Y = (z1—y1)+(z2—y2)+- - +(ze—1—Yem1)+(2c—Ye)

Therefore, (Y — X)—(Z-Y) < (y1 — 1) — (zc — ¥e)-
Because of the bitonicity of the rows and since the
minimum in row ¢ is to the right or on D,., y; — z; is
negative. Similarly, z; — y. is positive. Hence, (Y —
X)-(Z2-Y)<0.m

Now, we prove the correctness of the recursive step.
To simplify the notation, we consider the top level of
the recursion. Let B; be the sub-array containing the
first i rows of B.

Lemma 10 For all 1 < i < n, row s; of B; is a
separating row for the sub-array B;.

Proof: The proof is by induction on i. For the base
case ¢ = 1, and s; is either 1 or 0, depending on the
values of V(1,1) and W(1,1). (By comparing the two
values we know where the minima of row 1 is.) Now,
assume that row s; of B; is a separating row for B;,
and we show that row s;4; of B;,, is a separating row
for Biti1.

Case 1: s; = i; that is, there exists an optimal match-
ing for B; that lies in the first k = |2£™ | diagonals.
Denote this matching by M;.

Case 1.1: V(s; +1,i+ 1) Vi+1,i+1) <
Wi(si +1,i4+1) W(i+1,i4+1), ie., the
element Di(i+1) is less than the element
Di+1(i+1). In this case, the algorithm sets
si+1 = 1+ 1. To obtain a contradiction suppose
that there is no optimal matching for B;4; in di-
agonals Dj,...,Dg. Consider an optimal match-
ing for B;;i. By our assumption it must be that
the match in row i+1 lies in diagonal D, for some
z > k. It can be shown that there exists such an
optimal matching M’ that contains the matching
M;. However, the matching M; can be augmented
by De(i+ 1) = a[i + 1, + k], since column i + k
does not intersect the first i rows of diagonals
Di,...,Di. Since row i+ 1 is bitonic and since
De(i+1) < De1(i+ 1), Dr(i+1) < D, (i + 1).
Thus, the matching given by adding Di(i + 1) to
M; is smaller than M’. A contradiction.

590

Case 1.2: V(i+1,i4+1) > W(@E+1,i41), ie,
Die(i+1) > De41(i +1). In this case the algo-
rithm sets s;4; = i. From the bitonicity of row
i+1 it follows that the minimum entry in row i+1
lies in one of the diagonals Dg41,...,Pm—nt1-
Hence, this minimum element can be added to M;
to form a matching for B;41, that costs less than
any other matching containing M;. Since it can
be shown that there exists an optimal matching
for B;,1 that contains M;, s;41 = tis a separating
row for Bjti.

Case 2: s; < i, that is, there exists an optimal match-
ing for B; the first s; entries of which lie in diagonals
Dy, ..., Dy, and the last 7 — s; entries of which lie in

diagonals Di41,..., Pm-n+1-

Case 2.1: V(s;+1,i+1) < W(s; +1,i+1). In this
case the algorithm sets s;y; = i + 1. Define M’
to be the optimal matching for B;;; for which
the diagonal index of each row is minimal among
all optimal matchings for B;y;. We claim that
such an optimal matching always exists and call
it the “leftmost” matching. Consider the index
of the match of row i 4+ 1 in M’. If this index is
not greater than k, then s;;; =i+ 1 isindeed a
separating row.

Suppose this is not the case, and that the match
of row i + 1 lies in diagonal D,, for z > k + 1.
Let ¢ < 7+ 1 be the minimum index such
that the match of row ¢ in M’ lies in diago-
nal D,. Notice that the minimum element in
row ¢ must be to the right or on D,. Other-
wise, D,(q) can be substituted by D,_i(q) to
obtain a valid matching that is no worse than
M’, a contradiction to our assumption that M’
is the “leftmost” matching. Since s; < i, we
have V(s; + 1,7) > W(s; + 1,1). By the assump-
tion V(s; +1,i4+1) < W(s; +1,i+1). Conse-
quently, the element D¢ (¢ + 1) must be less than
the element Dy41(7 + 1). This and the bitonicity
of the rows imply that the minimum element in
row ¢+ 1 must be to the left or on Dy.

Consider the sub-
array given by {Dy(g,i+1),...,D,(q,i+1)}.
This sub-array conforms with the conditions
of Lemma 9, implying that the sequence
Z;:, ’Dk(z),...,Z'::lq D,(z) is bitonic. Since
M’ is the “leftmost” matching, ¢ must be greater
than s;. Since ¢ has not been chosen as a
separating line, V(s; +1,¢q) > W(si+1,q). It
follows that V(g,i+1) < W(q,i+1). The
bitonicity of the diagonals (Lemma 9) implies

that E;+=1q D,-1(z) < Z’;:lq D.(z). However,
in this case the matching given by substituting
D.(q),...,D.(i+1) of M' by the corresponding
elements that lie on D,_; form a valid matching
that is no worse than M’, a contradiction to our

assumption that M’ is the “leftmost” matching.

Case 2.2: V(si +1,i+1) > W(si +1,i+1). In this
case the algorithm sets s;41 = s;. Let M’ be an
optimal matching for B,, that lies in the first &
diagonals. Let M” be the optimal “rightmost”
matching for B;,; that contains M’; that is, M"
is the matching that contains M’ and in each
row s; < r < i+ 1 the diagonal index is maximal
among all optimal matchings for B;;;. Consider
the index of the match of row s; +1 in M". If this
index is at least k + 1, then s;41 is a separating
row, and we are done.

Suppose that this is not the case, and that the
match of row s; + 1 lies to the left of diagonal
Di41- Let z be the diagonal index of the match
of row s; +1. Let s; +1 < ¢ <4 be the maximum
index such that the match of row ¢ in M" lies in
diagonal D,. Notice that the minimum element
in row q must be to the left or on D,. Otherwise,
D.(g) can be substituted by D,;i(q) to obtain
a valid matching that is no worse than M”, a
contradiction to our assumption that M” is the
“rightmost” matching. On the other hand, be-
cause V(s; +1,s;+1) > W(s; +1,s; +1), and
because the rows are bitonic, it follows that the
minimum element in row s; + 1 must be to the
right or on Dy

Consider the sub-array given
by {D.(si +1,9),...,Dey1(si + 1,9)}. This sub-
array conforms with the conditions of Lemma 9,
implying that the sequence

es1 D2(2), . 0,41 Dita(2) is bitonic.

Notice that V(s; +1,¢q) > W(si +1,¢9). From
Lemma 9 we conclude that
ZZ::.H D.(z) > E:___sd_l D,+1(z). However,

in this case the matching given by substituting
D.(si +1),...,D.(g) of M by the corresponding
elements that lie on D,4; form a valid matching
that is no worse from M", a contradiction to our
assumption that M” is the “rightmost” matching.

n

The validity proof of the base recursion is trivial.
The correctness of the algorithm follows from substi-
tuting i = n.

591

Theorem 11 The algorithm described in Section 4.2
finds a minimum cost matching in a bitonic Monge
array.

4.4 The transportation problem

Suppose that we are given a transportation problem
with integral supplies and demands, and a cost array
A that is bitonic Monge. A simple way to transform
this problem into a matching problem is by “blow-
ing” the cost array into a (3], bi) X (Z;'n:1 a;) array,
where the (i, j)th entry of the original array is repli-
cated b; x a; times. Applying our algorithm for this
array gives an O((X;., bi)log(3o7~, a;)) time algo-
rithm. However, the algorithm can be modified such
that the amount of work per diagonal is O(m + n),
resulting in an O(mlog(3_7_, a;)) time algorithm.

We outline the main modifications that are needed
to the algorithm. The base case, when we have a
single diagonal is quite easy: the matching is a sin-
gle diagonal. The amount of time it takes to encode
this matching is simply the number of distinct demand
rows and supply columns in this diagonal. The main
computational step in the divide and conquer scheme
is the algorithm to compute the separating row. Sup-
pose that we are computing the separating row for
a matrix B (this is the “blown” up matrix) of size
(b—t+1)x(r—£+1). If all the rows in B are
identical (they correspond to the same demand row in
the original cost matrix A), then the min cost match-
ing is a single diagonal, and hence the separating row
will either be ¢ — 1 or b (all the rows will match ei-
ther to a diagonal ¢ < k, or a diagonal ¢ > k, where
k=]_r—":,'—lj) Recall that the diagonals form a bitonic
sequence. Thus in time proportional to the number of
distinct columns in B, we can figure out which side of
k the cheapest diagonal is. When the rows in B are
not identical, we only need to compute the value of s
for a row that is different from its previous row. Hence
the algorithm can be made to run in time proportional
to the number of distinct rows and columns in B.
Acknowledgments: We would like to thank James
Park for telling us about the skiers problem, and for
informing us of the paper by Karp and Li [KL75). The
authors also thank Bill Pulleyblank for several useful
discussions and for providing useful references.

References
[AM86] A. Aggarwal and R.C. Melville. Fast
computation of the modality of polygons.
Journal of Algorithms, 7: 369-381, 1986.

[AMOS9]

[GTT89]

[Hof63)

[KL75)

[Kuh55]

[Lei91]

[MC80]

[MS91]

[Vai89]

[Won91]

[WPMKS6]

[WPR84]

R.K. Ahuja, T.L. Magnanti, and J. B.
Orlin. Network flows. In Optimiza-
tion, Handbooks in Operations Research
and Management Science, pages 211-370.
North-Holland Publishing, 1989.

A V. Goldberg, E. Tardos, and R.E. Tar-
jan. Network flow algorithms. Technical
Report TR 860, School of Operations Re-
search and Industrial Engineering, Cor-
nell University, September 1989.

A.J. Hoffman. On simple linear pro-
gramming problems. In V. Klee, editor,
Convezity: Proceedings of the Seventh
Symposium in Pure Mathematics of the
AMS, volume 7, pages 317-327. Amer-
ican Mathematical Society, Providence,
RI, 1963.

R.M. Karp and S.Y.R. Li. Two Special
Cases of the Assignment Problem. Dis-
crete Mathematics, 13: 129-142, 1975.

H.W. Kuhn. The hungarian method for
the assignment problem. Naval Research
Logistics Quarterly, 2(1): 83-97, 1955.

C.E. Leiserson, 1991. Second quiz in the
Introduction to Algorithms course, prob-
lem Q-3.

C. Mead and L. Conway. Introduction to
VLSI systems. Addison-Wesley, Reading,
MA, 1980.

O. Marcotte and S. Suri. Fast matching
algorithms for points on a polygon. SIAM
Journal on Computing 20: 405-422, 1991.

P.M. Vaidya. Geometry helps in match-
ing. SIAM Journal on Computing 18:
1201-1225, 1989.

C.K. Wong, 1991. Personal Communica-
tion.

M. Werman, S. Peleg, R. Melter, and
T.Y. Kong. Bipartite graph matching for
points on a line or a circle. Journal of

Algorithms, T: 277-284, 1986.

M. Werman, S. Peleg, and A. Rosen-
feld. A distance metric for multidi-
mensional histograms. Technical Report
CAR-TR-90, Center for Automation Re-
search, Univ. of Maryland, August 1984.

592

cw(p,q)

cew(p,q)

Figure 1: In this figure, z(p, ¢) = cw(p, 9).

q 14
q q
P 14
OO
(a) (b)

Figure 2: Thicker arcs between points represent the
edges of the matching.

4 , I p
q

q

4 p q
Ip

q,
(a) (b)

Figure 3: Thicker arcs between points represent the

edges of the matching.

Figure 4: Quadrant I] includes row s and diagonal k;
quadrant 1V includes row s + 1 and diagonal & + 1.

