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A survey of techniques for solving geometric problems in par- 
allel is given, both for shared memory parallel machines and for 
networks of processors. Open problems are also discussed, as well 
as directions for future research. 

I. INTRODUCTION 
Many of the problems in computational geometry come 

from applications in pattern recognition, computer graph- 
ics, statistics, operations research, computer-aided design, 
robotics, etc. The problems which arise in these areas can 
come from real-time applications and hence need to be 
solved as fast as possible. For many of these problems, 
however, we are already at the limits of what can be 
achieved through sequential computation. Such sequential 
methods can be inadequate for situations in which the input 
consists of a large number of geometric objects. Thus, 
it is natural to study the kinds of speedups that can be 
achieved through parallel computing. As an indication of 
the importance of this research direction, we note that 
four of the 11 problems used as benchmark problems to 
evaluate parallel architectures for the DARPA Architecture 
Workshop Benchmark Study of 1986 were computational 
geometry problems. 

Unfortunately, many of the techniques used to find ef- 
ficient sequential algorithms for computational geometry 
problems do not translate well into a parallel setting. That is, 
while providing elegant paradigms for designing sequential 
algorithms, these techniques use methods which seem to be 
inherently sequential. Therefore, one needs to develop new 
paradigms for computational geometry, paradigms better 
suited for a parallel processing environment. This article 
is a survey of the main known algorithmic techniques for 

Manuscript received September 24, 1990; revised June 27, 1991. This 
work was supported by the Office of Naval Research under Contracts 
N00014-84-K-0502 and N00014-86-K-0689, the Air Force Office of 
Scientific Research under Grant AFOSR-90-0107, the National Science 
Foundation under Grant DCR-8451393, and the National Library of 
Medicine under Grant RO1-LMO5118. 

The author is with the Department of Computer Science, Purdue 
University, West Lafayette, IN 47907. 

IEEE Log Number 9204296. 

solving computational geometry problems efficiently in par- 
allel. Since the focus is on general algorithmic techniques 
rather than on specific problems, no attempt is made to list 
all of the known parallel complexity bounds for geometric 
problems (there are too many of them). 

The rest of the paper is organized as follows. Section I1 
briefly reviews parallel models, Section 111 discusses basic 
subproblems that tend to arise in the solution of geometric 
problems on any parallel model, Section IV discusses 
PRAM techniques, Section V discusses techniques for 
mesh-connected arrays of processors, Section VI deals with 
the hybrid RAMJARRAY model and its connection to IJO 
complexity, Section VI1 mentions some experimental work, 
and Section VI11 concludes. 

11. PARALLEL MODELS 
This section briefly reviews the models of parallel com- 

putation for which parallel geometric algorithms have been 
designed. 

A. PRAMModels 
The PRAM (parallel random access machine) model of 

parallel computation is the shared-memory model where 
the processors operate synchronously. A step in a PRAM 
consists of each processor reading the content of a cell 
in the shared memory, writing something in a cell of 
the shared memory, or performing a computation within 
its own registers. Thus all communication is done via 
the shared memory. The PRAM comes in many flavors. 
The CREW (concurrent read exclusive write) version of 
this model allows many processors to simultaneously read 
the content of a memory location, but forbids any two 
processors from simultaneously attempting to write in the 
same memory location (even if they are trying to write 
the same thing). The CRCW (concurrent read concurrent 
write) version of the PRAM differs from the CREW one in 
that it also allows many processors to write simultaneously 
in the same memory location: in any such common-write 
contest, only one processor succeeds, but it is not known 
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in advance which one. (There are other versions of the 
CRCW-PRAM but we shall not concern ourselves with 
these here.) The EREW-PRAM is the weakest version 
of the PRAM: it forbids both concurrent reading and 
concurrent writing. 

The PRAM has so far been the main vehicle used to 
study the parallel algorithmics of geometric problems, and 
much of this survey (Section IV) will deal with PRAM 
techniques. 

B. Networks of Processors 
A network of processors is modeled as a graph where 

the nodes represent processors and the edges represent 
communication lines. All the network models we consider 
are synchronous, and a step of such a network of processors 
consists either of each processor communicating with a 
neighbor by sendindreceiving the contents of a register (a 
data movement step), or of each processor performing a 
computation within its own registers (a computation step). 
We next briefly review some network models. 

1) The Mesh: In a d-dimensional mesh of processors, the 
processors operate synchronously and are positioned on an 
hl x . . . x h d  grid, one processor per grid point. A processor 
is denoted by its position in the grid, a typical one being 
denoted by (il....,id), where 1 5 ik 5 h k  for every 
k E { 1. . . . , d}. Processors (21, . . . , id) and (j1, . . . , j d )  are 
neighbors if and only if lil -j1 I + l i 2  - j 2  I +. . .+ I?d -jd I = 
1. Note that a processor cannot have more than 2d neighbors 
(processors at the boundary have fewer). A processor has 
a fixed (i.e., O(1)) number of storage registers. Some 
researchers assume that a register can store up to log n 
bits, while others limit the size of a register to 0(1) bits: 
here we assume the former model. 

2) The Hypercube: Every processor in the k-dimensional 
hypercube H is labeled as 6061‘ ..6k-l, where 6 ,  E 
{0,1} for 0 5 i 5 k - 1. A processor with label 
bob1 . . . hk-1 is connected to k processors, having labels 
bob1 . . . b ,  . . . bk-1, for 0 5 s 5 k - 1 (where bS denotes 
the complement of bs). An edge (VI, w 2 )  of H is said to 
be of dimension s if v1 and 212 differ in bit position s, i.e., 
111 = bo61...bs...6k-1 and u2 = bobl...b,.‘.bk-l. 
3) Other Network Models: Some geometric algorithms 

were designed for a number of other networks, which we 
shall not cover in any detail. These include the tree of 
processors, the pyramid, and the mesh of trees. Although 
the general algorithmic techniques for solving geometric 
problems on these models can be quite similar to the 
techniques used for other models (such as the mesh), 
there are significant differences in the way processors 
communicate (these networks have smaller diameter than 
the mesh). Generally speaking, the tree of processors 
has been used more for parallel information storage and 
retrieval than for solving geometric problems. The pyramid 
has been used mostly for image processing applications. For 
the reader interested in learning more about these and other 
network models, see the forthcoming books by Leighton 
[94] and by Miller and Stout [98]. 

C. Hybrid Models 
These are models consisting of more than one type of 

machine, and the main one for which geometric problems 
have been considered consists of a sequential computer to 
which a mesh is attached. We postpone the description of 
this model until Section VI. 

Although geometric algorithms have been designed for 
all of the network models mentioned above, there are far 
fewer geometric algorithms for network models than for 
PRAM’S. Furthermore, among the network models, more 
geometric algorithms have been designed for the mesh 
than for any of the other network models, perhaps because 
the parallel complexity of such basic operations as sorting 
and list ranking is well understood for the mesh. Other 
models, such as the hypercube, are just as important, but 
the complexity of the most basic operations on them is 
still open. For this reason, among all the network models, 
we shall focus on the mesh (in Section V) and on hybrid 
variants of the mesh (in Section VI). We also briefly discuss 
the connections between these and the I/O complexity of 
geometric problems (in Section VI). 

111. BASIC SUBPROBLEMS 
This section reviews some basic subproblems that are 

ubiquitous in the design of parallel geometric algorithms, 
no matter what parallel model is used. In many models the 
complexity of these basic subproblems is well understood, 
but for some models (such as the hypercube) the complexity 
of some of these (such as sorting and list ranking) is still 
open, and in such situations no final statement about the 
complexity of the most common geometric problems can 
be made until these issues are resolved (especially since 
many geometric problems are related to sorting). These 
basic operations are reviewed below. 

A.  Sorting, Merging 
Sorting is probably the most frequently used subroutine 

in parallel geometric algorithms. Fortunately, for PRAM 
models and for the mesh, we know how to sort optimally: 
O(1ogn) time and n processors on the EREW-PRAM 
[41], [8], O(&) time on a fi x fi mesh [95], [105], 
[87]. The parallel complexity of sorting on the hyper- 
cube is not known (the current best hypercube bound is 
O(1og n(1og log n)’) with n processors [49]). On the mesh, 
the complexity of merging is the same as that of sorting, but 
on the hypercube and PRAM it is easier than sorting [117], 
[127], [29], (791; it is O(1ogn) time on an n-processor 
hypercube, and on the PRAM it is O(1og log n)  time with 
n processors or, alternatively, O(1og n)  time with n/ log n 
processors. 

B. Parallel Prefix 
Given an array A of n elements and an associative 

operation +, the parallel prefix problem is that of computing 
the array B of n elements such that B(i )  = A(k ) .  
Parallel prefix can be solved in O(1og n)  time and n/ log n 
processors on an EREW-PRAM [90], O(1og n/ log log n)  
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time and n log log n/ log n processors on a CRCW-PRAM 
[45], O ( 6 )  time on the mesh (trivial), and in O(1ogn) 
time on an n-processor hypercube (trivial). Computing 
the smallest element in the A array is a special case of 
parallel prefix; for the CRCW model it can be done faster 
than general parallel prefix-in O(E-’) time with n l f t  
processors for any positive constant E or, alternatively, in 
O(1og log n)  time with n/ log log n processors [ 1171. 

C. List Ranking 
List ranking is a more general version of the parallel 

prefix problem: the elements are given as a linked list; i.e., 
we are given an array A each entry of which contains an 
element as well as a pointer to the entry of A containing the 
predecessor of that element in the linked list. The problem 
is to compute an array B such that B(i)  is the “sum” 
of the first i elements in the linked list. This problem is 
considerably harder than the previous one, and most tree 
computations as well as many graph computations reduce, 
via the Euler tour technique [122], to solving that problem. 
EREW-PRAM algorithms that run in O(1ogn) time and 
n /  logn processors are known [44], [lo]. An O(fi) time 
mesh algorithm is also known [22]. Its complexity on the 
hypercube is still an open problem. 

D. Tree Contraction 
Given a (not necessarily balanced) rooted tree, the prob- 

lem is to reduce it to a single node by a sequence of node 
removals, where a node w can be removed if it is not the 
root and either (i) i t  is a leaf or (ii) it has only one child. In 
case (ii) the removal of w is accomplished by “bypassing it,” 
i.e., making ‘U’S child the child of U ’ S  parent. In a parallel 
setting, many nodes can be removed simultaneously so long 
as they are independent, in the sense that the parent of a 
node being removed cannot be removed at the same time. 
This problem is an abstraction of many other problems, 
including that of evaluating an arithmetic expression tree 
[ 1021. Many elegant optimal EREW-PRAM algorithms for 
it are known [l], [44], [71], (841, running in O(1og n )  time 
with n/ log n processors. It is easy to implement these in 
O(fi) time on a fi x fi mesh by using the techniques 
in [22]. 

The above list of basic subproblems is not exhaustive 
in that (i) many techniques that are basic for general 
combinatorial problems were omitted (we have focused 
only on those most relevant to geometric problems rather 
than to general combinatorial problems), and (ii) among 
the techniques applicable to geometric problems we have 
postponed covering the more specialized ones (they tend to 
be model-dependent). 

IV. PRAM TECHNIQUES 
The PRAM has been extensively used in theoretical stud- 

ies as a uniform vehicle for designing parallel algorithms. 
The PRAM is generally considered to be a rather unrealistic 
model of parallel computation. However, although there are 
no PRAM’s commercially available, algorithms designed 
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for PRAM’S can often be efficiently simulated on some 
of the more realistic parallel models. The PRAM enables 
the algorithm designer to focus on the structure of the 
problem itself, without being distracted by architecture- 
specific issues. Another advantage of the PRAM is that, if 
one can give strong evidence (in the sense explained in the 
next subsection) that a problem has no fast parallel solution 
on the PRAM, then there is no point in looking for a fast 
solution to it on more realistic parallel models (since these 
are weaker than the PRAM). 

A.  Inherently Sequential Geometric Problems 
A parallel algorithm is said to run in polylogarithmic 

time if its time complexity is O(log‘n), where n is the 
problem size and k is a constant independent of n (i.e., 
k = O(1)). A problem solvable in polylogarithmic time 
using a polynomial number of processors is said to be in 
the class NC. It is strongly believed (but not proved) that 
not all problems solvable in polynomial time sequentially 
are solvable in polylogarithmic time using a polynomial 
number of processors (i.e., it is believed that P # NC). 
As in the theory of NP-completeness, there is an analogous 
method for showing that a particular problem is probably 
not in NC: by showing that the membership of that problem 
in NC would imply that P = NC. Such a proof consists in 
showing that each problem in P admits an NC reduction to 
the problem at hand (an NC reduction is a reduction that 
takes polylogarithmic time and uses a polynomial number 
of processors). Such a problem is said to be P-complete. 
For a more detailed discussion of the class NC and parallel 
complexity theory, see, for example, [lo81 or [83]. A proof 
establishing the P-completeness of a problem is viewed as 
strong evidence that the problem is “inherently sequential.” 
Most of the problems shown to be P-complete to date are 
not geometric (most are graph or algebra problems). This 
is no accident: geometric problems in the plane tend to 
have enough structure to allow membership in NC. Even 
the otherwise P-complete problem of linear programming 
[65], [66] is in NC when restricted to the plane. In the 
rest of this subsection we mention the (very few) planar 
geometric problems that are known to be P-complete, and 
also a problem that is conjectured to be P-complete. Each of 
the problems known to be P-complete involves a collection 
of line segments in the plane. 

Plane-sweep triangulation: One is given a simple n- 
vertex polygon P (which may contain holes) and asked 
to produce the triangulation that would be constructed 
by the following sequential algorithm: sweep the plane 
from left to right with a vertical line L such that each 
time L encounters a vertex w of P one draws all 
diagonals of P from w that do not cross previously 
drawn diagonals. This problem is a special case of 
the well-known polygon triangulation problem (see 
[67] and [llo]), and it clearly has a polynomial time 
sequential solution. 
Weighted planar partitioning: One is given a collec- 
tion of n nonintersecting segments in the plane, such 
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that each segment s is given a distinct weight ~ ( s )  
and asked to construct the partitioning of the plane 
produced by extending the segments in order of their 
weights. The extension of a segment “stops” at the 
first segment (or segment extension) that is “hit” by 
the extension. This problem has applications to “art 
gallery problems” [48], [106], and is P-complete even 
if there are only three possible orientations for the line 
segments. It is straightforward to solve it sequentially 
in O ( n  log2 n)  time (using the dynamic point-location 
data structure of [l l l ] ) ,  and in O ( n  log log n)  time by 
a more sophisticated method [48]. 
Visibility layers: One is give a collection of n nonin- 
tersecting segments in the plane, and asked to label 
each segment by its “depth” in terms of the following 
layering process (which starts with i = 0): find the 
segments that are (partially) visible from (0, +m), 
label each such segment as being at depth i ,  remove 
each such segment, increment i ,  and repeat until no 
segments are left. This is an example of a class 
of problems in computational geometry known as 
layerifig problems or onion peeling problems [35], 
[92], [107], and is P-complete even if all the segments 
are horizontal. 

The P-completeness proofs of the above problems were 
given in [13]; for the third problem see also [78]. The proofs 
consist in giving NC reductions from the monotone circuit 
value problem and planar circuit value problem, which are 
known to be P-complete [70], [88], [103]. These reductions 
typically involve the use of geometry to simulate a circuit, 
by using the relative positions of objects in the plane. 

Perhaps the most famous open problem in the area of 
geometric P-completeness is that of the convex layers 
problem [35]: given n points in the plane, mark the points 
on their convex hull as being layer zero, then remove layer 
zero and repeat the process, generating layers 1 ,2 ,  . . . , 
etc. In view of the P-completeness of the above-mentioned 
visibility layers problem, it is reasonable to conjecture that 
the convex layers problem is also P-complete. 

B. “Fast” and “Eficient” 
Once one has established that a geometric problem is 

in NC, the next step is to design a PRAM algorithm 
for it that runs as fast as possible, while being efficient 
in the sense that it uses as few processors as possible. 
Ideally, the parallel time complexity should match the lower 
bound (assuming such a lower bound is known), and the 
time x processors product should match the sequential 
time complexity of the problem. A parallel lower bound for 
a geometric problem is usually established by showing that 
it can be used to solve some other (perhaps nongeometric) 
problem having that lower bound. For example, it is well 
known [47] that computing the logical OR of n bits has an 
R(1ogn) time lower bound on a CREW-PRAM. This can 
easily be used to show that detecting whether the boundaries 
of two convex polygons intersect also has an R( log n)  time 
lower bound on that same model, by encoding the n bits 

whose OR we wish to compute in two concentric regular 
n-gons such that the ith bit governs the relative positions 
of the ith vertices of the two n-gons. Interestingly, if the 
word “boundaries” is removed from the previous sentence 
then the lower bound argument falls apart and it becomes 
possible to solve the problem in constant time on a CREW- 
PRAM, even using a sublinear number of processors [20], 
[128]. 

Before reviewing the techniques that have resulted in 
many PRAM geometric algorithms that are fast and efficient 
in the above sense, a word of caution is in order. From a 
theoretical point of view, the class NC and the requirement 
that a “fast” parallel algorithm run in polylogarithmic time 
are eminently reasonable. But from a more practical point 
of view, not having a polylogarithmic time algorithm does 
not entirely doom a problem to being “nonparallelizable.” 
One can indeed argue [126] that a problem of sequential 
complexity @(n)  that is solvable in O ( 6 )  time by using 
fi processors is “parallelizable” in a very real sense, even 
if no polylogarithmic time algorithm is known for it. 

C. Divide and Conquer 
The sequential divide and conquer algorithms that have 

efficient PRAM implementations are those for which the 
“conquer” step can be done extremely fast (e.g., in constant 
time). Take, for example, an O ( n  log n)  time sequential al- 
gorithm that works by recursively solving two problems of 
size n /2  each, and then combining the answers they return 
in linear time. In order for a PRAM implementation of such 
an algorithm to run in O(1og n)  time with n processors, the 
n processors must be capable of performing the “combine” 
stage in constant time. For some geometric problems this is 
indeed possible (these include the convex hull problem [20], 
[ 1281). The time and processor complexities then obey the 
recurrences 

with boundary conditions T(1) 5 c2 and P(1) = 1, where 
c1 and c2 are constants, These imply that T(n)  = O(1ogn) 
and P(n)  = n. 

But for many problems, such an attempt at implementing 
a sequential algorithm fails because of the impossibility of 
performing the “conquer” stage in constant time. For these, 
the next two approaches often work. 

D. “Rootish” Divide and Conquer 
By “rootish” we mean partitioning the problem into nilk 

subproblems to be solved recursively in parallel, for some 
constant integer lc (usually, lc = 2). For example, instead 
of dividing the problem into two subproblems of size n /2  
each, we divide it into (say) fi subproblems of size 
fi each, which we recursively solve in parallel. That the 
conquer stage takes O(1og n)  time (assuming it does) causes 
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no harm with this subdivision scheme, since 
processor recurrences in that case would be 

the time and 

with boundary conditions T (  1) 5 c2 and P( 1) = 1, where 
c1 and c2 are constants. These imply that T(n)  = O(1ogn) 
and P(n)  = n. 

The problems that can be solved using rootish divide 
and conquer include the convex hull [2], [19], the visibility 
of nonintersecting planar segments from a point [28], and 
the visibility of a polygonal chain from a point [15]. The 
scheme is useful in various ways and forms, and sometimes 
with recurrences very different from the above-mentioned 
ones. For example, it was used in the form of a fourth- 
root divide and conquer to obtain (in a rather involved 
way) an optimal EREW algorithm for the visibility of a 
simple polygon from a point [15] (that is, O(1ogn) time 
with n/ log n processors). 

There are instances where one has to use a hybrid of two- 
way divide and conquer and rootish divide and conquer in 
order to obtain the desired complexity bounds. For example, 
in [15], the recursive procedure takes two parameters (one 
of which is problem size) and uses either fourth-root divide 
and conquer or two-way divide and conquer, depending on 
the relative sizes of these two input parameters. 

E, Cascading 
This sampling and iterative refinement method was intro- 

duced by Cole [41] for the sorting problem, and was further 
developed in [16] and [72] for the solution of geometric 
problems. It has proved to be a fundamental technique, one 
that allows optimal solutions when most other techniques 
fail. Its details are intricate even for sorting, but the 
gist of it can easily be described. Since the technique 
works best for problems that are solved sequentially by 
divide and conquer, we use such a hypothetical problem 
to illustrate the discussion: consider an O ( n  log n)  time 
sequential algorithm that works by recursively solving two 
subproblems of size n/2 each, followed by an O(n) time 
conquer stage. Let T be the tree of recursive calls for this 
algorithm; i.e., a node of this recursion tree at height h 
corresponds to a subproblem of size equal to the number of 
leaves in its subtree (= zh). A “natural” way of parallelizing 
such an algorithm would be to mimic it by using n 
processors to process T in a bottom-up fashion, one level at 
a time, completing level h before moving to level h+ 1 of T 
(where by “level h” we mean the set of nodes of T whose 
height is h). Such a parallelization will yield an O(1ogn) 
time algorithm only if the processing of each level can be 
done in constant time. It can be quite nontrivial to process 
one level in constant time, so this natural parallelization 
can be challenging. However, it is frequently the case that 
processing one level cannot be done in constant time, and 
it is precisely in these situations where the cascading idea 

can be useful. In order to be more specific when sketching 
this idea, we assume that the hypothetical problem being 
solved is about a set S of n points, with the points stored 
in the leaves of T.  

In a nutshell, the general idea of cascading is as follows. 
The computation proceeds in a logarithmic number of 
stages, each of which takes constant time. Each stage 
involves activity by the n processors at more than one 
level, so the computation diffuses up the tree T ,  rather than 
working on only one level at a time. For each node v E T ,  
let h(v)  be the height of v in T ,  let L(v)  be the points stored 
in the leaves of the subtree of in T ,  and let I ( L ( v ) )  be 
the information we seek to compute for node v (the precise 
definition of I ( . )  varies from problem to problem). The 
ultimate goal is for every v E T to compute the I (L (v ) )  
array. Each v E T lies “dormant” and does nothing until 
the stage number exceeds a certain value (usually h(v)), at 
which time node “wakes up” and starts computing, from 
stage to stage, I(L’) for a progressively larger subset L’ 
of L(v ) ,  a subset L’ that (roughly) doubles in size from 
one stage to the next of the computation. I(L’) can be 
thought of as an approximation of the desired I (L (v ) ) ,  an 
approximation that starts out being very rough (when L’ 
consists of, say, a single point) but gets repeatedly refined 
from one stage to the next. When L’ eventually becomes 
equal to L(v) ,  node v becomes inactive for all future stages 
(i.e., it is done with its computation, since it now has 
I (  L(v) ) ) .  There are many (often intricate) implementation 
details that vary from one problem to the next, and many 
times the scheme substantially deviates from the above 
rough sketch, but our purpose was only to give the general 
idea of cascading. 

The cascading technique has been used to solve many 
problems (not just geometric ones). Some of the geometric 
problems for which it has been used are as follows: 

Fractional cascading: Given a directed graph G in 
which every node v contains a sorted list C(v), con- 
struct a linear space data structure (that is, one whose 
size is at most a constant factor larger than the space 
taken by the input) that enables one processor to 
quickly locate any 2 in all the sorted lists stored along 
a given path (VI ,  212,. . . , vk) in G (by “quickly” we 
mean in O(1og (G(vl)( + I C )  time). This problem was 
introduced by Chazelle and Guibas [37], who gave 
an elegant optimal sequential algorithm. An optimal 
O(1og n )  time and n/ log n processor parallel algo- 
rithm for this problem was given in [16]. 
Trapezoidal decomposition: Given a set S of n pla- 
nar line segments, determine for each segment end- 
point p the first segment encountered by starting at 
p and walking vertically upward (or downward). An 
O(1ogn) time and n processor CREW-PRAM algo- 
rithm is known [16]. This implies similar bounds for 
the polygon triangulation problem [72], [74], [130]. 
Topological sorting of n nonintersecting line segments: 
This is the problem of ordering the segments so that, 
if a vertical line 1 intersect segments si and sj and 
i < j ,  then the intersection between 1 and s; is 
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above the intersection between I and s j .  An O(1ogn) 
time, n-processor CREW-PRAM algorithm is easily 
obtained by implementing the main idea of the mesh 
agorithm of [23] (which reduces the problem to a 
trapezoidal decomposition computation followed by a 
tree computation). 
Planarpoint location: Given a subdivision of the plane 
into polygons, build a data structure that enables one 
processor to quickly locate, for any query point, the 
face containing it. Using n processors, cascading can 
be used to achieve O(1ogn) time for both construction 
and query [16], [121], [46]. The planar point location 
problem itself tends to arise rather frequently, even in 
geometric problems apparently unrelated to it. 
Intersection detection, three-dimensional maxima, two- 
set dominance counting, visibility from a point, a11 
nearest neighbors: For all of these problems, cascading 
can be used to achieve O(1ogn) time with n processors 
[W, [ Q I .  

Alternative approaches to cascading have been proposed 
for some of the above problems; for example, see [28], 
[113], [129] and also the elegant parallel hiererchical ap- 
proach of Dadoun and Kirkpatrick, which is discussed next. 

F. Geometric Hierarchies 
This paradigm has proved extremely useful and general 

in computational geometry, both sequential [85], [62], [63], 
[64] and parallel [51], [52]. Generally speaking, the method 
consists in building a sequence of descriptions of the 
geometric object under consideration, where an element 
of the sequence is simpler and smaller (by a constant 
factor) than its predecessor, and yet “close” enough that 
information about it can be used to obtain in constant 
time information about the predecessor. This “information” 
could be, for example, the location of a query point in 
the subdivision, assuming the elements of the sequence 
are progressively simpler subdivisions of the plane. (In 
that case pointers exist between faces of a subdivision and 
those of its predecessor-these pointers are part of the data 
structure representing the sequence of subdivisions.) The 
technique turns out to be useful for other models than the 
PRAM (see subsection V-B). 

G. Brent’s Theorem 
This technique is frequently used to reduce the processor 

complexity without any increase in the time complexity. 
Theorem 1 (Brent): Any synchronous parallel algorithm 

taking time T that consists of a total of W operations can 
be simulated by P processors in time O ( ( W / P )  + T ) .  

There are actually two qualifications to the above Brent’s 
theorem [34] before one can apply it to a PRAM: (i) at 
the beginning of the ith parallel step, we must be able 
to compute the amount of work W; done by that step, 
in time O(Wi/P)  and with P processors, and (ii) we 
must know how to assign each processor to its task. Both 
(i) and (ii) are generally (but not always) easily satisfied 

in parallel geometric algorithms, so that the hard part is 
usually achieving W operations in time T. 

H. From CREW to EREW 
In order to turn a CREW algorithm into an EREW one, 

one needs to get rid of the read conflicts, the simultaneous 
reading from the same memory cell by many processors. 
Such read conflicts often occur in the conquer stage, and 
can take the form of concurrent searching of a data structure 
by many processors (see, e.g., [15]). To avoid read conflicts 
during such concurrent searching, the scheme of [lo91 can 
be helpful: 

Lemma 1 (Paul, Vishkin, Wagener [109]) Suppose T is a 
2-3 tree with m leaves, suppose al ,  a2, . . . , ak are data 
items that may or may not be stored in (the leaves of) T ,  
and suppose each processor Pj wants to search for aj in 
T ,  j = 1, 2, ..., k .  Then in O(1ogm + logk) time, the 
k processors can perform their respective searches without 
read conflicts. 

Many types of searches can be accommodated by the 
above lemma. The following tend to occur in geometric 
applications: 

Type 1: Searching for a particular item in the tree. 
Type 2: Searches of the type “find the tth item starting 

The search tree need not be a 2-3 tree: the requirements for 
the concurrent searching scheme of [lo91 to be applicable 
are that (i) each node of the tree have O(1) children 
and (ii) the IC searches be “sortable” according to their 
ranks in the sorted order of the leaves of the tree. (The 
scheme of [ 1091 has other requirements, but they are needed 
only for the concurrent insertions and deletions that it can 
also handle, not for searching.) Requirement (i) is usually 
satisfied in geometric applications. Requirement (ii) is also 
clearly satisfied for the searches of type 1. It can be made 
to be satisfied for searches of type 2 by sorting the queries 
according to the leaf orders of their targets (this requires 
first doing a search of type 1 to determine the leaf order 

from item p.” 

of PI .  

I.  Matrix Searching Techniques 
A significant contribution to computational geometry 

(both sequential and parallel) is the formulation of many of 
its problems as searching problems in monotone matrices 
[5], [3]. Geometric problems amenable to such a formu- 
lation include the largest empty rectangle [6], various area 
minimization problems [5] (such as finding a minimum area 
circumscribing d-gon of a polygon), perimeter minimization 
[5] (finding a minimum perimeter triangle circumscribing a 
polygon), the layers of maxima problem [5 ] ,  and rectilinear 
shortest paths in the presence of rectangular obstacles [14]. 
Many more problems are likely to be formulated as such 
matrix searching problems in the future. We briefly review 
these matrix searching formulations next. 

I )  Row Minima: An important matrix searching tech- 
nique for solving geometric problems was introduced by 
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Aggarwal et al. in [3], where a linear time sequential solu- 
tion was also given. The technique, which we review next, 
has myriads of applications to geometric and combinatorial 
problems [5], [3]. 

Suppose we have an m x n matrix A and we wish to 
compute the array @ A  such that, for every row index r 
(1 5 T 5 m), O A ( T )  is the smallest column index c that 
minimizes A(r ,c )  (that is, among all c’s that minimize 
A(r,  c ) ,  OA(T) is the smallest). If OA satisfies the following 
sorted property: 

OA(T)  5 OA(T -k 1)) 

and if for every submatrix A’ of A,  OA, also satisfies the 
sorted property, then matrix A is said to be totally monotone 

Given a totally monotone matrix A, the problem of 
computing the OA array is known as that of computing 
the row minima of that matrix [5]. The best EREW-PRAM 
algorithm for this problem runs in O(1ogn) time and n 
processors [24] (where m = n) .  Any improvement in this 
parallel complexity bound will also imply corresponding 
improvements on the parallel complexities of the many 
geometric applications of this problem. 

2) TubeMinima: In what can be viewed as the three- 
dimensional version of the above row minima problem [5], 
one is given an n1 x n2 x 1x3 matrix A and one wishes to 
compute, for every 1 5 i 5 n1 and 1 5 j 5 723, the n1 x n3 
matrix O A  such that O ~ ( z , j )  is the smallest index IC that 
minimizes A(i ,  I C ,  j )  (that is, among all IC’s that minimize 
A(Z,IC,j), O ~ ( z , j )  is the smallest). The matrix A is such 
that OA satisfies the following sorted property: 

PI, [31. 

O A ( i i j )  5 O A ( i > j  + 1) 

O A ( i , j )  5 O A ( i  + 1 , j ) *  

Furthermore, for any submatrix A’ of A, O A ~  also satisfies 
the sorted property. 

Given such a matrix A,  the problem of computing the 
BA array is called by Aggarwal and Park [5] computing the 
tube minima of that matrix. Many geometric applications 
of this problem are mentioned in [5]. There are many 
nongeometric applications to this problem as well. These 
include parallel string editing [ 111, constructing Huffmann 
codes in parallel [25], and other tree-construction problems. 
(In [25] the problem was referred to as multiplying two 
concave matrices.) The best CREW-PRAM algorithms for 
this problem run in O(1og n) time and n2/  log n processors 
[5],  [11], and the best CRCW-PRAM algorithm runs in 
O(1og log n)  time and n 2 /  log log n processors [12] (where 
n = n 1  = 722 = n3). Both the CREW and the CRCW 
bounds are easily seen to be optimal. 

J.  Randomization 
Reif and ‘Sen [ 1131-[ 1151 have modified and applied 

to parallel geometric computation the randomization tech- 
niques that had proved their worth in sequential geometric 

computing (cf. the works of K. Clarkson, Haussler and 
Welzl, and Mulmuley) as well as in areas other than 
computational geometry. Recall that a randomized algo- 
rithm is one which bases some of its decisions on the 
outcomes of coin flips. Thus for a particular input, there 
are many possible executions of a randomized algorithm 
(which one actually happens depends on the outcomes 
of the coin flips). A good randomized algorithm must 
ensure that the number of “bad” possible executions (e.g., 
those that take too long to terminate) is a small fraction 
of all the possible executions. Algorithms that are not 
randomized are deterministic (although this adjective is 
usually omitted when the context does not leave room for 
confusion). Some deterministic algorithms (such as the two- 
dimensional parallel Voronoi diagram algorithm given in 
[91]) have efficient expected time behavior for a randomly 
chosen set of input points, whereas randomized algorithms 
make no assumption about the input distribution. 

Randomized algorithms have the disadvantage that they 
might fail, but if the probability of failure is made small 
enough then they can have advantages over deterministic 
ones: they are typically very simple (which makes them 
easy to program and to comprehend), and the multiplicative 
constant in their time complexity is usually small. For ex- 
ample, the algorithms given by Reif and Sen in [113] have 
a running time of O(1ogn) with n processors, with high 
probability (i.e., a probability that approaches 1 for very 
large n). The problems they deal with include planar point 
location and trapezoidal decomposition. The techniques 
they use there (and also in [115]) are somewhat reminiscent 
of the Flashsort algorithm of Reif and Valiant [116]. The 
polling technique of Reif and Sen [ 1141 has yielded optimal 
randomized parallel bounds for two problems that continue 
to frustrate deterministic approaches, namely, the problems 
of computing the three-dimensional convex hull and the 
two-dimensional Voronoi diagram. 

K. Other PRAM Techniques 
There are other techniques that we did not describe in 

detail because of their somewhat specialized nature. One 
such technique is the “array of trees” parallel data structure, 
originally designed in a nongeometric framework [21] but 
later used in [76] to establish geometric parallel bounds for 
such problems as hidden-line elimination, CSG evaluation, 
and computing the contour of a collection of rectangles. 
Another technique is the “stratified decomposition tree,” 
used in [77] in the parallel solution of visibility and path 
problems in polygons. 

V. MESH TECHNIQUES 
In this section, for convenience, we limit the discussion 

to two-dimensional (i.e., fi x fi) meshes, but most 
of the results and techniques mentioned are known to 
easily generalize to higher dimensional meshes as well. 
The geometric objects under consideration (e.g., points) 
are initially stored in the mesh, one object per processor. 
Therefore we are implicitly assuming that the mesh has 
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enough processors to store the problem description-the 
important case where the problem size is too large to fit in 
the mesh is dikcussed in the next section. 

Since it is known how to sort n items optimally (i.e., 
in O(fi) time) on a fi x fi mesh, sorting is not a 
bottleneck when trying to design O(fi) time solutions 
to geometric problems on the mesh. (Contrast this with 
the situation for the hypercube, a network in which the 
complexity of sorting is still unknown.) In fact many of the 
classical problems of computational geometry have been 
shown to be solvable on the mesh within the optimal 
O(fi) time bound (we mention some of these later). 
Most of these problems have an O(n log n) sequential time 
complexity, and since the mesh time x processors product 
is proportional to n f i ,  one might think that the word 
“optimal” is being abused here. However, this is not the 
case: any nontrivial problem on a fi x fi mesh requires 
R( fi) time (since it can take that long for two processors 
to communicate), and there is usually no hope of using o(n) 
processors because of the already mentioned O( 1) storage 
limitation per processor. (It takes O ( n )  space, and hence 
R(n) processors, just to store the input.) 

A. Mesh Divide and Conquer 
Many geometric algorithms on the mesh use some form 

of divide-and-conquer: the problem gets partitioned into 
(e.g.) four pieces of size n/4 each; each piece is then 
moved into one of the four quadrants of the mesh where 
it is solved recursively by the ( f i /2 )  x (,/%/2) quadrant, 
after which the answers returned by the four recursive calls 
are combined to obtain the overall solution. The “conquer” 
stage as well as the various bookkeeping steps usually 
involves sorting and takes O(fi) time. Thus the time 
recurrence of this scheme generally ends up being of the 
form 

T(n)  = T(n/4) + cf i ,  

where c is a constant, which implies T(n)  = O(fi). An 
example of this is the convex hull algorithm of [loo]: 

If n is small (say, n 5 4)  then solve the problem 
directly by brute force; otherwise proceed to step 2 
below. 
Sort the n points whose convex hull we seek by x 
coordinates. Put those with the smallest n/4 2 coordi- 
nates in one of the four quadrants, those with the next 
n/4 smallest x coordinates into another quadrant, 
etc. In fact, the sorting itself can be done so that 
each quadrant automatically contains the appropriate 
n/4 points; i.e., no separate data movement is needed 
other than sorting (see [loo] for details). 
Recursively solve the problem for each of the four 
quadrants. 
Combine the solutions returned by the four recursive 
calls into the hull of the whole point set. This in- 
volves finding the common tangents betweens pairs 
of disjoint convex polygons in O(fi) time. 

The nontrivial part is usually the “combine” part (i.e., step 
4 in the above example). The data movement techniques of 
[lo51 often play a role in that stage, and sometimes the 
tree computation technique of [22] is needed (e.g., in [82] 
and [23]). 

B. Multisearching 
The following problem is often the bottleneck in the 

parallel solution of geometric problems on a network of 
processors. It is a generalization of the problem described 
in Subsection IV-H: given a search structure modeled as 
a graph G with n constant-degree nodes, and given O(n) 
search processes on that structure, the multisearch problem 
is that of performing as fast as possible all of the search 
processes on that structure. The searches need not be 
processed in any particular order, and can simultaneously be 
processed in parallel by using, for example, one processor 
for each. However, the path that a search query will trace 
in G is not known ahead of time, and must instead be 
determined “on-line”: only when a search query is at (say) 
node v of G can it determine which node of G it should 
visit next (it does so by comparing its own search key with 
the information stored at v-the nature of this information 
and of the comparison performed depend on the specific 
problem being solved). 

The multisearch problem is a useful abstraction that can 
be used to solve many problems (more on this later). It 
is a challenging problem both for EREW-PRAM’S and for 
networks of processors, since many searches might want to 
visit a single node of G, creating a “congestion” problem 
(with the added complication that one cannot even tally 
ahead of time how much congestion will occur at a node, 
since one does not know ahead of time the full search paths, 
only the nodes of G at which they start). When the parallel 
model used to solve the problem is a network of processors, 
the graph G is initially stored in the network in the natural 
way, with each processor containing one node of G and that 
node’s adjacency list. It is important to keep in mind that 
the computational network’s topology is not the same as the 
search structure G, so that a neighbor of node v in G need 
not be stored in a processor adjacent to the one containing 
U. Each processor also contains initially (at most) one of the 
search queries to be processed (in which case that search 
does not necessarily start at the node of G stored in that 
processor). 

In the EREW-PRAM, the difficulty comes from the 
“exclusive read” restriction of the model: if k processes 
were to simultaneously access node U’S information, the 
k processors assigned to these k search processes would 
apparently be unable to simultaneously access U’S informa- 
tion. We have already mentioned, in Lemma 1, an elegant 
way around this problem, designed by Paul, Vishkin, and 
Wagener [lo91 for the case where G is a 2-3 tree (although 
they assume a linear ordering on the search keys, something 
which usually does not hold in a geometric framework 
involving multidimensional search keys). 

The multisearch problem is even more challenging for 
networks of processors. In such models, data are not stored 
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in a shared memory, but are distributed over a network and 
require considerable time to be permuted to allow different 
processors access to different data items. Furthermore, each 
memory location can be accessed by only O(1) query 
processes at a time, since a processor containing (say) node 
‘U’S information would be unable to simultaneously store 
more than a constant number of search queries. 

In [125] the multisearch problem is solved in O( f i  + 
r&) time on a fi x fi mesh-connected computer, 
where r is the length of the longest search path associated 
with a query. For most geometric data structures, the 
search path traversed when answering a query has length 
r = O(1ogn); hence the time complexity is O(&) time, 
which is asymptotically optimal. The classes of graphs for 
which this result holds contain most of the important cases 
of G that arise in practice, ranging from simple trees to the 
powerful Kirkpatrick hierarchical search DAG [85], which 
is so important in both sequential and parallel computa- 
tional geometry (see subsection IV-F). Applications include 
interval trees and the related multiple interval intersection 
search, as well as hierarchical representations of polyhedra 
and its many applications, among them lines-polyhedron 
intersection queries, multiple tangent plane determination, 
three-dimensional convex hull, and intersecting convex 
polyhedra. 

A special case of the multisearching problem for hyper- 
cube multiprocessors was studied in [59]. 

C. Mesh Prune and Search 
Some mesh algorithms use the parallel equivalent of what 

has been called, in sequential computation, the prune and 
search paradigm [92]. This paradigm consists in throwing 
away a subset of the input (after determining that it does 
not contribute to the answer) and then recursively searching 
the surviving portion of the input. The portion of the 
input thrown away is a fixed fraction of the input (i.e., 
a subset of size cn of an input of size n, where c is a 
positive constant). Mesh implementations of this idea have 
the intriguing feature of advantageously keeping many of 
the processors idle during much of the computation. This is 
because, after doing the “pruning” (= decreasing problem 
size by a constant factor), the resulting (smaller) problem 
is compressed into a smaller submesh of the original mesh, 
where it is recursively solved while the processors not in 
this smaller submesh remain idle. 

Mesh algorithms might involve a sequence of many 
recursive calls (occurring after one another rather than 
in parallel) and still run in O(fi) time. So long as 
these successive recursive calls are on problems of sizes 
c ~ n ,  ~ 2 1 2 , .  . s ,  ckn  where IC as well as the c,’s are constants 
and J.l + fi + . . .  + J.rc < 1, the time complexity 
is O ( 6 )  (assuming that setting up each recursive call 
is done in O ( 6 )  time, and that the other bookkeeping 
and combining of subsolutions also takes O( fi) time). As 
an example, see the algorithm in [ 1001 for computing the 
closest pair among a set of n planar points. 

The parallel version of the prune and search technique 
has been far more useful for the mesh than for the PRAM, 
because in the mesh we can afford to prune in O ( 6 )  time 
and still end up with an optimal algorithm, whereas in the 
PRAM model the technique typically yields superlogarith- 
mic time bounds ([61] being one of the few instances where 
it was used for a PRAM geometric algorithm, and that was 
for the CRCW model). 

D. Some Known Bounds and Open Problems for the Mesh 
We now mention some problems for which O(fi) time 

mesh algorithms are known, as well as some open problems 
for the mesh. 

The following problems have known O( fi) time solu- 
tions on the mesh (the list is not exhaustive). 

Convex hull and all nearest neighbor problems for 
planar point sets [loo]. 
Voronoi diagram of a planar set of n points [82]. This 
remained an open problem for a while, until Jeong and 
Lee gave their elegant algorithm achieving an optimal 
time bound. 
Minimum distance spanning tree for planar point sets. 
This follows from the above-mentioned Voronoi di- 
agram result of Jeong and Lee, and the fact that a 
minimum spanning tree of an e-edge undirected graph 
can be computed in O(&) time on a fi x & mesh 

Trapezoidal decomposition of a set of n (possibly 
intersecting) segments [82]. Note that visibility is a 
special case of trapezoidal decomposition. 
Polygon triangulation. This follows from the above- 
mentioned trapezoidal decomposition result of Jeong 
and Lee, and the fact that polygon triangulation can be 
solved by two calls to the trapezoidal decomposition 
procedure [130]. 
Topological sorting of nonintersecting line segments. 
This follows from [23] and the above-mentioned trape- 
zoidal decomposition result. 
The area of the union of iso-oriented rectangles [loo]. 
Intersection detection between n planar line segments 
[821, [loo]. 
Computing the largest empty rectangle [53]. This is 
the problem of computing the largest-area iso-oriented 
rectangle that is constrained to lie in a given iso- 
oriented rectangular region and not to contain any of 
n given points. 
Three-dimensional convex hull, computing the inter- 
section of two three-dimensional convex polyhedra 
[1251, [Sol, [931. 

[112]. 

Other geometric problems considered in the literature 
include the computation of robot configuration space [55], 
visibility and separability [54], ECDF searching [60], and 
multipoint and planar point location [82]. 

The following problems remain open on the mesh, in the 
sense that no O(@) time algorithm on a 6 x 6 mesh 
is known for them. 
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Convex layers in the plane. (See the end of subsection 
IV-A for a definition of this problem.) 
The layers of maxima in the plane. This is defined in 
a similar way to convex layers, but with the words 
“convex hull” replaced by “maximal elements.” 

The most interesting open geometric problems on the 
mesh are in the hybrid model described in the next section, 
and will be mentioned there. 

Another framework in which geometric problems have 
been considered on the mesh is that in which the input 
geometric figure is a binary image stored in the mesh in 
the natural way (the ( i , j ) th  pixel is stored in the processor 
at row 1: and column j ) .  The techniques needed in this image 
processing framework can be quite different from those we 
mentioned above and are not within the scope of this survey 
(see, for example, [ l o l l  [56]). 

VI. A HYBRID MODEL: THE RAM/ARRAY 
The main justification for the hybrid model that is the 

subject of this section is that many existing parallel ma- 
chines have a “front end” that is a conventional sequential 
computer, and the number of processors in the parallel 
machine itself is typically the fixed number purchased rather 
than a function of the problem size n. 

Suppose we have a parallel machine (such as a d- 
dimensional mesh-connected array of p processors) that can 
solve a problem of size p in time O(p l ld )  (this includes 
the time to input the data to the array as well as the actual 
computation time, a standard assumption in the literature 
of mesh-connected arrays, and certainly a reasonable one 
for the case d = 1). Suppose such a mesh-connected array 
of processors is attached to a conventional random access 
machine (RAM) that wishes to solve a problem of size 
n > p .  We call such a machine a RAM/ARRAY(d). It 
is important to realize that the mesh alone cannot even 
store the description of the geometric problem, because 
of the limitation that each processor has 0(1) storage 
registers; hence the sequential “front end” must play a 
role in the solution process. If the problem’s sequential 
time complexity is, say, O(nlogn), then the mesh gives 
a factor of s ( p )  = pl-l/dlogp speedup for a problem 
of size p.  However, if the RAM/ARRAY(d) is trying to 
solve a problem of size n, n > p ,  then it is not clear 
how it should use the mesh to achieve the factor of s ( p )  
speedup and obtain O ( n  log n / s ( p ) )  time performance. 
Actually, it is not even clear whether maintaining the s ( p )  
speedup is at all possible. Identifying the problems for 
which this optimal O ( n  log n / s ( p ) )  time can be achieved 
is an interesting question that was originally posed, for 
sorting in the case d = 1, by Mueller [104], who also 
gave a partial solution. The question has been answered 
in the affirmative in [17] and [27]. This result immediately 
implies an affirmative answer on a RAM/ARRAY(l) for the 
geometric problems that can be solved in linear time after 
a preprocessing sorting step, for example the planar convex 
hull and maximal elements problems. The O ( n  log n / s ( p ) )  
time bound can also be achieved on a RAM/ARRAY(l) 

for the following geometric problems [26]: all nearest 
neighbors of a planar set of points, the measure and 
perimeter of a union of rectangles, the visibility of a 
set of nonintersecting line segments from a point, three- 
dimensional maxima, and dominance counting between 
two sets of points (hence the related problem of counting 
intersections between rectilinear rectangles). Essentially the 
same method as for the RAM/ARRAY(l) establishes that 
all these problems can be solved in O ( n  log n / s ( p ) )  on a 
RAM/ARRAY(d), with s ( p )  = pl-’/d logp [26]. 

We illustrate the technique for the case d = 1 and for 
geometric problems whose sequential time complexity is 
O ( n  log n) ,  i.e., when the task is to design O ( n  log n/ logp) 
time algorithms on a RAM/ARRAY(l). In that case the 
algorithm usually follows the p-way divide-and-conquer 
paradigm (there is an alternative method, using a “lazy B- 
tree” approach [17], which we do not discuss). That is, the 
algorithm divides the problem into p subproblems. Then it 
recursively solves each of the p subproblems, one after the 
other. After the p recursive calls return, it combines the 
subsolutions to form the final solution. The main difficulty 
is how to perform the combining step in O ( n )  time. If 
the combining step can be performed in O(n)  time, then 
the overall time complexity T ( n )  satisfies the recurrence 
T(n)  = p . T(n /p )  + O(n) ,  which implies that T ( n )  
is O(nlogn/ logp) .  In the case of a RAM/ARRAY(d) 
where d > 1, instead of partitioning the problem into p 
subproblems, the problem gets partitioned into pl/(d+l) 
subproblems. In that case the p ’ l ( d f l )  subsolutions must 
be “combined” in O(n/p1- l ld)  time. 

The following result from sequential computation, re- 
ported by Frederickson and Johnson [69], is often useful 
in the RAM/ARRAY(d) framework. Given an a x b matrix 
( b  5 a) whose columns are sorted, the kth smallest element 
can be selected in time O(b + mlog(k /m)) ,  where m = 
min{k, b } ,  if the matrix is already in the memory, or if any 
element of the matrix can be produced in constant time. 
This implies that the bth element can be selected from the 
matrix in O(b) time. This selection algorithm has been used 
in one of the two schemes given in [17] to establish the 
optimal sorting algorithm for this model, and it turned out 
to be a crucial tool for many geometric problems [26]. 

The question whether the speedup of s ( p )  that thed- 
dimensional array makes possible for a problem of size 
p can be carried over to larger problems is really dealing 
with the fundamental issue of the parallel decomposability 
of the problem at hand: given that a problem of size p can be 
solved on a parallel machine faster by a factor of (say) s ( p )  
than on a RAM alone, then that problem is fully parallel 
decomposable if a RAM to which the parallel machine is 
attached can solve arbitrarily large instances of that problem 
with a speedup of s ( p )  when compared with a RAM alone. 
Although it is known that for some geometric problems the 
speedup of s ( p )  for a problem of size p can indeed also be 
translated into a speedup of s ( p )  for problems of size n, 
n > p ,  this question remains open for many other classical 
geometric problems, such as: 

Topological sorting of nonintersecting line segments. 
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Trapezoidal decomposition. However, if the nonin- 
tersecting line segments SI, s2, . . . , s, are given in 
topologically sorted order, then it is known how to 
solve it in O ( n  log n / s ( p ) )  time on a RAM/ARRAY(d) 
[26]. What makes the problem easier in that case 
is the fact that, if one partitions the problem into p 
equal-sized subproblems according to their topological 
order, then the “interaction” between subproblems 
is encapsulated by their visibilities from a point at 
infinity. In particular, it is known for the case where 
the line segments are horizontal because sorting them 
by y coordinates is like sorting them topologically. 
Voronoi diagram of a planar point set. 
Three-dimensional convex hull, computing the inter- 
section of two three-dimensional convex polyhedra. 

Negative results would also be interesting: which prob- 
lems are inherently such that it is impossible to maintain 
the same speedup for n > p as for n = p ? 

The techniques developed for RAM/ARRAY(d)’s have 
also been used in [124] to achieve linear speedups on 
several hypercube-related computers which consist of p pro- 
cessors, each containing O ( n / p )  local memory, provided 
that n > plft for some constant t > 0. The same speedup 
is known for sorting [4], [50]. 

Finally, there are close connections between the work on 
parallel decomposability and the work on 1/0 complexity 
[7], [81]. In the study of I/O complexity, one is given 
a sequential computer which has a small main memory 
and a large secondary storage, and one is interested in 
solving problems of arbitrarily large size. The input of 
the problem is initially stored in the secondary storage and 
the output has to be written to the secondary storage. The 
limitation that the size of the main memory is small is 
similar to the limitation that the size of the attached parallel 
machine is small. The major concern in the study of 1/0 
complexity is to minimize the amount of I/O between the 
main memory and the secondary storage. To achieve the 
best I/O performance, the algorithm is allowed arbitrarily 
long computation times for scheduling the I/O’s (i.e., only 
the amount of I/O matters). On the other hand, the time 
to decompose the computation into subcomputations and to 
schedule the subcomputations must be counted in the study 
of parallel decomposability. The techniques developed for 
the study of geometric parallel decomposability can be used 
to obtain I/O complexity bounds for the geometric problem 
considered [124]. 

VII. EXPERIMENTAL WORK 
Much of the work in parallel computational geometry 

has been theoretical in nature, but some researchers have 
implemented geometric algorithms on various parallel ar- 
chitectures and reported interesting results. 

Blelloch [30], [31] has implemented parallel geometric 
algorithms on the Connection Machine (CM),2 including 
convex hull (the fi-divide-and-conquer method we men- 

*“Connection Machine” and “CM” are registered trademarks of the 
Thinking Machines Corporation. 

tioned earlier). Blelloch argued that in the CM architecture, 
scan operations (essentially, parallel prefix) are imple- 
mented so efficiently that one should solve problems on 
the CM architecture by using, whenever possible, calls to 
these built-in routines. In fact he went as far as assuming 
the cost of a parallel prefix to be O(1), and gave a 
detailed study of the implications of such an assumption in 
solving various problems. The experimental data obtained 
by Blelloch and by other researchers seem to confirm that 
Blelloch’s assumption is quite reasonable. 

Cohen, Miller, Sarraf, and Stout have implemented par- 
allel geometric algorithms on hypercube architectures such 
as the iPSC, including convex hulls and domination [40], 
and convex hulls of digitized pictures [97]. 

The above-mentioned experimental work demonstrates, 
among other things, that algorithmic ideas developed for 
abstract parallel models can be useful when programming 
“real” parallel machines. 

Generally speaking, work in parallel computational ge- 
ometry continues to be mostly theoretical, with experimen- 
tal work being the exception rather than the rule. Perhaps 
this will change as researchers gain increased access to 
parallel machines. 

VIII. FURTHER REMARKS 
In view of the importance of the hypercube, surprisingly 

few geometric algorithms have been designed for this 
parallel model (see [33], [58],  [59], [97], [99], and (1191 
for some of these). We believe that, once the complexity of 
such basic operations as sorting and list ranking is settled 
for the hypercube model, algorithm design for geometric 
problems on that model will probably receive increased 
attention. A n  important step in this direction has recently 
been taken in the new sorting algorithm of Cypher and 
Plaxton [49]. One way around the “sorting bottleneck” for 
the hypercube would be to take the randomization approach, 
as Reif and Sen did [113] (sorting is then no longer a 
bottleneck, since there is an optimal randomized sorting 
algorithm for the hypercube [ 11 61). 

In addition to the open problems in parallel computational 
geometry that we have already mentioned, the following 
open problems are likely to receive considerable attention 
in the future: . 

0 

. 
The 

Optimal deterministic PRAM construction of Voronoi 
diagrams in the plane. The current best bounds 
are, in the CREW-PRAM model, O(1og 71 log log n)  
time and n log n/ log log n processors or, alternatively, 
O(log2 n)  time and n/ log n processors (see [43]). 
Optimal deterministic PRAM construction of three- 
dimensional convex hull. 
Optimal EREW-PRAM solution to linear program- 
ming in the plane (an algorithm exists in the CRCW 
model [61]). 
following are additional promising directions for future 

research: 
Output-sensitive PRAM algorithms-where the com- 
plexity depends on the size of the output (for example, 
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in [75], the number of processors needed depends on 
the number of intersections). Most geometric problems 
remain open when looked at from this perspective 
(even the planar convex hull problem). 
Robust parallel algorithms. Recall that robust algo- 
rithms are such that their correctness is not destroyed 
by roundoff error. Most existing parallel geometric 
algorithms misbehave if implemented with rounded 
arithmetic. There has recently been a flurry of activity 
in designing efficient and robust sequential algorithms 
for geometric problems (see [96] for a list of refer- 
ences), and we expect this important activity to spread 
to the design of parallel geometric algorithms as well. 
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