
Parallel Techniques for
Computational Geometry

Invited Paper

A survey of techniques for solving geometric problems in par-
allel is given, both for shared memory parallel machines and for
networks of processors. Open problems are also discussed, as well
as directions for future research.

I. INTRODUCTION
Many of the problems in computational geometry come

from applications in pattern recognition, computer graph-
ics, statistics, operations research, computer-aided design,
robotics, etc. The problems which arise in these areas can
come from real-time applications and hence need to be
solved as fast as possible. For many of these problems,
however, we are already at the limits of what can be
achieved through sequential computation. Such sequential
methods can be inadequate for situations in which the input
consists of a large number of geometric objects. Thus,
it is natural to study the kinds of speedups that can be
achieved through parallel computing. As an indication of
the importance of this research direction, we note that
four of the 11 problems used as benchmark problems to
evaluate parallel architectures for the DARPA Architecture
Workshop Benchmark Study of 1986 were computational
geometry problems.

Unfortunately, many of the techniques used to find ef-
ficient sequential algorithms for computational geometry
problems do not translate well into a parallel setting. That is,
while providing elegant paradigms for designing sequential
algorithms, these techniques use methods which seem to be
inherently sequential. Therefore, one needs to develop new
paradigms for computational geometry, paradigms better
suited for a parallel processing environment. This article
is a survey of the main known algorithmic techniques for

Manuscript received September 24, 1990; revised June 27, 1991. This
work was supported by the Office of Naval Research under Contracts
N00014-84-K-0502 and N00014-86-K-0689, the Air Force Office of
Scientific Research under Grant AFOSR-90-0107, the National Science
Foundation under Grant DCR-8451393, and the National Library of
Medicine under Grant RO1-LMO5118.

The author is with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907.

IEEE Log Number 9204296.

solving computational geometry problems efficiently in par-
allel. Since the focus is on general algorithmic techniques
rather than on specific problems, no attempt is made to list
all of the known parallel complexity bounds for geometric
problems (there are too many of them).

The rest of the paper is organized as follows. Section I1
briefly reviews parallel models, Section 111 discusses basic
subproblems that tend to arise in the solution of geometric
problems on any parallel model, Section IV discusses
PRAM techniques, Section V discusses techniques for
mesh-connected arrays of processors, Section VI deals with
the hybrid RAMJARRAY model and its connection to IJO
complexity, Section VI1 mentions some experimental work,
and Section VI11 concludes.

11. PARALLEL MODELS
This section briefly reviews the models of parallel com-

putation for which parallel geometric algorithms have been
designed.

A. PRAMModels
The PRAM (parallel random access machine) model of

parallel computation is the shared-memory model where
the processors operate synchronously. A step in a PRAM
consists of each processor reading the content of a cell
in the shared memory, writing something in a cell of
the shared memory, or performing a computation within
its own registers. Thus all communication is done via
the shared memory. The PRAM comes in many flavors.
The CREW (concurrent read exclusive write) version of
this model allows many processors to simultaneously read
the content of a memory location, but forbids any two
processors from simultaneously attempting to write in the
same memory location (even if they are trying to write
the same thing). The CRCW (concurrent read concurrent
write) version of the PRAM differs from the CREW one in
that it also allows many processors to write simultaneously
in the same memory location: in any such common-write
contest, only one processor succeeds, but it is not known

0018-9219/92$03.00 0 1992 IEEE

PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

~~

1435

in advance which one. (There are other versions of the
CRCW-PRAM but we shall not concern ourselves with
these here.) The EREW-PRAM is the weakest version
of the PRAM: it forbids both concurrent reading and
concurrent writing.

The PRAM has so far been the main vehicle used to
study the parallel algorithmics of geometric problems, and
much of this survey (Section IV) will deal with PRAM
techniques.

B. Networks of Processors
A network of processors is modeled as a graph where

the nodes represent processors and the edges represent
communication lines. All the network models we consider
are synchronous, and a step of such a network of processors
consists either of each processor communicating with a
neighbor by sendindreceiving the contents of a register (a
data movement step), or of each processor performing a
computation within its own registers (a computation step).
We next briefly review some network models.

1) The Mesh: In a d-dimensional mesh of processors, the
processors operate synchronously and are positioned on an
hl x . . . x h d grid, one processor per grid point. A processor
is denoted by its position in the grid, a typical one being
denoted by (il....,id), where 1 5 ik 5 h k for every
k E { 1. . . . , d}. Processors (21, . . . , id) and (j1, . . . , j d) are
neighbors if and only if lil -j1 I + l i 2 - j 2 I +. . .+ I?d -jd I =
1. Note that a processor cannot have more than 2d neighbors
(processors at the boundary have fewer). A processor has
a fixed (i.e., O(1)) number of storage registers. Some
researchers assume that a register can store up to log n
bits, while others limit the size of a register to 0(1) bits:
here we assume the former model.

2) The Hypercube: Every processor in the k-dimensional
hypercube H is labeled as 6061‘ ..6k-l, where 6 , E
{0,1} for 0 5 i 5 k - 1. A processor with label
bob1 . . . hk-1 is connected to k processors, having labels
bob1 . . . b , . . . bk-1, for 0 5 s 5 k - 1 (where bS denotes
the complement of bs). An edge (VI, w 2) of H is said to
be of dimension s if v1 and 212 differ in bit position s, i.e.,
111 = bo61...bs...6k-1 and u2 = bobl...b,.‘.bk-l.
3) Other Network Models: Some geometric algorithms

were designed for a number of other networks, which we
shall not cover in any detail. These include the tree of
processors, the pyramid, and the mesh of trees. Although
the general algorithmic techniques for solving geometric
problems on these models can be quite similar to the
techniques used for other models (such as the mesh),
there are significant differences in the way processors
communicate (these networks have smaller diameter than
the mesh). Generally speaking, the tree of processors
has been used more for parallel information storage and
retrieval than for solving geometric problems. The pyramid
has been used mostly for image processing applications. For
the reader interested in learning more about these and other
network models, see the forthcoming books by Leighton
[94] and by Miller and Stout [98].

C. Hybrid Models
These are models consisting of more than one type of

machine, and the main one for which geometric problems
have been considered consists of a sequential computer to
which a mesh is attached. We postpone the description of
this model until Section VI.

Although geometric algorithms have been designed for
all of the network models mentioned above, there are far
fewer geometric algorithms for network models than for
PRAM’S. Furthermore, among the network models, more
geometric algorithms have been designed for the mesh
than for any of the other network models, perhaps because
the parallel complexity of such basic operations as sorting
and list ranking is well understood for the mesh. Other
models, such as the hypercube, are just as important, but
the complexity of the most basic operations on them is
still open. For this reason, among all the network models,
we shall focus on the mesh (in Section V) and on hybrid
variants of the mesh (in Section VI). We also briefly discuss
the connections between these and the I/O complexity of
geometric problems (in Section VI).

111. BASIC SUBPROBLEMS
This section reviews some basic subproblems that are

ubiquitous in the design of parallel geometric algorithms,
no matter what parallel model is used. In many models the
complexity of these basic subproblems is well understood,
but for some models (such as the hypercube) the complexity
of some of these (such as sorting and list ranking) is still
open, and in such situations no final statement about the
complexity of the most common geometric problems can
be made until these issues are resolved (especially since
many geometric problems are related to sorting). These
basic operations are reviewed below.

A. Sorting, Merging
Sorting is probably the most frequently used subroutine

in parallel geometric algorithms. Fortunately, for PRAM
models and for the mesh, we know how to sort optimally:
O(1ogn) time and n processors on the EREW-PRAM
[41], [8], O(&) time on a fi x fi mesh [95], [105],
[87]. The parallel complexity of sorting on the hyper-
cube is not known (the current best hypercube bound is
O(1og n(1og log n)’) with n processors [49]). On the mesh,
the complexity of merging is the same as that of sorting, but
on the hypercube and PRAM it is easier than sorting [117],
[127], [29], (791; it is O(1ogn) time on an n-processor
hypercube, and on the PRAM it is O(1og log n) time with
n processors or, alternatively, O(1og n) time with n/ log n
processors.

B. Parallel Prefix
Given an array A of n elements and an associative

operation +, the parallel prefix problem is that of computing
the array B of n elements such that B(i) = A(k) .
Parallel prefix can be solved in O(1og n) time and n/ log n
processors on an EREW-PRAM [90], O(1og n/ log log n)

1436 PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

time and n log log n/ log n processors on a CRCW-PRAM
[45], O (6) time on the mesh (trivial), and in O(1ogn)
time on an n-processor hypercube (trivial). Computing
the smallest element in the A array is a special case of
parallel prefix; for the CRCW model it can be done faster
than general parallel prefix-in O(E-’) time with n l f t
processors for any positive constant E or, alternatively, in
O(1og log n) time with n/ log log n processors [1171.

C. List Ranking
List ranking is a more general version of the parallel

prefix problem: the elements are given as a linked list; i.e.,
we are given an array A each entry of which contains an
element as well as a pointer to the entry of A containing the
predecessor of that element in the linked list. The problem
is to compute an array B such that B(i) is the “sum”
of the first i elements in the linked list. This problem is
considerably harder than the previous one, and most tree
computations as well as many graph computations reduce,
via the Euler tour technique [122], to solving that problem.
EREW-PRAM algorithms that run in O(1ogn) time and
n / logn processors are known [44], [lo]. An O(fi) time
mesh algorithm is also known [22]. Its complexity on the
hypercube is still an open problem.

D. Tree Contraction
Given a (not necessarily balanced) rooted tree, the prob-

lem is to reduce it to a single node by a sequence of node
removals, where a node w can be removed if it is not the
root and either (i) i t is a leaf or (ii) it has only one child. In
case (ii) the removal of w is accomplished by “bypassing it,”
i.e., making ‘U’S child the child of U ’ S parent. In a parallel
setting, many nodes can be removed simultaneously so long
as they are independent, in the sense that the parent of a
node being removed cannot be removed at the same time.
This problem is an abstraction of many other problems,
including that of evaluating an arithmetic expression tree
[1021. Many elegant optimal EREW-PRAM algorithms for
it are known [l], [44], [71], (841, running in O(1og n) time
with n/ log n processors. It is easy to implement these in
O(fi) time on a fi x fi mesh by using the techniques
in [22].

The above list of basic subproblems is not exhaustive
in that (i) many techniques that are basic for general
combinatorial problems were omitted (we have focused
only on those most relevant to geometric problems rather
than to general combinatorial problems), and (ii) among
the techniques applicable to geometric problems we have
postponed covering the more specialized ones (they tend to
be model-dependent).

IV. PRAM TECHNIQUES
The PRAM has been extensively used in theoretical stud-

ies as a uniform vehicle for designing parallel algorithms.
The PRAM is generally considered to be a rather unrealistic
model of parallel computation. However, although there are
no PRAM’s commercially available, algorithms designed

ATALLAH: PARALLEL TECHNIQUES

for PRAM’S can often be efficiently simulated on some
of the more realistic parallel models. The PRAM enables
the algorithm designer to focus on the structure of the
problem itself, without being distracted by architecture-
specific issues. Another advantage of the PRAM is that, if
one can give strong evidence (in the sense explained in the
next subsection) that a problem has no fast parallel solution
on the PRAM, then there is no point in looking for a fast
solution to it on more realistic parallel models (since these
are weaker than the PRAM).

A. Inherently Sequential Geometric Problems
A parallel algorithm is said to run in polylogarithmic

time if its time complexity is O(log‘n), where n is the
problem size and k is a constant independent of n (i.e.,
k = O(1)). A problem solvable in polylogarithmic time
using a polynomial number of processors is said to be in
the class NC. It is strongly believed (but not proved) that
not all problems solvable in polynomial time sequentially
are solvable in polylogarithmic time using a polynomial
number of processors (i.e., it is believed that P # NC).
As in the theory of NP-completeness, there is an analogous
method for showing that a particular problem is probably
not in NC: by showing that the membership of that problem
in NC would imply that P = NC. Such a proof consists in
showing that each problem in P admits an NC reduction to
the problem at hand (an NC reduction is a reduction that
takes polylogarithmic time and uses a polynomial number
of processors). Such a problem is said to be P-complete.
For a more detailed discussion of the class NC and parallel
complexity theory, see, for example, [lo81 or [83]. A proof
establishing the P-completeness of a problem is viewed as
strong evidence that the problem is “inherently sequential.”
Most of the problems shown to be P-complete to date are
not geometric (most are graph or algebra problems). This
is no accident: geometric problems in the plane tend to
have enough structure to allow membership in NC. Even
the otherwise P-complete problem of linear programming
[65], [66] is in NC when restricted to the plane. In the
rest of this subsection we mention the (very few) planar
geometric problems that are known to be P-complete, and
also a problem that is conjectured to be P-complete. Each of
the problems known to be P-complete involves a collection
of line segments in the plane.

Plane-sweep triangulation: One is given a simple n-
vertex polygon P (which may contain holes) and asked
to produce the triangulation that would be constructed
by the following sequential algorithm: sweep the plane
from left to right with a vertical line L such that each
time L encounters a vertex w of P one draws all
diagonals of P from w that do not cross previously
drawn diagonals. This problem is a special case of
the well-known polygon triangulation problem (see
[67] and [llo]), and it clearly has a polynomial time
sequential solution.
Weighted planar partitioning: One is given a collec-
tion of n nonintersecting segments in the plane, such

1437

that each segment s is given a distinct weight ~ (s)
and asked to construct the partitioning of the plane
produced by extending the segments in order of their
weights. The extension of a segment “stops” at the
first segment (or segment extension) that is “hit” by
the extension. This problem has applications to “art
gallery problems” [48], [106], and is P-complete even
if there are only three possible orientations for the line
segments. It is straightforward to solve it sequentially
in O (n log2 n) time (using the dynamic point-location
data structure of [l l l]) , and in O (n log log n) time by
a more sophisticated method [48].
Visibility layers: One is give a collection of n nonin-
tersecting segments in the plane, and asked to label
each segment by its “depth” in terms of the following
layering process (which starts with i = 0): find the
segments that are (partially) visible from (0, +m),
label each such segment as being at depth i , remove
each such segment, increment i , and repeat until no
segments are left. This is an example of a class
of problems in computational geometry known as
layerifig problems or onion peeling problems [35],
[92], [107], and is P-complete even if all the segments
are horizontal.

The P-completeness proofs of the above problems were
given in [13]; for the third problem see also [78]. The proofs
consist in giving NC reductions from the monotone circuit
value problem and planar circuit value problem, which are
known to be P-complete [70], [88], [103]. These reductions
typically involve the use of geometry to simulate a circuit,
by using the relative positions of objects in the plane.

Perhaps the most famous open problem in the area of
geometric P-completeness is that of the convex layers
problem [35]: given n points in the plane, mark the points
on their convex hull as being layer zero, then remove layer
zero and repeat the process, generating layers 1 ,2 , . . . ,
etc. In view of the P-completeness of the above-mentioned
visibility layers problem, it is reasonable to conjecture that
the convex layers problem is also P-complete.

B. “Fast” and “Eficient”
Once one has established that a geometric problem is

in NC, the next step is to design a PRAM algorithm
for it that runs as fast as possible, while being efficient
in the sense that it uses as few processors as possible.
Ideally, the parallel time complexity should match the lower
bound (assuming such a lower bound is known), and the
time x processors product should match the sequential
time complexity of the problem. A parallel lower bound for
a geometric problem is usually established by showing that
it can be used to solve some other (perhaps nongeometric)
problem having that lower bound. For example, it is well
known [47] that computing the logical OR of n bits has an
R(1ogn) time lower bound on a CREW-PRAM. This can
easily be used to show that detecting whether the boundaries
of two convex polygons intersect also has an R(log n) time
lower bound on that same model, by encoding the n bits

whose OR we wish to compute in two concentric regular
n-gons such that the ith bit governs the relative positions
of the ith vertices of the two n-gons. Interestingly, if the
word “boundaries” is removed from the previous sentence
then the lower bound argument falls apart and it becomes
possible to solve the problem in constant time on a CREW-
PRAM, even using a sublinear number of processors [20],
[128].

Before reviewing the techniques that have resulted in
many PRAM geometric algorithms that are fast and efficient
in the above sense, a word of caution is in order. From a
theoretical point of view, the class NC and the requirement
that a “fast” parallel algorithm run in polylogarithmic time
are eminently reasonable. But from a more practical point
of view, not having a polylogarithmic time algorithm does
not entirely doom a problem to being “nonparallelizable.”
One can indeed argue [126] that a problem of sequential
complexity @(n) that is solvable in O (6) time by using
fi processors is “parallelizable” in a very real sense, even
if no polylogarithmic time algorithm is known for it.

C. Divide and Conquer
The sequential divide and conquer algorithms that have

efficient PRAM implementations are those for which the
“conquer” step can be done extremely fast (e.g., in constant
time). Take, for example, an O (n log n) time sequential al-
gorithm that works by recursively solving two problems of
size n /2 each, and then combining the answers they return
in linear time. In order for a PRAM implementation of such
an algorithm to run in O(1og n) time with n processors, the
n processors must be capable of performing the “combine”
stage in constant time. For some geometric problems this is
indeed possible (these include the convex hull problem [20],
[1281). The time and processor complexities then obey the
recurrences

with boundary conditions T(1) 5 c2 and P(1) = 1, where
c1 and c2 are constants, These imply that T(n) = O(1ogn)
and P(n) = n.

But for many problems, such an attempt at implementing
a sequential algorithm fails because of the impossibility of
performing the “conquer” stage in constant time. For these,
the next two approaches often work.

D. “Rootish” Divide and Conquer
By “rootish” we mean partitioning the problem into nilk

subproblems to be solved recursively in parallel, for some
constant integer lc (usually, lc = 2). For example, instead
of dividing the problem into two subproblems of size n /2
each, we divide it into (say) fi subproblems of size
fi each, which we recursively solve in parallel. That the
conquer stage takes O(1og n) time (assuming it does) causes

1438 PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

no harm with this subdivision scheme, since
processor recurrences in that case would be

the time and

with boundary conditions T (1) 5 c2 and P(1) = 1, where
c1 and c2 are constants. These imply that T(n) = O(1ogn)
and P(n) = n.

The problems that can be solved using rootish divide
and conquer include the convex hull [2], [19], the visibility
of nonintersecting planar segments from a point [28], and
the visibility of a polygonal chain from a point [15]. The
scheme is useful in various ways and forms, and sometimes
with recurrences very different from the above-mentioned
ones. For example, it was used in the form of a fourth-
root divide and conquer to obtain (in a rather involved
way) an optimal EREW algorithm for the visibility of a
simple polygon from a point [15] (that is, O(1ogn) time
with n/ log n processors).

There are instances where one has to use a hybrid of two-
way divide and conquer and rootish divide and conquer in
order to obtain the desired complexity bounds. For example,
in [15], the recursive procedure takes two parameters (one
of which is problem size) and uses either fourth-root divide
and conquer or two-way divide and conquer, depending on
the relative sizes of these two input parameters.

E, Cascading
This sampling and iterative refinement method was intro-

duced by Cole [41] for the sorting problem, and was further
developed in [16] and [72] for the solution of geometric
problems. It has proved to be a fundamental technique, one
that allows optimal solutions when most other techniques
fail. Its details are intricate even for sorting, but the
gist of it can easily be described. Since the technique
works best for problems that are solved sequentially by
divide and conquer, we use such a hypothetical problem
to illustrate the discussion: consider an O (n log n) time
sequential algorithm that works by recursively solving two
subproblems of size n/2 each, followed by an O(n) time
conquer stage. Let T be the tree of recursive calls for this
algorithm; i.e., a node of this recursion tree at height h
corresponds to a subproblem of size equal to the number of
leaves in its subtree (= zh). A “natural” way of parallelizing
such an algorithm would be to mimic it by using n
processors to process T in a bottom-up fashion, one level at
a time, completing level h before moving to level h+ 1 of T
(where by “level h” we mean the set of nodes of T whose
height is h). Such a parallelization will yield an O(1ogn)
time algorithm only if the processing of each level can be
done in constant time. It can be quite nontrivial to process
one level in constant time, so this natural parallelization
can be challenging. However, it is frequently the case that
processing one level cannot be done in constant time, and
it is precisely in these situations where the cascading idea

can be useful. In order to be more specific when sketching
this idea, we assume that the hypothetical problem being
solved is about a set S of n points, with the points stored
in the leaves of T.

In a nutshell, the general idea of cascading is as follows.
The computation proceeds in a logarithmic number of
stages, each of which takes constant time. Each stage
involves activity by the n processors at more than one
level, so the computation diffuses up the tree T , rather than
working on only one level at a time. For each node v E T ,
let h(v) be the height of v in T , let L(v) be the points stored
in the leaves of the subtree of in T , and let I (L (v)) be
the information we seek to compute for node v (the precise
definition of I (.) varies from problem to problem). The
ultimate goal is for every v E T to compute the I (L (v))
array. Each v E T lies “dormant” and does nothing until
the stage number exceeds a certain value (usually h(v)), at
which time node “wakes up” and starts computing, from
stage to stage, I(L’) for a progressively larger subset L’
of L(v) , a subset L’ that (roughly) doubles in size from
one stage to the next of the computation. I(L’) can be
thought of as an approximation of the desired I (L (v)) , an
approximation that starts out being very rough (when L’
consists of, say, a single point) but gets repeatedly refined
from one stage to the next. When L’ eventually becomes
equal to L(v) , node v becomes inactive for all future stages
(i.e., it is done with its computation, since it now has
I (L(v))) . There are many (often intricate) implementation
details that vary from one problem to the next, and many
times the scheme substantially deviates from the above
rough sketch, but our purpose was only to give the general
idea of cascading.

The cascading technique has been used to solve many
problems (not just geometric ones). Some of the geometric
problems for which it has been used are as follows:

Fractional cascading: Given a directed graph G in
which every node v contains a sorted list C(v), con-
struct a linear space data structure (that is, one whose
size is at most a constant factor larger than the space
taken by the input) that enables one processor to
quickly locate any 2 in all the sorted lists stored along
a given path (VI , 212,. . . , vk) in G (by “quickly” we
mean in O(1og (G(vl)(+ I C) time). This problem was
introduced by Chazelle and Guibas [37], who gave
an elegant optimal sequential algorithm. An optimal
O(1og n) time and n/ log n processor parallel algo-
rithm for this problem was given in [16].
Trapezoidal decomposition: Given a set S of n pla-
nar line segments, determine for each segment end-
point p the first segment encountered by starting at
p and walking vertically upward (or downward). An
O(1ogn) time and n processor CREW-PRAM algo-
rithm is known [16]. This implies similar bounds for
the polygon triangulation problem [72], [74], [130].
Topological sorting of n nonintersecting line segments:
This is the problem of ordering the segments so that,
if a vertical line 1 intersect segments si and sj and
i < j , then the intersection between 1 and s; is

ATALLAH: PARALLEL TECHNIQUES

T

1439

above the intersection between I and s j . An O(1ogn)
time, n-processor CREW-PRAM algorithm is easily
obtained by implementing the main idea of the mesh
agorithm of [23] (which reduces the problem to a
trapezoidal decomposition computation followed by a
tree computation).
Planarpoint location: Given a subdivision of the plane
into polygons, build a data structure that enables one
processor to quickly locate, for any query point, the
face containing it. Using n processors, cascading can
be used to achieve O(1ogn) time for both construction
and query [16], [121], [46]. The planar point location
problem itself tends to arise rather frequently, even in
geometric problems apparently unrelated to it.
Intersection detection, three-dimensional maxima, two-
set dominance counting, visibility from a point, a11
nearest neighbors: For all of these problems, cascading
can be used to achieve O(1ogn) time with n processors
[W, [Q I .

Alternative approaches to cascading have been proposed
for some of the above problems; for example, see [28],
[113], [129] and also the elegant parallel hiererchical ap-
proach of Dadoun and Kirkpatrick, which is discussed next.

F. Geometric Hierarchies
This paradigm has proved extremely useful and general

in computational geometry, both sequential [85], [62], [63],
[64] and parallel [51], [52]. Generally speaking, the method
consists in building a sequence of descriptions of the
geometric object under consideration, where an element
of the sequence is simpler and smaller (by a constant
factor) than its predecessor, and yet “close” enough that
information about it can be used to obtain in constant
time information about the predecessor. This “information”
could be, for example, the location of a query point in
the subdivision, assuming the elements of the sequence
are progressively simpler subdivisions of the plane. (In
that case pointers exist between faces of a subdivision and
those of its predecessor-these pointers are part of the data
structure representing the sequence of subdivisions.) The
technique turns out to be useful for other models than the
PRAM (see subsection V-B).

G. Brent’s Theorem
This technique is frequently used to reduce the processor

complexity without any increase in the time complexity.
Theorem 1 (Brent): Any synchronous parallel algorithm

taking time T that consists of a total of W operations can
be simulated by P processors in time O ((W / P) + T) .

There are actually two qualifications to the above Brent’s
theorem [34] before one can apply it to a PRAM: (i) at
the beginning of the ith parallel step, we must be able
to compute the amount of work W; done by that step,
in time O(Wi/P) and with P processors, and (ii) we
must know how to assign each processor to its task. Both
(i) and (ii) are generally (but not always) easily satisfied

in parallel geometric algorithms, so that the hard part is
usually achieving W operations in time T.

H. From CREW to EREW
In order to turn a CREW algorithm into an EREW one,

one needs to get rid of the read conflicts, the simultaneous
reading from the same memory cell by many processors.
Such read conflicts often occur in the conquer stage, and
can take the form of concurrent searching of a data structure
by many processors (see, e.g., [15]). To avoid read conflicts
during such concurrent searching, the scheme of [lo91 can
be helpful:

Lemma 1 (Paul, Vishkin, Wagener [109]) Suppose T is a
2-3 tree with m leaves, suppose al , a2, . . . , ak are data
items that may or may not be stored in (the leaves of) T ,
and suppose each processor Pj wants to search for aj in
T , j = 1, 2, ..., k . Then in O(1ogm + logk) time, the
k processors can perform their respective searches without
read conflicts.

Many types of searches can be accommodated by the
above lemma. The following tend to occur in geometric
applications:

Type 1: Searching for a particular item in the tree.
Type 2: Searches of the type “find the tth item starting

The search tree need not be a 2-3 tree: the requirements for
the concurrent searching scheme of [lo91 to be applicable
are that (i) each node of the tree have O(1) children
and (ii) the IC searches be “sortable” according to their
ranks in the sorted order of the leaves of the tree. (The
scheme of [1091 has other requirements, but they are needed
only for the concurrent insertions and deletions that it can
also handle, not for searching.) Requirement (i) is usually
satisfied in geometric applications. Requirement (ii) is also
clearly satisfied for the searches of type 1. It can be made
to be satisfied for searches of type 2 by sorting the queries
according to the leaf orders of their targets (this requires
first doing a search of type 1 to determine the leaf order

from item p.”

of PI .

I. Matrix Searching Techniques
A significant contribution to computational geometry

(both sequential and parallel) is the formulation of many of
its problems as searching problems in monotone matrices
[5], [3]. Geometric problems amenable to such a formu-
lation include the largest empty rectangle [6], various area
minimization problems [5] (such as finding a minimum area
circumscribing d-gon of a polygon), perimeter minimization
[5] (finding a minimum perimeter triangle circumscribing a
polygon), the layers of maxima problem [5] , and rectilinear
shortest paths in the presence of rectangular obstacles [14].
Many more problems are likely to be formulated as such
matrix searching problems in the future. We briefly review
these matrix searching formulations next.

I) Row Minima: An important matrix searching tech-
nique for solving geometric problems was introduced by

1440 PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

Aggarwal et al. in [3], where a linear time sequential solu-
tion was also given. The technique, which we review next,
has myriads of applications to geometric and combinatorial
problems [5], [3].

Suppose we have an m x n matrix A and we wish to
compute the array @ A such that, for every row index r
(1 5 T 5 m), O A (T) is the smallest column index c that
minimizes A(r ,c) (that is, among all c’s that minimize
A(r, c) , OA(T) is the smallest). If OA satisfies the following
sorted property:

OA(T) 5 OA(T -k 1))

and if for every submatrix A’ of A, OA, also satisfies the
sorted property, then matrix A is said to be totally monotone

Given a totally monotone matrix A, the problem of
computing the OA array is known as that of computing
the row minima of that matrix [5]. The best EREW-PRAM
algorithm for this problem runs in O(1ogn) time and n
processors [24] (where m = n) . Any improvement in this
parallel complexity bound will also imply corresponding
improvements on the parallel complexities of the many
geometric applications of this problem.

2) TubeMinima: In what can be viewed as the three-
dimensional version of the above row minima problem [5],
one is given an n1 x n2 x 1x3 matrix A and one wishes to
compute, for every 1 5 i 5 n1 and 1 5 j 5 723, the n1 x n3
matrix O A such that O ~ (z , j) is the smallest index IC that
minimizes A(i , I C , j) (that is, among all IC’s that minimize
A(Z,IC,j), O ~ (z , j) is the smallest). The matrix A is such
that OA satisfies the following sorted property:

PI, [31.

O A (i i j) 5 O A (i > j + 1)

O A (i , j) 5 O A (i + 1 , j) *

Furthermore, for any submatrix A’ of A, O A ~ also satisfies
the sorted property.

Given such a matrix A, the problem of computing the
BA array is called by Aggarwal and Park [5] computing the
tube minima of that matrix. Many geometric applications
of this problem are mentioned in [5]. There are many
nongeometric applications to this problem as well. These
include parallel string editing [111, constructing Huffmann
codes in parallel [25], and other tree-construction problems.
(In [25] the problem was referred to as multiplying two
concave matrices.) The best CREW-PRAM algorithms for
this problem run in O(1og n) time and n2/ log n processors
[5], [11], and the best CRCW-PRAM algorithm runs in
O(1og log n) time and n 2 / log log n processors [12] (where
n = n 1 = 722 = n3). Both the CREW and the CRCW
bounds are easily seen to be optimal.

J. Randomization
Reif and ‘Sen [1131-[1151 have modified and applied

to parallel geometric computation the randomization tech-
niques that had proved their worth in sequential geometric

computing (cf. the works of K. Clarkson, Haussler and
Welzl, and Mulmuley) as well as in areas other than
computational geometry. Recall that a randomized algo-
rithm is one which bases some of its decisions on the
outcomes of coin flips. Thus for a particular input, there
are many possible executions of a randomized algorithm
(which one actually happens depends on the outcomes
of the coin flips). A good randomized algorithm must
ensure that the number of “bad” possible executions (e.g.,
those that take too long to terminate) is a small fraction
of all the possible executions. Algorithms that are not
randomized are deterministic (although this adjective is
usually omitted when the context does not leave room for
confusion). Some deterministic algorithms (such as the two-
dimensional parallel Voronoi diagram algorithm given in
[91]) have efficient expected time behavior for a randomly
chosen set of input points, whereas randomized algorithms
make no assumption about the input distribution.

Randomized algorithms have the disadvantage that they
might fail, but if the probability of failure is made small
enough then they can have advantages over deterministic
ones: they are typically very simple (which makes them
easy to program and to comprehend), and the multiplicative
constant in their time complexity is usually small. For ex-
ample, the algorithms given by Reif and Sen in [113] have
a running time of O(1ogn) with n processors, with high
probability (i.e., a probability that approaches 1 for very
large n). The problems they deal with include planar point
location and trapezoidal decomposition. The techniques
they use there (and also in [115]) are somewhat reminiscent
of the Flashsort algorithm of Reif and Valiant [116]. The
polling technique of Reif and Sen [1141 has yielded optimal
randomized parallel bounds for two problems that continue
to frustrate deterministic approaches, namely, the problems
of computing the three-dimensional convex hull and the
two-dimensional Voronoi diagram.

K. Other PRAM Techniques
There are other techniques that we did not describe in

detail because of their somewhat specialized nature. One
such technique is the “array of trees” parallel data structure,
originally designed in a nongeometric framework [21] but
later used in [76] to establish geometric parallel bounds for
such problems as hidden-line elimination, CSG evaluation,
and computing the contour of a collection of rectangles.
Another technique is the “stratified decomposition tree,”
used in [77] in the parallel solution of visibility and path
problems in polygons.

V. MESH TECHNIQUES
In this section, for convenience, we limit the discussion

to two-dimensional (i.e., fi x fi) meshes, but most
of the results and techniques mentioned are known to
easily generalize to higher dimensional meshes as well.
The geometric objects under consideration (e.g., points)
are initially stored in the mesh, one object per processor.
Therefore we are implicitly assuming that the mesh has

ATALLAH: PARALLEL TECHNIQUES 1441

enough processors to store the problem description-the
important case where the problem size is too large to fit in
the mesh is dikcussed in the next section.

Since it is known how to sort n items optimally (i.e.,
in O(fi) time) on a fi x fi mesh, sorting is not a
bottleneck when trying to design O(fi) time solutions
to geometric problems on the mesh. (Contrast this with
the situation for the hypercube, a network in which the
complexity of sorting is still unknown.) In fact many of the
classical problems of computational geometry have been
shown to be solvable on the mesh within the optimal
O(fi) time bound (we mention some of these later).
Most of these problems have an O(n log n) sequential time
complexity, and since the mesh time x processors product
is proportional to n f i , one might think that the word
“optimal” is being abused here. However, this is not the
case: any nontrivial problem on a fi x fi mesh requires
R(fi) time (since it can take that long for two processors
to communicate), and there is usually no hope of using o(n)
processors because of the already mentioned O(1) storage
limitation per processor. (It takes O (n) space, and hence
R(n) processors, just to store the input.)

A. Mesh Divide and Conquer
Many geometric algorithms on the mesh use some form

of divide-and-conquer: the problem gets partitioned into
(e.g.) four pieces of size n/4 each; each piece is then
moved into one of the four quadrants of the mesh where
it is solved recursively by the (f i /2) x (,/%/2) quadrant,
after which the answers returned by the four recursive calls
are combined to obtain the overall solution. The “conquer”
stage as well as the various bookkeeping steps usually
involves sorting and takes O(fi) time. Thus the time
recurrence of this scheme generally ends up being of the
form

T(n) = T(n/4) + cf i ,

where c is a constant, which implies T(n) = O(fi). An
example of this is the convex hull algorithm of [loo]:

If n is small (say, n 5 4) then solve the problem
directly by brute force; otherwise proceed to step 2
below.
Sort the n points whose convex hull we seek by x
coordinates. Put those with the smallest n/4 2 coordi-
nates in one of the four quadrants, those with the next
n/4 smallest x coordinates into another quadrant,
etc. In fact, the sorting itself can be done so that
each quadrant automatically contains the appropriate
n/4 points; i.e., no separate data movement is needed
other than sorting (see [loo] for details).
Recursively solve the problem for each of the four
quadrants.
Combine the solutions returned by the four recursive
calls into the hull of the whole point set. This in-
volves finding the common tangents betweens pairs
of disjoint convex polygons in O(fi) time.

The nontrivial part is usually the “combine” part (i.e., step
4 in the above example). The data movement techniques of
[lo51 often play a role in that stage, and sometimes the
tree computation technique of [22] is needed (e.g., in [82]
and [23]).

B. Multisearching
The following problem is often the bottleneck in the

parallel solution of geometric problems on a network of
processors. It is a generalization of the problem described
in Subsection IV-H: given a search structure modeled as
a graph G with n constant-degree nodes, and given O(n)
search processes on that structure, the multisearch problem
is that of performing as fast as possible all of the search
processes on that structure. The searches need not be
processed in any particular order, and can simultaneously be
processed in parallel by using, for example, one processor
for each. However, the path that a search query will trace
in G is not known ahead of time, and must instead be
determined “on-line”: only when a search query is at (say)
node v of G can it determine which node of G it should
visit next (it does so by comparing its own search key with
the information stored at v-the nature of this information
and of the comparison performed depend on the specific
problem being solved).

The multisearch problem is a useful abstraction that can
be used to solve many problems (more on this later). It
is a challenging problem both for EREW-PRAM’S and for
networks of processors, since many searches might want to
visit a single node of G, creating a “congestion” problem
(with the added complication that one cannot even tally
ahead of time how much congestion will occur at a node,
since one does not know ahead of time the full search paths,
only the nodes of G at which they start). When the parallel
model used to solve the problem is a network of processors,
the graph G is initially stored in the network in the natural
way, with each processor containing one node of G and that
node’s adjacency list. It is important to keep in mind that
the computational network’s topology is not the same as the
search structure G, so that a neighbor of node v in G need
not be stored in a processor adjacent to the one containing
U. Each processor also contains initially (at most) one of the
search queries to be processed (in which case that search
does not necessarily start at the node of G stored in that
processor).

In the EREW-PRAM, the difficulty comes from the
“exclusive read” restriction of the model: if k processes
were to simultaneously access node U’S information, the
k processors assigned to these k search processes would
apparently be unable to simultaneously access U’S informa-
tion. We have already mentioned, in Lemma 1, an elegant
way around this problem, designed by Paul, Vishkin, and
Wagener [lo91 for the case where G is a 2-3 tree (although
they assume a linear ordering on the search keys, something
which usually does not hold in a geometric framework
involving multidimensional search keys).

The multisearch problem is even more challenging for
networks of processors. In such models, data are not stored

1442

r
PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

in a shared memory, but are distributed over a network and
require considerable time to be permuted to allow different
processors access to different data items. Furthermore, each
memory location can be accessed by only O(1) query
processes at a time, since a processor containing (say) node
‘U’S information would be unable to simultaneously store
more than a constant number of search queries.

In [125] the multisearch problem is solved in O(f i +
r&) time on a fi x fi mesh-connected computer,
where r is the length of the longest search path associated
with a query. For most geometric data structures, the
search path traversed when answering a query has length
r = O(1ogn); hence the time complexity is O(&) time,
which is asymptotically optimal. The classes of graphs for
which this result holds contain most of the important cases
of G that arise in practice, ranging from simple trees to the
powerful Kirkpatrick hierarchical search DAG [85], which
is so important in both sequential and parallel computa-
tional geometry (see subsection IV-F). Applications include
interval trees and the related multiple interval intersection
search, as well as hierarchical representations of polyhedra
and its many applications, among them lines-polyhedron
intersection queries, multiple tangent plane determination,
three-dimensional convex hull, and intersecting convex
polyhedra.

A special case of the multisearching problem for hyper-
cube multiprocessors was studied in [59].

C. Mesh Prune and Search
Some mesh algorithms use the parallel equivalent of what

has been called, in sequential computation, the prune and
search paradigm [92]. This paradigm consists in throwing
away a subset of the input (after determining that it does
not contribute to the answer) and then recursively searching
the surviving portion of the input. The portion of the
input thrown away is a fixed fraction of the input (i.e.,
a subset of size cn of an input of size n, where c is a
positive constant). Mesh implementations of this idea have
the intriguing feature of advantageously keeping many of
the processors idle during much of the computation. This is
because, after doing the “pruning” (= decreasing problem
size by a constant factor), the resulting (smaller) problem
is compressed into a smaller submesh of the original mesh,
where it is recursively solved while the processors not in
this smaller submesh remain idle.

Mesh algorithms might involve a sequence of many
recursive calls (occurring after one another rather than
in parallel) and still run in O(fi) time. So long as
these successive recursive calls are on problems of sizes
c ~ n , ~ 2 1 2 , . . s , ckn where IC as well as the c,’s are constants
and J.l + fi + . . . + J.rc < 1, the time complexity
is O (6) (assuming that setting up each recursive call
is done in O (6) time, and that the other bookkeeping
and combining of subsolutions also takes O(fi) time). As
an example, see the algorithm in [1001 for computing the
closest pair among a set of n planar points.

The parallel version of the prune and search technique
has been far more useful for the mesh than for the PRAM,
because in the mesh we can afford to prune in O (6) time
and still end up with an optimal algorithm, whereas in the
PRAM model the technique typically yields superlogarith-
mic time bounds ([61] being one of the few instances where
it was used for a PRAM geometric algorithm, and that was
for the CRCW model).

D. Some Known Bounds and Open Problems for the Mesh
We now mention some problems for which O(fi) time

mesh algorithms are known, as well as some open problems
for the mesh.

The following problems have known O(fi) time solu-
tions on the mesh (the list is not exhaustive).

Convex hull and all nearest neighbor problems for
planar point sets [loo].
Voronoi diagram of a planar set of n points [82]. This
remained an open problem for a while, until Jeong and
Lee gave their elegant algorithm achieving an optimal
time bound.
Minimum distance spanning tree for planar point sets.
This follows from the above-mentioned Voronoi di-
agram result of Jeong and Lee, and the fact that a
minimum spanning tree of an e-edge undirected graph
can be computed in O(&) time on a fi x & mesh

Trapezoidal decomposition of a set of n (possibly
intersecting) segments [82]. Note that visibility is a
special case of trapezoidal decomposition.
Polygon triangulation. This follows from the above-
mentioned trapezoidal decomposition result of Jeong
and Lee, and the fact that polygon triangulation can be
solved by two calls to the trapezoidal decomposition
procedure [130].
Topological sorting of nonintersecting line segments.
This follows from [23] and the above-mentioned trape-
zoidal decomposition result.
The area of the union of iso-oriented rectangles [loo].
Intersection detection between n planar line segments
[821, [loo].
Computing the largest empty rectangle [53]. This is
the problem of computing the largest-area iso-oriented
rectangle that is constrained to lie in a given iso-
oriented rectangular region and not to contain any of
n given points.
Three-dimensional convex hull, computing the inter-
section of two three-dimensional convex polyhedra
[1251, [Sol, [931.

[112].

Other geometric problems considered in the literature
include the computation of robot configuration space [55],
visibility and separability [54], ECDF searching [60], and
multipoint and planar point location [82].

The following problems remain open on the mesh, in the
sense that no O(@) time algorithm on a 6 x 6 mesh
is known for them.

ATALLAH: PARALLEL TECHNIQUES 1443

Convex layers in the plane. (See the end of subsection
IV-A for a definition of this problem.)
The layers of maxima in the plane. This is defined in
a similar way to convex layers, but with the words
“convex hull” replaced by “maximal elements.”

The most interesting open geometric problems on the
mesh are in the hybrid model described in the next section,
and will be mentioned there.

Another framework in which geometric problems have
been considered on the mesh is that in which the input
geometric figure is a binary image stored in the mesh in
the natural way (the (i , j) th pixel is stored in the processor
at row 1: and column j) . The techniques needed in this image
processing framework can be quite different from those we
mentioned above and are not within the scope of this survey
(see, for example, [l o l l [56]).

VI. A HYBRID MODEL: THE RAM/ARRAY
The main justification for the hybrid model that is the

subject of this section is that many existing parallel ma-
chines have a “front end” that is a conventional sequential
computer, and the number of processors in the parallel
machine itself is typically the fixed number purchased rather
than a function of the problem size n.

Suppose we have a parallel machine (such as a d-
dimensional mesh-connected array of p processors) that can
solve a problem of size p in time O(p l ld) (this includes
the time to input the data to the array as well as the actual
computation time, a standard assumption in the literature
of mesh-connected arrays, and certainly a reasonable one
for the case d = 1). Suppose such a mesh-connected array
of processors is attached to a conventional random access
machine (RAM) that wishes to solve a problem of size
n > p . We call such a machine a RAM/ARRAY(d). It
is important to realize that the mesh alone cannot even
store the description of the geometric problem, because
of the limitation that each processor has 0(1) storage
registers; hence the sequential “front end” must play a
role in the solution process. If the problem’s sequential
time complexity is, say, O(nlogn), then the mesh gives
a factor of s (p) = pl-l/dlogp speedup for a problem
of size p. However, if the RAM/ARRAY(d) is trying to
solve a problem of size n, n > p , then it is not clear
how it should use the mesh to achieve the factor of s (p)
speedup and obtain O (n log n / s (p)) time performance.
Actually, it is not even clear whether maintaining the s (p)
speedup is at all possible. Identifying the problems for
which this optimal O (n log n / s (p)) time can be achieved
is an interesting question that was originally posed, for
sorting in the case d = 1, by Mueller [104], who also
gave a partial solution. The question has been answered
in the affirmative in [17] and [27]. This result immediately
implies an affirmative answer on a RAM/ARRAY(l) for the
geometric problems that can be solved in linear time after
a preprocessing sorting step, for example the planar convex
hull and maximal elements problems. The O (n log n / s (p))
time bound can also be achieved on a RAM/ARRAY(l)

for the following geometric problems [26]: all nearest
neighbors of a planar set of points, the measure and
perimeter of a union of rectangles, the visibility of a
set of nonintersecting line segments from a point, three-
dimensional maxima, and dominance counting between
two sets of points (hence the related problem of counting
intersections between rectilinear rectangles). Essentially the
same method as for the RAM/ARRAY(l) establishes that
all these problems can be solved in O (n log n / s (p)) on a
RAM/ARRAY(d), with s (p) = pl-’/d logp [26].

We illustrate the technique for the case d = 1 and for
geometric problems whose sequential time complexity is
O (n log n) , i.e., when the task is to design O (n log n/ logp)
time algorithms on a RAM/ARRAY(l). In that case the
algorithm usually follows the p-way divide-and-conquer
paradigm (there is an alternative method, using a “lazy B-
tree” approach [17], which we do not discuss). That is, the
algorithm divides the problem into p subproblems. Then it
recursively solves each of the p subproblems, one after the
other. After the p recursive calls return, it combines the
subsolutions to form the final solution. The main difficulty
is how to perform the combining step in O (n) time. If
the combining step can be performed in O(n) time, then
the overall time complexity T (n) satisfies the recurrence
T(n) = p . T(n /p) + O(n) , which implies that T (n)
is O(nlogn/ logp) . In the case of a RAM/ARRAY(d)
where d > 1, instead of partitioning the problem into p
subproblems, the problem gets partitioned into pl/(d+l)
subproblems. In that case the p ’ l (d f l) subsolutions must
be “combined” in O(n/p1- l ld) time.

The following result from sequential computation, re-
ported by Frederickson and Johnson [69], is often useful
in the RAM/ARRAY(d) framework. Given an a x b matrix
(b 5 a) whose columns are sorted, the kth smallest element
can be selected in time O(b + mlog(k /m)) , where m =
min{k, b } , if the matrix is already in the memory, or if any
element of the matrix can be produced in constant time.
This implies that the bth element can be selected from the
matrix in O(b) time. This selection algorithm has been used
in one of the two schemes given in [17] to establish the
optimal sorting algorithm for this model, and it turned out
to be a crucial tool for many geometric problems [26].

The question whether the speedup of s (p) that thed-
dimensional array makes possible for a problem of size
p can be carried over to larger problems is really dealing
with the fundamental issue of the parallel decomposability
of the problem at hand: given that a problem of size p can be
solved on a parallel machine faster by a factor of (say) s (p)
than on a RAM alone, then that problem is fully parallel
decomposable if a RAM to which the parallel machine is
attached can solve arbitrarily large instances of that problem
with a speedup of s (p) when compared with a RAM alone.
Although it is known that for some geometric problems the
speedup of s (p) for a problem of size p can indeed also be
translated into a speedup of s (p) for problems of size n,
n > p , this question remains open for many other classical
geometric problems, such as:

Topological sorting of nonintersecting line segments.

1444 PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

I

Trapezoidal decomposition. However, if the nonin-
tersecting line segments SI, s2, . . . , s, are given in
topologically sorted order, then it is known how to
solve it in O (n log n / s (p)) time on a RAM/ARRAY(d)
[26]. What makes the problem easier in that case
is the fact that, if one partitions the problem into p
equal-sized subproblems according to their topological
order, then the “interaction” between subproblems
is encapsulated by their visibilities from a point at
infinity. In particular, it is known for the case where
the line segments are horizontal because sorting them
by y coordinates is like sorting them topologically.
Voronoi diagram of a planar point set.
Three-dimensional convex hull, computing the inter-
section of two three-dimensional convex polyhedra.

Negative results would also be interesting: which prob-
lems are inherently such that it is impossible to maintain
the same speedup for n > p as for n = p ?

The techniques developed for RAM/ARRAY(d)’s have
also been used in [124] to achieve linear speedups on
several hypercube-related computers which consist of p pro-
cessors, each containing O (n / p) local memory, provided
that n > plft for some constant t > 0. The same speedup
is known for sorting [4], [50].

Finally, there are close connections between the work on
parallel decomposability and the work on 1/0 complexity
[7], [81]. In the study of I/O complexity, one is given
a sequential computer which has a small main memory
and a large secondary storage, and one is interested in
solving problems of arbitrarily large size. The input of
the problem is initially stored in the secondary storage and
the output has to be written to the secondary storage. The
limitation that the size of the main memory is small is
similar to the limitation that the size of the attached parallel
machine is small. The major concern in the study of 1/0
complexity is to minimize the amount of I/O between the
main memory and the secondary storage. To achieve the
best I/O performance, the algorithm is allowed arbitrarily
long computation times for scheduling the I/O’s (i.e., only
the amount of I/O matters). On the other hand, the time
to decompose the computation into subcomputations and to
schedule the subcomputations must be counted in the study
of parallel decomposability. The techniques developed for
the study of geometric parallel decomposability can be used
to obtain I/O complexity bounds for the geometric problem
considered [124].

VII. EXPERIMENTAL WORK
Much of the work in parallel computational geometry

has been theoretical in nature, but some researchers have
implemented geometric algorithms on various parallel ar-
chitectures and reported interesting results.

Blelloch [30], [31] has implemented parallel geometric
algorithms on the Connection Machine (CM),2 including
convex hull (the fi-divide-and-conquer method we men-

*“Connection Machine” and “CM” are registered trademarks of the
Thinking Machines Corporation.

tioned earlier). Blelloch argued that in the CM architecture,
scan operations (essentially, parallel prefix) are imple-
mented so efficiently that one should solve problems on
the CM architecture by using, whenever possible, calls to
these built-in routines. In fact he went as far as assuming
the cost of a parallel prefix to be O(1), and gave a
detailed study of the implications of such an assumption in
solving various problems. The experimental data obtained
by Blelloch and by other researchers seem to confirm that
Blelloch’s assumption is quite reasonable.

Cohen, Miller, Sarraf, and Stout have implemented par-
allel geometric algorithms on hypercube architectures such
as the iPSC, including convex hulls and domination [40],
and convex hulls of digitized pictures [97].

The above-mentioned experimental work demonstrates,
among other things, that algorithmic ideas developed for
abstract parallel models can be useful when programming
“real” parallel machines.

Generally speaking, work in parallel computational ge-
ometry continues to be mostly theoretical, with experimen-
tal work being the exception rather than the rule. Perhaps
this will change as researchers gain increased access to
parallel machines.

VIII. FURTHER REMARKS
In view of the importance of the hypercube, surprisingly

few geometric algorithms have been designed for this
parallel model (see [33], [58], [59], [97], [99], and (1191
for some of these). We believe that, once the complexity of
such basic operations as sorting and list ranking is settled
for the hypercube model, algorithm design for geometric
problems on that model will probably receive increased
attention. A n important step in this direction has recently
been taken in the new sorting algorithm of Cypher and
Plaxton [49]. One way around the “sorting bottleneck” for
the hypercube would be to take the randomization approach,
as Reif and Sen did [113] (sorting is then no longer a
bottleneck, since there is an optimal randomized sorting
algorithm for the hypercube [11 61).

In addition to the open problems in parallel computational
geometry that we have already mentioned, the following
open problems are likely to receive considerable attention
in the future: .

0

.
The

Optimal deterministic PRAM construction of Voronoi
diagrams in the plane. The current best bounds
are, in the CREW-PRAM model, O(1og 71 log log n)
time and n log n/ log log n processors or, alternatively,
O(log2 n) time and n/ log n processors (see [43]).
Optimal deterministic PRAM construction of three-
dimensional convex hull.
Optimal EREW-PRAM solution to linear program-
ming in the plane (an algorithm exists in the CRCW
model [61]).
following are additional promising directions for future

research:
Output-sensitive PRAM algorithms-where the com-
plexity depends on the size of the output (for example,

ATALLAH: PARALLEL TECHNIQUES

T

1445

in [75], the number of processors needed depends on
the number of intersections). Most geometric problems
remain open when looked at from this perspective
(even the planar convex hull problem).
Robust parallel algorithms. Recall that robust algo-
rithms are such that their correctness is not destroyed
by roundoff error. Most existing parallel geometric
algorithms misbehave if implemented with rounded
arithmetic. There has recently been a flurry of activity
in designing efficient and robust sequential algorithms
for geometric problems (see [96] for a list of refer-
ences), and we expect this important activity to spread
to the design of parallel geometric algorithms as well.

ACKNOWLEDGMENT

D. Chen on a earlier draft of this survey.
It is a pleasure to acknowledge the helpful comments of

REFERENCES

151

K. Abrahamson, N. Dadoun, D. A. Kirpatrick, and T. Przytycka,
“A simple parallel tree contraction algorithm,” J. Algorithms,

A. Agganval, B. Chazelle, L. Guibas, C. O’Dunlaing, and C.
Yap, “Parallel computational geometry,” Algorithmica, vol. 3,

A. Agganval, M. M. Klawe, S. Moran, P. Shor, and R. Wilber,
“Geometric applications of a matrix searching algorithm,” Al-
gorithmica, vol. 2, pp. 209-233, 1987.
A. Agganval and M.-D. Huang, “Network complexity of sorting
and graph problems and simulating {CRCW PRAMS} by in-
terconnection networks,” in Lecture Notes in Computer Science,
319: VLSI Algorithms and Architectures, 3rd Aegean Workshop
on Computing, AWOC 88, 1988, pp. 339-350.
A. Agganval and J. Park, “Parallel searching in multidimen-
sional monotone arrays,” in Proc. 29th Ann. IEEE Symp. Foun-
dations of Computer Science, 1988, pp. 497-512. (To appear in
J. Algorithms.)
A. Agganval and S. Suri, “Fast algorithms for computing the
largest empty rectangle,” in Proc. 3rd ACM Symp. Computa-
tional Geometry, 1987, pp. 278-290.
A. Agganval and J. S. Vitter, “The input/output complexity of
sorting and related problems,” Commun. Ass. Comput. Mach.,
vol. 31, pp. 1116-1127, 1988.
M. Ajtai, J. Komlos, and E. Szemeredi, “Sorting in c logn
parallel steps,” Combinatorica, vol. 3, pp. 1-19, 1983.
S. G. Akl, “A constant-time parallel algorithm for computing
convex hulls,” BIT, vol. 22, pp. 130-134, 1982.
R. Anderson and G. L. Miller, “Deterministic parallel list
ranking,” in Lecture Notes in C. S. 319: 3rdAWOC, 1988, pp.

A. Apostolico, M. J. Atallah, L. Larmore, and H. S. McFaddin,
“Efficient parallel algorithms for string editing and related
problems,” SUM J. Comput., vol. 19, pp. 968-988, 1990.
M. J. Atallah, “A faster parallel algorithm for a matrix searching
problem,” in Proc. 2d Scandinavian Workshop on Algorithm
Theory, 1990, pp. 192-200. (To appear in Algorithmica.)
M. J. Atallah, P. Callahan, and M. T. Goodrich, “P-complete
geometric problems,” in Proc. 2d Ann. ACM Symp. Parallel
Algorithms and Architectures, 1990, pp. 317-326.
M. J. Atallah and D. Z. Chen, “Parallel rectilinear shortest
paths with rectangular obstacles,” in Proc. 2d Ann.ACM Symp.
Parallel Algorithms and Architectures, 1990, pp. 270-279.
M. J. Atallah, D. Z. Chen, and H. Wagener, “An optimal
parallel algorithm for the visibility of a simple polygon from a
point,” J. Ass. Comput. Mach., to be published; a preliminary
version appeared in Proc. 5th Ann. ACM Symp. Computational
Geometry (Saarbrucken, Federal Republic of Germany), 1989,
pp. 114-123.
M. J. Atallah, R. Cole, and M. T. Goodrich, “Cascading divide-
and-conquer: A technique for designing parallel algorithms,”
SUM J. Comput., vol. 18, pp. 499-532, 1989.

vol. 10, pp. 287-302, 1989.

pp. 293-328, 1988.

81-90.

[17] M. J. Atallah, G. N. Frederickson, and S. R. Kosaraju, “Sorting
with efficient use of special-purpose sorters,” Inform. Process.
Lett., vol. 27, pp. 13-15, 1988.

[18] M. J. Atallah and M. T. Goodrich, “Efficient plane sweeping
in parallel,” in Proc. 2nd Ann. ACM Symp. Computational
Geometry (Yorktown Heights, NY), 1986, pp. 216-225.

[19] M. J. Atallah and M. T. Goodrich, “Efficient parallel solu-
tions to some geometric problems,” J. Parallel and Distributed
Computing, vol. 3, pp. 492-507, 1986.

[20] M. J. Atallah and M. T. Goodrich, “Parallel algorithms for some
functions of two convex polygons,” Algorithmica, vol. 3, pp.

[21] M. J. Atallah, S. R. Kosaraju and M. T. Goodrich, “On the
parallel complexity of evaluating some sequences of set ma-
nipulation operations,” in Lecture Notes in Computer Science,
31 9: VLSI Algorithms and Architectures, 3rd Aegean Workshop
on Computing, AWOC 88, 1988, pp. 1-10.

[22] M. J. Atallah and S. E. Hambrusch, “Solving tree problems on
a mesh-connected processor array,” Info. and Control, vol. 69,
pp. 168-187, 1986.

[23] M. J. Atallah, S. E. Hambrusch, and L. E. TeWinkel, “Parallel
topological sorting of features in a binary image,” in Proc.
26th Ann. Allerton Cant Communication, Control, and Com-
puting (Monticello, IL) 1988, pp. 1114-1115. (To appear in
Algorithmica.)

[24] M. J. Atallah and S. R. Kosaraju, “An efficient parallel algo-
rithm for the row minima of a totally monotone matrix,” in Proc.
2ndACM-SIAM Symp. Discrete Algorithms, 1991, pp. 394-403.

[25] M. J. Atallah, S. R. Kosaraju, L. Larmore, G. L. Miller and S.
Teng, “Constructing trees in parallel,” in Proc. 1st Ann. ACM
Symp. Parallel Algorithms and Architectures (Santa Fe, NM),
1989, pp. 421431.

[26] M. J. Atallah and J.-J. Tsay, “On the parallel-decomposibility
of geometric problems,” in Proc. 5th Ann. ACM Symp. Compu-
tational Geometry, 1989, pp. 104-113.

[27] R. Beige1 and I. Gill, “Sorting n objects with a k-sorter,” IEEE
Trans. Comput., to be published.

[28] P. Bertolazzi, C. Guerra, and S. Salza, “A parallel algorithm for
the visibility problem from a point,” J. Parallel and Distributed
Computing, vol. 9, pp. 11-14, 1990.

[29] G. Bilardi and A. Nicolau, “Adaptive bitonic sorting: An
optimal parallel algorithm for shared memory machines,” SIAM
J. Comput., vol. 18, pp. 216-228, 1989.

[30] G. E. Blelloch, “Scan primitives and parallel vector models,”
Ph.D. thesis, Massachusetts Institute of Technology, 1988.

[31] G. E. Blelloch, “Scans as primitive parallel operations,” in Proc.
Int. Con$ Parallel Processing, 1987, pp. 355-362.

[32] A. Borodin and J. E. Hopcroft, “Routing, merging, and sorting
on parallel models of computation,” J. Computer and System
Sciences, vol. 30, pp. 130-145, 1985.

[33] L. Boxer and R. Miller, “Dynamic computational geometry
on meshes and hypercubes,” J. Supercomputing, vol. 3, pp.

[34] R. P. Brent, “The parallel evaluation of general arithmetic
expressions,” J. Ass. Comput. Mach., vol. 21, pp. 201-206,
1974.

[35] B. M. Chazelle, “Optimal algorithms for computing depths and
layers,” in Proc. 20th Allerton Con$ Communications, Control
and Computing, 1983, pp. 427436.

[36] B. M. Chazelle, “Computational geometry on a systolic chip,”
IEEE Trans. Comput., vol. 33, pp. 774-785, 1984.

[37] B. Chazelle and L. J. Guibas, “Fractional cascading: I. A data
structuring technique,” Algorithmica, vol. 1, pp. 133-162.

[38] D. Z. Chen, “Efficient geometric algorithms in the EREW-
PRAM,” in Proc. 28th Ann. Allerton Con$ Communication,
Control, and Computing (Monticello, IL), 1990, pp. 818-827.

[39] A. Chow, “Parallel algorithms for geometric problems,” Ph.D.
thesis, Computer Science Dept., Univ. of Illinois at Urbana-
Champaign, 1980.

[40] E. Cohen, R. Miller, E. M. Sarraf and Q. F. Stout, “Efficient
convexity and domination algorithms for fine- and medium-
grain hypercube computers,” Algorithmica, to be published.

[41] R. Cole, “Parallel merge sort,” SIAM J. Comput., vol. 17, pp.
770-785, 1988.

[42] R. Cole and M. T. Goodrich, “Optimal parallel algorithms for
point-set and polygon problems,” in Proc. 4th Ann. ACM Symp.
Computational Geometry, 1988, pp. 201-210.

[43] R. Cole, M. T. Goodrich and C. O’Dunlaing, “Merging free

535-548, 1988.

161-191, 1989.

1446

-1

PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

trees in parallel for efficient Voronoi diagram construction,”
in Proc. 17th Int. Colloq. Automata, Lung., and Programming,
1990, pp. 432445.

[44] R. Cole and U. Vishkin, “Approximate and exact parallel
scheduling with applications to list, tree and graph problems,” in
Proc. 27th Ann. IEEE Symp. Foundations of Comp. Sci., 1986,
pp. 487491.

[45] R. Cole and U. Vishkin, “Faster optimal parallel prefix sums and
list ranking,” Info. and Control, vol. 81, pp. 334-352, 1989.

[46] R. Cole and 0. Zahicek, “An optimal parallel algorithm for
building a data structure for planar point location,” Courant Inst.
Tech. Rep. 316, 1987. (To appear in J. Parallel and Distributed
Computing.)

[47] S. Cook and C. Dwork, “Bounds on the time for parallel RAM’S
to compute simple functions,” in Proc. 14th ACMAnnual Symp.
Theory of Computing, 1982, pp. 231-233.

[48] J. Czyzowicz, I. Rival, and J. Urmtia, “Galleries, light match-
ings, and visibility graphs,” in Lecture Notes in CS: 382, Proc.
WADS 89, 1989, pp. 316-324.

[49] R. Cypher and C. G. Plaxton, “Deterministic sorting in nearly
logarithmic time on the hypercube and related computers,” in
Proc. 22d Ann. ACM Symp. Theory of Computing, 1990, pp.

[SO] R. Cypher and J. L. C. Sanz, “Optimal sorting on feasible
parallel computers,” in Proc. Int. Conf Parallel Processing,
1988, pp. 339-350.

[5l] N. Dadoun and D. Kirkpatrick, “Parallel processing for efficient
subdivision search,” in Proc. 3rd ACM Symp. Computational
Geom., 1987, pp. 205-214.

[52] N. Dadoun, “Geometric hierarchies and parallel subdivision
search,” Ph.D. thesis, U. of British Columbia, 1990.

[53] F. Dehne, “Computing the largest empty rectangle on one and
two dimensional processor arrays,” J . Parallel Dist. Comput.,
to be published.

[54] F. Dehne, “Solving visibility and separability problems on a
mesh of processors,” Visual Computer, vol. 3, pp. 356-370,
1988.

[55] F. Dehne, A.-L. Hassenklover, and J.-R. Sack, “Computing
the configuration space for a robot on a mesh of processors,”
Parallel Computing, to be published.

[56] F. Dehne, A.-L. Hassenklover, J.-R. Sack, and N. Santoro,
“Computational geometry algorithms for the systolic screen,”
Algorithmica,, to be published.

[57] F. Dehne, J.-R. Sack and I. Stojmenovic, “A note on deter-
mining the 3-dimensional convex hull of a set of points on a
mesh of processors,” in Proc. 1988 Scandinavian Workshop on
Algorithms and Theory, pp. 154-162.

[58] F. Dehne, A. Ferreira and A. Rau-Chaplin, “Parallel fractional
cascading on a hypercube multiprocessor,” in Proc. 27th Ann.
Allerton Conf Communication, Control, and Computing (Mon-
ticello, IL), 1989, pp. 1084-1093.

[59] F. Dehne and A. Rau-Chaplin, “Implementing data structures
on a hypercube multiprocessor, with applications in parallel
computational geometry,” J . Parallel Distrib. Computing, vol.

[60] F. Dehne and I. Stojmenovic, “An ,O(fi) time algorithm for
the ECDF searching problem for arbitrary dimensions on a mesh
of processors,” Inform. Process. Lett., vol. 28, pp. 67-70, 1988.

[61] X. Deng, “An optimal parallel algorithm for linear programming
in the plane,” Inform. Process. Lett., vol. 35, pp. 213-217, 1990.

[62] D. P. Dobkin and D. G. Kirkpatrick, “Fast detection of poly-
hedral intersections,” Theor. Comp. Sci., vol. 27, pp. 241-253,
1983.

[63] D. P. Dobkin and D. G. Kirkpatrick, “A linear time algo-
rithm for determining the separation of convex polyhedra,” J .
Algorithms, vol. 6, pp. 381-392, 1985.

[64] D. P. Dobkin and D. G. Kirkpatrick, “Determining the sepa-
ration of prepprocessed polyhedra - A unified approach,” in
Proc. Int. Colloq. Automata, Lung., and Programming, 1990,
pp. 154165.

[65] D. Dobkin, R. J. Lipton, and S. Reiss, “Linear programming is
log-space hard for P” Inform. Process. Lett., vol. 9, pp. 96-97,
1979.

[66] D. Dobkin and S. Reiss, “The complexity of linear program-
ming,’’ Theor. Comp. Sci., vol. 11, pp. 1-18, 1980.

[67] H. Edelsbrunner, Algorithms in Combinatorial Geometry. New
York Springer-Verlag, 1987.

[68] H. ElGindy and M. T. Goodrich, “Parallel algorithms for

193-203.

8, pp. 367-375, 1990.

shortest path problems in polygons,” The Visual Computer:
International J . Computer Graphics, vol. 3, pp. 371-378, 1988.

[69] G . N. Frederickson and D. B. Johnson, “The complexity of
selection and ranking in { X + Y } and matrices with sorted
columns,” J. Computer and System Sciences, vol. 24, pp.

[70] L. M. Goldschlager, “The monotone and planar circuit value
problems are log space complete for P,” SIGACT News, vol. 9,

[71] A. Gibbons and W. Rytter, “An optimal parallel algorithm for
dynamic expression evaluation and its applications,” in Proc.
Symp. Found. Software Technology and Theoretical Comp. Sci.,
1986, pp. 453-469.

[72] M. T. Goodrich, “Efficient parallel techniques for computational
geometry,” Ph.D. thesis, Department of Computer Science,
Purdue University, 1987.

[73] M. T. Goodrich, “Finding the convex hull of a sorted point set
in parallel,” Inform. Process. Lett., vol. 26, pp. 173-179, 1987.

[74] M. T. Goodrich, “Triangulating a polygon in parallel,” J.
Algorithms, in press.

[75] M. T. Goodrich, “Intersecting line segments in parallel with
an output-sensitive number of processors,” Tech. Rep. 88-27,
Johns Hopkins Univ. 1988.

[76] M. T. Goodrich, M. Ghouse, and J. Bright, “Generalized sweep
methods for parallel computational geometry,” in Proc. 2dAnn.
ACM Symp. Parallel Algorithms and Architectures, 1990, pp.
280-289.

[77] M. T. Goodrich, S. B. Shauck, and S. Guha, “Parallel method
for visibility and shortest path problems in simple polygons,”
in Proc. 6th Ann. ACM Symp. Computational Geometry, 1990,

[78] J. Hershberger, “Upper envelope onion peeling,” in Proc.
2d Scandinavian Workshop on Algorithm Theory, 1990, pp.

[79] T. Hagerup, and C. Rub. “Optimal merging and sorting on the
EREW PRAM,” Inform. Process. Lett., vol. 33, pp. 181-185,
1989,

[80] J. A. Holey and 0. H. Ibarra, “Triangulation in a plane and 3-D
convex hull on mesh-connected arrays and hypercubes,” Tech.
Rep., Dept. of Computer Science, Univ. of Minnesota, 1990.

[81] J.-W. Hong and H. T. Kung, ‘WO complexity: The red-blue peb-
ble game,” in Proc. 13th Ann. ACM Symp. Theory of Computing,

197-208, 1982.

pp. 25-29, 1977.

pp. 73-82.

368-379.

. . . - - - iwi, pp. 326-333.
1821 C. S. Jeong and D. T. Lee, “Parallel geometric algorithms on . *

a mesh connected computer,” Tech. Rep, 8742-Fe-01, Dept.
EE/CS, Northwestern Univ., 1987. To appear in Algorithmica.

[83] R. M. Karp and V. Ramachandran, “A survey of parallel
algorithms for shared-memory machines,” Tech. Rep. CSD-TR
88/408, U. C. Berkeley, Mar. 1988.

[84] S. R. Kosaraju and A. Delcher, “Optimal parallel evaluation of
tree-structured computations by raking,” Lecture Notes in CS
319: AWOC 88, Springer Verlag, 1988, pp. 101-110.

[85] D. G. Kirkpatrick. “Optimal search in planar subdivisions,”
SIAM J . Comput., vol. 12, pp. 28-35, 1983.

[86] M. Kunde, “Optimal sorting on multidimensional mesh-
connected computers,” in Proc. STACS 1987 (Lecture Notes in
Computer Science) 1987, pp. 408419.

[87] H. T. Kung and C. D. Thompson, “Sorting on a mesh-connected
parallel computer,” Commun. Ass. Comput. Mach., vol. 20, p.
263, 1977.

[88] C. P. Kruskal, L. Rudolph, and M. Snir, “A complexity theory
of efficient parallel algorithms,” Lecture Notes in CS:317, Proc.

[89] C. P. Kruskal, L. Rudolph, and M. Snir, “The power of parallel
prefix,” in Proc. 1985 IEEE lnt. Conf Parallel Processing (St.
Charles, IL), pp. 180-185.

[90] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,”
J . Ass. Comput. Mach., pp. 831-838, 1980.

[9l] C. Levcopoulos, J. Katajainen, and A. Lingas, “An optimal
expected time algorithm for Voronoi diagrams,” in Proc. 1st
Scandinavian Workshop on Algorithm Theory, 1988.

[92] D. T. Lee and F. P. Preparata, “Computational geometry-A
survey,’’ IEEE Trans. Comput., vol. 33, pp. 872-1101, 1984.

[93] D. T. Lee, F. P. Preparata, C. S. Jeong, and A. L. Chow, “SIMD
parallel convex hull algorithms,” Tech. Rep. AC-91-02, Dept.
Electrical Eng. and Computer Science, Northwestern Univ.,
1991.

[94] F. T. Leighton, An Introduction to Parallel Algorithms and

15th ICALP, 1988, pp. 333-346.

ATALLAH: PARALLEL TECHNIQUES 1447

Architectures. California: Morgan Kaufmann, 1991.
[95] J. M. Marberg and E. Gafni, “Sorting in constant number of row

and column phases on a mesh,” in Proc. 24th Ann. Allerton
Conf Communication, Control, and Computing (Monticello,
IL), 1986, pp. 603-612.

[96] Z. Li and V. Milenkovic, “Constructing strongly convex hulls
using exact or rounded arithmetic,” in Proc. Sixth Ann. ACM
Symp. Comp. Geom., 1990, pp. 235-243. (To appear in Algo-
rithmica.)

[97] R. Miller, “Convexity algorithms for digitized pictures on an
Intel iPSC hypercube,” Supercomputer, no. 31, VI-3, pp. 45-53.

[98] R. Miller and Q. F. Stout, Parallel Algorithms for Regular
Architectures.

[99] R. Miller and Q. F. Stout, “Efficient parallel convex hull
algorithms,” IEEE Trans. Comput. vol. 37, pp. 1605-1618,
1988.

[loo] R. Miller and Q. F. Stout, “Mesh computer algorithms for
computational geometry,” IEEE Trans. Comput., vol. 38, pp.

[l o l l R. Miller and Q. F. Stout, “Geometric algorithms for digitized
pictures on a mesh connected computer,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 7, pp. 216-228, 1985.

[lo21 G. L. Miller and J. H. Reif, “Parallel tree contraction and its
aoolications.” in Proc. 26th ACM SvmD. Foundations of Como.

Cambridge, MA: MIT Press, 1991.

321-340, 1989.

, * 2 1

s’ci., 1985, pp. 478-489.
11031 S. Mivano. S. Shiraishi. and T. Shoudai. “A list of P-comolete
L , , I

problems,” Tech. Rep. RIFIS-TR-CS-17, 1989, Kyushu Lhiv.,
Japan.

[lo41 H. Mueller, “Sorting numbers using limited systolic coproces-
sors,” Inform. Process. Lett., vol. 24, pp. 351-354, 1987.

[lo51 D. Nassimi and S. Sahni, “Data broadcasting in SIMD comput-
ers,” IEEE Trans. Comput., vol, 30, pp. 101-106, 1981.

[lo61 J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford
Univ. Press, 1987.

11071 J. O’Rourke, “Computational geometry,” Ann. Rev. Como. Sci., ~-
vol. 3, pp. 389-4ii, 1988.

I

[lo81 I. Parberry, Parallel Complexity Theory. London: Pitman,
1987.

[lo91 W: Paul, U. Vishkin, and H. Wagener, “Parallel dictionaries
on 2-3 trees,” in Proc. 10th Coll. Autom., Lung., and Prog.
(ICALP), LNCS 154, 1983, pp. 597409.

[110] F. P. Preparata and M. 1. Shamos, Computational Geometry: An
Introduction. New York: Springer-Verlag, 1985.

[111] F. P. Preparata and R. Tamassia, “Fully dynamic techniques
for ooint location and transitive closure in olanar structures.”
in Proc. 29th ACM Symp. Theory of Coinputing, 1988, pp.

121 J. H. Reif and Q. F. Stout, manuscript.
131 J. H. Reif and S. Sen, “Optimal randomized parallel algorithms

for computational geometry,” in Proc. I987 IEEE Inc. Conf
Parallel Processing, pp. 270-277. (To appear in Algorithmica.)

141 J. H. Reif and S. Sen, “Polling: A new random sampling
technique for computational geometry,” in Proc. 21 st Ann. ACM
Symp. Theory of Computing, 1989, pp, 394404.

151 J. H. Reif and S. Sen, “Randomized algorithms for binary search
and load balancing on fixed connection networks with geometric
applications (preliminary version),” in Proc. 2nd Ann. ACM

5 5 8-5 67.

Ship. Parallei Algorithms and Arihitectures 1990, pp. 327-337.
[116] J. H. Reif and L. Valiant, “A logarithmic time sort for linear size

networks,” in Proc. 15th ACM Symp. Theory of Comp., 1981.
[117] Y. Shiloach and U. Vishkin, “Finding the maximum, merging,

and sorting in a parallel computation model,” J. Algorithms,

vol. 2, pp. 88-102, 1981.
[118] C. P. Schnorr and A. Shamir, “An optimal sorting algorithm for

mesh connected computers,” in Proc. 18th ACM Symp. Theory
on Computing, 1986, pp. 255-261.

[119 I. Stojmenovic, manuscript, 1988.
[120j Q. F. Stout, “Constant-time geometry on PRAMS,” in Proc.

1988 Int. Conf Parallel Computing, vol. 111, pp. 104-107.
[121] R. Tamassia and J. S. Vitter, “Parallel transitive closure

and point location in planar structures,” in Proc. 1st Ann.
ACM Symp. Parallel Algorithms and Architectures, 1989, pp.
399-408.

[I221 R. E. Tarjan and U. Vishkin, “Finding biconnected components
and computing tree functions in logarithmic parallel time,”
SIAM J. Comput., vol. 14, pp. 862-874, 1985.

[1231 G. T. Toussaint, “Solving geometric problems with rotating
calipers,” in Proc. IEEE MELECON ’83 (Athens, Greece), May
1983.

[1241 J.-J. Tsay, “Optimal medium-grained parallel algorithms for
geometric problems,” Tech. Rep. 942, Purdue CS Dept. , 1990.

[125] M. J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J-J.
Tsay, “Multisearch techniques for implementing data structures
on a mesh-connected computer,” Tech. Rep. 91-012, Purdue CS
Dept , 1991. (To appear in Proc. 2d Ann. ACM Symp. Parallel
Algorithms and Architectures (Hilton Head, SC), 1991.

[126] P. Vaidya, private communication.
[1271 L. Valiant, “Parallelism in comparison problems,” SIAM J.

Comput., vol. 4, pp. 348-355, 1975.
[1281 H. Wagener, “Optimally parallel algorithms for convex hull

determination,” manuscript, 1985.
[129] D. E. Willard and Y. C. Wee, “Quasi-valid range querying and

its implications for nearest neighbor problems,” in Proc. 4th
Ann. ACM Symp. Computational Geometry, 1988, pp. 34-43.

[130] C. K. Yap, “Parallel triangulation of a polygon in two calls to
the trapezoidal map,” Algorithmica, vol. 3, pp. 279-288, 1988.

Mikhail J. Atallah (Senior Member, IEEE) re-
ceived the B.E. degree in electrical engineering
from the American University, Beirut, Lebanon,
in 1975 and the M.S.E. and Ph.D. degrees in
electrical engineering and computer science from
Johns Hopkins University, Baltimore, MD, in
1980 and 1982, respectively.

In August 1982 he joined Purdue University,
West Lafayette, IN, where he is currently Profes-
sor of Computer Science. In 1985 he received a
Presidential Young Investigator award from the

National Science Foundation. His research interests include the design and
analysis of algorithms, parallel computation, and computational geometry.

Dr. Atallah is a member of the Association for Computing Machine
and the Society for Industrial and Applied Mathematics. He serves on
the editorial boards of the journals Computational Geometry: Theory &
Applications; Information Processing Letters; International Journal on
Computational Geometry & Applications; Methods of Logic in Computer
Science; Parallel Processing Letters; and SIAM Journal on Computing.
He is currently guest editor for a special issue of Algorithmica on
computational geometry. In addition, he has served on conference program
committees and state and federal panels.

1448

‘r
PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992

