Addendum

This page proves the statement

\[\text{if } y \in P_i \text{ with } y \leq t \text{ then } \exists z \in L_i \text{ such that } \]

\[\left(1 - \frac{\epsilon}{n} \right)^i y \leq z \leq y \] \hspace{1cm} (1)

that appeared in the analysis of the subset-sum approximation scheme presented in COMP572. Please see the class notes for definitions of the terms.

The proof will be by induction on \(i \). When \(i = 1 \) note that \(P_1 = < 0, x_1 > \) while \(L_1 = < 0, x_1 > \) or \(L_1 = < 0 > \), depending upon whether or not \(x_i \leq t \). In both cases, if \(y \in P_1 \) with \(y \leq t \) then \(y \in L_1 \) so (1) is true.

Now assume that (1) is true for \(i \). We will prove its correctness for \(i + 1 \). Recall that \(P_{i+1} = \text{Merge}(P_i, P_i + x_{i+1}) \) with all items \(> t \) thrown out and \(L_{i+1} \) is the trimmed version of \(\text{Merge}(L_i, L_i + x_{i+1}) \) with all items \(> t \) thrown out.

So now suppose that \(y \in P_{i+1} \) with \(y \leq t \).

There are two cases: (i) \(y \in P_i \) or (ii) \(y \in P_i + x_{i+1} \).

If \(y \in P_i \) then, by induction, \(\exists z_i \in L_i \) such that \((1 - \frac{\epsilon}{n})^i y \leq z_i \leq y \). Since \(z_i \in \text{Merge}(L_i, L_i + x_{i+1}) \), \(\exists z \in L_{i+1} \) such that \((1 - \frac{\epsilon}{n}) z_i \leq z \leq z_i \). Combining the two sets of inequalities yields

\[\left(1 - \frac{\epsilon}{n} \right)^{i+1} y \leq \left(1 - \frac{\epsilon}{n} \right) z_i \leq z \leq z_i \leq y \]

which is what we wanted to show.

If \(y \in P_i + x_{i+1} \) then \(y = y_i + x_{i+1} \) for some \(y_i \in P_i \). Again by induction \(\exists z_i \in L_i \) such that \((1 - \frac{\epsilon}{n})^i y_i \leq z_i \leq y_i \). Therefore

\[\left(1 - \frac{\epsilon}{n} \right)^i y = \left(1 - \frac{\epsilon}{n} \right)^i (y_i + x_{i+1}) \leq \left(1 - \frac{\epsilon}{n} \right)^i y_i + x_{i+1} \leq z_i + x_{i+1} \leq y_i + x_{i+1} = y. \]

Since \(z_i + x_{i+1} \in \text{Merge}(L_i, L_i + x_{i+1}) \), \(\exists z \in L_{i+1} \) such that \((1 - \frac{\epsilon}{n}) (z_i + x_{i+1}) \leq z \leq z_i + x_{i+1} \). Combining the two sets of inequalities yields

\[\left(1 - \frac{\epsilon}{n} \right)^{i+1} y \leq \left(1 - \frac{\epsilon}{n} \right) (z_i + x_{i+1}) \leq z \leq z_i + x_{i+1} \leq y \]

which is what we wanted to show and the proof is now complete.