A Fully Polynomial Time Approximation Scheme for Subset Sum

CLRS – Chapter 35

Last Revised – 16/11/07
Approximation Algorithms

For any given optimization (minimization) problem and approximation algorithm \mathcal{A} to solve it:

- Let $\Pi =$ Set of all *instances* of the problem.
- For all instances $I \in \Pi$ define $size(I)$.
- For all instances $I \in \Pi$ define
 \[
 OPT(I) = \text{cost of optimal solution for } I \\
 A(I) = \text{cost of solution produced by } \mathcal{A} \text{ on } I.
 \]

Let $\rho(n)$ be a function such that

\[
\forall I \in \Pi, \text{ with } size(I) = n, \quad \frac{A(I)}{OPT(I)} \leq \rho(n).
\]

Then \mathcal{A} is a

factor $\rho(n)$ approximation algorithm $(\rho(n)$-approximation algorithm).

(there is a similar definition for *maximization* problems)
The Subset-Sum Problem

Definition: An instance of the *subset-sum decision problem* is \((S, t)\) where:

- \(S = \{x_1, x_2, \ldots, x_n\}\) a set of positive integers;
- \(t\) a positive integer.

The problem is whether some subset of \(S\) adds up exactly to \(t\). This problem is NP-complete.

The *subset-sum optimization problem* is to find a subset of \(S\) whose sum is as large as possible but no greater than \(t\).

We will define a class of algorithms \(A_\epsilon\), such that, \(\forall \epsilon > 0\),

- \(A_\epsilon\) is an \(\epsilon\)-approximation algorithm for subset-sum.
- \(A_\epsilon\) runs in time polynomial in \(n\), \(\log t\) and \(\frac{1}{\epsilon}\).

Such a class of algorithms is known as a

A fully polynomial-time approximation scheme.
An Exponential Time Algorithm

If $S = \{x_1, x_2, \ldots, x_n\}$ is a set or list and x a real number then define

$S + x = \{x_1, x_2, \ldots, x_n\} = \{x_1 + x, x_2 + x, \ldots, x_n + x\}$.

If $L = \{x_1, x_2, \ldots, x_n\}$ and $L' = \{u_1, u_2, \ldots, u_m\}$ are both sorted lists then define $\text{Merge-Lists}(L, L')$ to be the procedure that returns the sorted union of the two lists. This procedure runs in time $O(|L'| + |L|)$.

Exact-Subset Sums

$n \leftarrow |S|$

$L_0 \leftarrow <0>$

for $i = 1$ to n

$L_i = \text{Merge-Lists}(L_{i-1}, L_{i-1} + x_i)$

remove from L_i all elements bigger than t.

return largest element in L_i.

Let P_i be the set of all values that can be obtained by selecting some subset of $\{x_1, x_2, \ldots, x_i\}$ and summing its members. Then L_i is a sorted list containing all elements in P_i of size no greater than t.

The algorithm therefore returns the correct answer.

Since L_i can have as many as 2^i items this algorithm can take $\Theta(2^n)$ time!
Trimming

Let $L\{x_1, x_2, \ldots, x_m\}$ be a list. To trim the list by parameter δ means to remove as many elements from L as possible in such a way that the list L' of remaining elements has the following property:

For every $y \in L$ there exists a $z \in L'$ such that

$$(1 - \delta)y \leq z \leq y.$$

Example:

$L = < 10, 11, 12, 15, 20, 21, 22, 23, 24, 29 >$ and $\delta = 0.1$. A trimmed list would be $L' = < 10, 12, 15, 20, 23, 29 >$.

```
Trim(L, \delta)
L' = < x_1 >
last = x_1
for i = 2 to m
    if last < (1 - \delta)x_i
        then append $x_i$ onto end of $L'$.
        last = $x_i$
return L'
```

This algorithm returns a trimmed list in $O(m)$ time.
(It assumes that input list is sorted in non-decreasing order.)
The Actual Approximation Algorithm

Approx-Subset-Sum(S, t, ϵ)

\[
\begin{align*}
n &\leftarrow |S|. \\
L_0 &\leftarrow <0>. \\
\text{for } i = 1 \text{ to } n \\
L_i &\leftarrow \text{Merge-Lists}(L_i, L_{i-1} + x_i) \\
L_i &\leftarrow \text{Trim}(L_i, \epsilon/n) \\
&\text{remove from } L_i \text{ all elements bigger than } t \\
&\text{return largest element in } L_n
\end{align*}
\]

Note that when list L_i is trimmed we introduce a relative error of at most ϵ/n between the representative values remaining and the elements of the list. By induction can show that, \(\forall y \in P_i\) there exists some $z \in L_i$ such that

\[
\left(1 - \frac{\epsilon}{n}\right)^i y \leq z \leq y.
\]

Let \overline{z} be the largest element in L_n. If y^* is a solution to the exact subset-sum problem then there exists a $z^* \in L_n$ such that

\[
\left(1 - \frac{\epsilon}{n}\right)^n y^* \leq z^* \leq \overline{z} \leq y^*.
\]

But \(\forall n > 1,\)

\[
1 - \epsilon \leq \left(1 - \frac{\epsilon}{n}\right)^n \Rightarrow (1 - \epsilon)y^* \leq \overline{z},
\]

and A_ϵ is an ϵ-approximation algorithm.
Running Time

The running time of the ith stage of the algorithm is $O(|L_i|)$.

After trimming, successive elements $z', z \in L_i$ have the property

$$z' < z \left(1 - \frac{\epsilon}{n}\right).$$

Therefore the total number of elements in L_i is at most

$$\log \frac{t}{1 - \frac{\epsilon}{n}} = \frac{\ln t}{-\ln \left(1 - \frac{\epsilon}{n}\right)} \leq \Theta \left(\frac{n \ln t}{\epsilon}\right).$$

The running time of A_ϵ is proportional to

$$\frac{n^2 \ln t}{\epsilon}$$

and the A_ϵ form a

Fully Polynomial Time Approximation Scheme

for subset-sum.