More on the correspondence between polytopes and LPs.

Last modified 07/10/06
Let \(F = \{ x : Ax = b, \ x \geq 0 \} \)

be the feasible region of some LP, \(x \in R^n \). Then the corresponding polytope \(P \) in \(R^{n-m} \) is the solution space to

\[
\begin{align*}
 b_i - \sum_{j=1}^{n-m} a_{i,j} x_j & \geq 0, \quad i = n-m+1, \ldots, n \\
 x_j & \geq 0, \quad j = 1, \ldots, n-m
\end{align*}
\]

The mapping from \(F \) to \(P \) is simply

\[
\phi((x_1, \ldots, x_n)) = (x_1, \ldots, x_{n-m})
\]

Now let \(P \) be a polytope in \(R^{n-m} \) defined by

\[
\begin{align*}
 h_{i,1} \hat{x}_1 + \cdots + h_{i,n-m} \hat{x}_{n-m} + g_i & \leq 0, \quad i = 1, \ldots, n.
\end{align*}
\]

where the first \(n-m \) equations are:

\[
\hat{x}_i \geq 0, \quad i = 1, \ldots, n-m
\]

Then the mapping from \(P \) to \(F \) is

\[
\rho((\hat{x}_1, \ldots, \hat{x}_{n-m})) = (\hat{x}_1, \ldots, \hat{x}_{n-m}, x_{n-m+1}, \ldots, x_n)
\]

where

\[
x_i = -g_i - \sum_{j=1}^{n-m} h_{i,j} x_j, \quad i = n-m+1, \ldots, n.
\]
Lemma: Using the notation of the previous page.

\[\rho(\phi(F)) = F \quad \text{and} \quad \phi(\rho(P)) = P. \]

This just says that \(\phi \) and \(\rho \) are 1-1 functions.

Proof: Next homework.
Lemma: Let

\[F = \{ x : Ax = b, \quad x \geq 0 \} \]

be the feasible region of a linear program and \(P \) the corresponding polytope in \(\mathbb{R}^{n-m} \).

Now let \(c \in \mathbb{R}^n \) be a cost vector.

Then there exists a cost vector \(d \in \mathbb{R}^{n-m} \) and \(K \in \mathbb{R} \) such that for every \(\hat{x} \in P \)

\[K + d'\hat{x} = c'\rho(\hat{x}) \]

Proof: Next homework.

Note. This implies that solving the linear program is equivalent to minimizing \(d'\hat{x} \) on \(P \). This, in turn, is equivalent to sweeping in from infinity the hyperplanes corresponding to \(d'\hat{x} = \text{const} \) until they hit \(P \).