Open Addressing: Linear Probing

\[h' : U \rightarrow \{0, 1 \ldots, m - 1\} \]

- **Hash Function** is \(h(x, i) = (h'(x) + i) \mod m \)
 where \(g'(x) \) is original hash function.

- **Insert**: Attempts insertion at \(h'(x) \), then \(h'(x) + 1 \), \(h'(x) + 2 \), etc., (wrapping around to 0 after reaching end of table) until empty slot is found and \(x \) inserted there.

- In our case \(h'(x) = x \mod 15 \)

- Need to insert 19, 6, 18, 34, 25, 4 in that order
Open Addressing: Linear Probing

\(h' : U \rightarrow \{0, 1 \ldots, m - 1\} \)

- Hash Function is \(h(x, i) = (h'(x) + i) \mod m \) where \(g'(x) \) is original hash function.

- **Insert:** Attempts insertion at \(h'(x) \), then \(h'(x) + 1 \), \(h'(x) + 2 \), etc., (wrapping around to 0 after reaching end of table) until empty slot is found and \(x \) inserted there.

- In our case \(h'(x) = x \mod 15 \)

- Need to insert 19, 6, 18, 34, 25, 4 in that order
Open Addressing: Linear Probing

\[h' : U \rightarrow \{0, 1 \ldots, m - 1\} \]

- Hash Function is \(h(x, i) = (h'(x) + i) \mod m \)
 where \(g'(x) \) is original hash function.

- **Insert**: Attempts insertion at \(h'(x) \), then \(h'(x) + 1, \)
 \(h'(x) + 2 \), etc., (wrapping around to 0 after reaching end
 of table) until empty slot is found and \(x \) inserted there.

- In our case \(h'(x) = x \mod 15 \)

- Need to insert 19, 6, 18, 34, 25, 4 in that order
Open Addressing: Linear Probing

\(h' : U \rightarrow \{0, 1 \ldots, m - 1\} \)

- Hash Function is \(h(x, i) = (h'(x) + i) \mod m \)
 where \(g'(x) \) is original hash function.

- \textbf{Insert:} Attempts insertion at \(h'(x) \), then \(h'(x) + 1 \), \(h'(x) + 2 \), etc., (wrapping around to 0 after reaching end of table) until empty slot is found and \(x \) inserted there.

- In our case \(h'(x) = x \mod 15 \)

- Need to insert 19, 6, 18, 34, 25, 4 in that order
Open Addressing: Linear Probing

\[h' : U \rightarrow \{0, 1 \ldots, m - 1\} \]

- Hash Function is \(h(x, i) = (h'(x) + i) \mod m \)
 where \(g'(x) \) is original hash function.

- Insert: Attempts insertion at \(h'(x) \), then \(h'(x) + 1 \), \(h'(x) + 2 \), etc, (wrapping around to 0 after reaching end of table) until empty slot is found and \(x \) inserted there.

- In our case \(h'(x) = x \mod 15 \)

- Need to insert 19, 6, 18, 34, 25, 4 in that order
Open Addressing: Linear Probing

$h' : U \rightarrow \{0, 1 \ldots, m - 1\}$

- Hash Function is $h(x, i) = (h'(x) + i) \mod m$
 where $h'(x)$ is original hash function.

- **Insert**: Attempts insertion at $h'(x)$, then $h'(x) + 1$, $h'(x) + 2$, etc. (wrapping around to 0 after reaching end of table) until empty slot is found and x inserted there.

- In our case $h'(x) = x \mod 15$

- Need to insert 19, 6, 18, 34, 25, 4 in that order
Open Addressing: Linear Probing

$h': U \rightarrow \{0, 1 \ldots, m - 1\}$

- **Hash Function** is $h(x, i) = (h'(x) + i) \mod m$
 where $g'(x)$ is original hash function.

- **Insert**: Attempts insertion at $h'(x)$, then $h'(x) + 1$, $h'(x) + 2$, etc., (wrapping around to 0 after reaching end of table) until empty slot is found and x inserted there.

- In our case $h'(x) = x \mod 15$

- Need to insert $19, 6, 18, 34, 25, 4$ in that order