Outline:

- Quicksort
 - Average-Case Analysis of QuickSort
 - Randomized quicksort
- Selection
 - The selection problem
 - First solution: Selection by sorting
 - Randomized Selection
Quicksort(A, p, r)

begin
 if $p < r$ then
 $q =$ Partition(A, p, r);
 Quicksort($A, p, q - 1$);
 Quicksort($A, q + 1, r$);
 end
end

- **Partition(A, p, r)** reorders items in $A[p \ldots r]$;
 items $< A[r]$ are to its left; items $> A[r]$ to its right.

- Showed that if input is a random input (permutation) of n items, then average running time is $O(n \log n)$.
Formally, the average running time can be defined as follows:

- \(I_n \) is the set of all \(n! \) inputs of size \(n \)
- \(I \in I_n \) is any particular size-\(n \) input
- \(R(I) \) is the running time of the algorithm on input \(I \)

Then, the average running time over the random inputs is

\[
\sum_{I \in I_n} \Pr(I)R(I) = \frac{1}{n!} \sum_{I \in I_n} R(I) = O(n \log n)
\]

Only fact that was used was that \(A[r] \) was a random item in \(A[p \ldots r] \), i.e., the partition item is equally likely to be any item in the subset.
Outline:

- Quicksort
 - Average-Case Analysis of QuickSort
 - Randomized Quicksort

- Selection
 - The selection problem
 - First solution: Selection by sorting
 - Randomized Selection
Randomized-Partition\((A, p, r) \)

Idea:

- In the algorithm Partition\((A, p, r) \), \(A[r] \) is always used as the pivot \(x \) to partition the array \(A[p..r] \).
- In the algorithm Randomized-Partition\((A, p, r) \), we randomly choose \(j, p \leq j \leq r \), and use \(A[j] \) as pivot.
- Idea is that if we choose randomly, then the chance that we get unlucky every time is extremely low.
Let \(\text{random}(p, r) \) be a pseudorandom-number generator that returns a random number between \(p \) and \(r \)

Randomized-Partition\((A, p, r)\)

\[
\begin{align*}
\text{begin} & \\
\quad j &= \text{random}(p, r); \\
\quad \text{exchange } A[r] \text{ and } A[j]; \\
\quad \text{Partition}(A, p, r);
\end{align*}
\]

\text{end}
We make use of the Randomized-Partition idea to develop a new version of quicksort

Randomized-Quicksort(A, p, r)

begin
 if $p < r$ then
 $q = \text{Randomized-Partition}(A, p, r)$;
 Randomized-Quicksort($A, p, q - 1$);
 Randomized-Quicksort($A, q + 1, r$);
 end
end
Let $I \in I_n$ be any input.

- The running time $R(I)$ depends upon the random choices made by the algorithm in the step
 $$\text{random}(p, r); \ \text{exchange} \ A[r] \ \text{and} \ A[j]$$

- This can be different for different random choices.

- We are actually interested in $E(R(I))$, the \textit{Expected (average) Running Time (ERT)}

 \begin{itemize}
 \item average now is \textbf{not over the input}, which is fixed
 \item average is \textbf{over the random choices made by the algorithm}.
 \end{itemize}
Let $I \in \mathcal{I}_n$ be any input.

Want $E(R(I))$, the Expected Running Time, where average is taken over random choices of algorithm.

Suprisingly, we can use almost exactly the same analysis that we used for the average-case analysis of Quicksort. Recall that only facts that we used were

- Item used as a pivot is random among all items
- this statement is true in all subproblems as well.

Those two facts are still valid here, so the expected running time still satisfies

$$C_n = n - 1 + \frac{1}{n} \sum_{1 \leq k \leq n} (C_{k-1} + C_{n-k})$$

which we already proved was $O(n \log n)$.
Running Time of Randomized-Quicksort

- Just saw that for any fixed input of size n, ERT is $O(n \log n)$

- Randomized Quicksort is a Randomized Algorithm
 - Makes Random choices to determine what algorithm does next
 - When rerun on same input, algorithm can make different choices and have different running times
 - Running time of Randomized Algorithm is worst case ERT over all inputs I. In our case

 $$\max_{I \in I_n} E[R(I)] = O(n \log n)$$

- Contrast with Average Case Analysis
 - When rerun on same input, algorithm always does same things, so $R(i)$ is deterministic.
 - Given a probability distribution on inputs, calculate average running time of algorithm over all inputs

 $$\sum_{I \in I_n} \Pr(I) R(I)$$
Outline:

- Quicksort
 - Average-Case Analysis of QuickSort
 - Randomized Quicksort
- Selection
 - The Selection problem
 - First solution: Selection by sorting
 - Randomized Selection
The Selection Problem

Definition (Selection Problem)

Given a sequence of numbers \(\langle a_1, \ldots, a_n \rangle\), and an integer \(i\), \(1 \leq i \leq n\), find the \(i\)th smallest element. When \(i = \lceil n/2 \rceil\), this is called the median problem.

Example

Given \(\langle 1, 8, 23, 10, 19, 33, 100 \rangle\), the 4th smallest element is 19.

Question

How can this problem be solved efficiently?
Outline:

- Quicksort
 - Average-Case Analysis of QuickSort
 - Randomized quicksort
- Selection
 - The Selection problem
 - First solution: Selection by sorting
 - Randomized Selection
First Solution: Selection by Sorting

1. Sort the elements in ascending order with any algorithm of complexity $O(n \log n)$.
2. Return the ith element of the sorted array.

The complexity of this solution is $O(n \log n)$

Question
Can we do better?

Answer: YES, by using Randomized-Partition(A, p, r)!
Outline:
- Quicksort
 - Average-Case Analysis of QuickSort
 - Randomized quicksort
- Selection
 - The Selection problem
 - First solution: Selection by sorting
 - Randomized Selection
Problem: Select the ith smallest element in $A[p..r]$, where $1 \leq i \leq r - p + 1$

Solution: Apply Randomized-Partition(A, p, r), getting

$p \quad q \quad r$

$k = q - p + 1$

1. $i = k$
 - pivot is the solution
2. $i < k$
 - the ith smallest element in $A[p..r]$ must be the ith smallest element in $A[p..q - 1]$
3. $i > k$
 - the ith smallest element in $A[p..r]$ must be the $(i - k)$th smallest element in $A[q + 1..r]$

If necessary, **recursively** call the same procedure to the subarray.
Randomized-Select(A, p, r, i), $1 \leq i \leq r - p + 1$

```plaintext
if $p = r$ then
    | return $A[p]$
end

$q = \text{Randomized-Partition}(A, p, r)$;
$k = q - p + 1$;
if $i = k$ then return $A[q]$;
// the pivot is the answer
else if $i < k$ then
    | return Randomized-Select($A, p, q - 1, i$)
else
    | return Randomized-Select($A, q + 1, r, i - k$)
end
```

To find the ith smallest element in $A[1..n]$, call
Randomized-Select($A, 1, n, i$)
Recall that if pivot q is kth item in order, then algorithm is

If $i = k$, stop.
If $i < k \Rightarrow A[p..q-1]$.
If $i > k \Rightarrow A[q+1..r]$.

Let $m = p - r + 1$.

Note that if $k = p + \lfloor \frac{m}{2} \rfloor$ was always true, this would halve the problem size at every step and the running time would be at most

$$n + \frac{n}{2} + \frac{n}{2^2} + \frac{n}{2^3} + \ldots = n \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} \right) \leq 2n$$

This isn’t a realistic analysis because q is chosen randomly, so k is actually random number between $p..r$.

Running Time of Randomized-Select($A, 1, n, i$)
Recall that if pivot q is kth item in order then algorithm is

If $i = k$, stop.
If $i < k \Rightarrow A[p..q−1]$.
If $i > k \Rightarrow A[q+1..r]$.

Let $m = p − r + 1$.

Suppose that we could guarantee that $p + \frac{m}{4} \leq k \leq p + \frac{3}{4}m$.

This would be enough to force linearity because the recursive call would always be to a subproblem of size $\leq \frac{3}{4}m$ and the running time of the entire algorithm would be at most

$$n + \frac{3}{4}n + \left(\frac{3}{4}\right)^2 n + \left(\frac{3}{4}\right)^3 n + \ldots \leq 4n$$
Set $m = p - r + 1$. We saw that if

$$p + \frac{m}{4} \leq k \leq p + \frac{3}{4}m$$

then algorithm is linear.

While this is not always true, we can easily see that

$$\Pr \left(p + \frac{m}{4} \leq k \leq p + \frac{3}{4}m \right) \geq \frac{1}{2}.$$

This means that each stage of the algorithm has probability at least $1/2$ of reducing the problem size by $3/4$. A careful analysis will show that this implies an $O(n)$ expected running time.
Running Time of Randomized-Select($A, 1, n, i$)

More formally, suppose t’th call to the algorithm is $A(p_t, r_t, i_t)$. Let $M_t = r_t - p_t + 1$ be size of array in the subproblem and k_t location of the random pivot in that subarray. Note

- $p_1 = 1$, $r_1 = n$, $M_1 = n$
- $M_{t+1} \leq M_t - 1$
- Total cost of the algorithm is bounded by $\sum_t M_t$
- Set E_t to be event that is true if

$$p_t + \frac{M_t}{4} \leq k_t \leq p_t + \frac{3}{4}M_t,$$

and false otherwise. Then

- $\Pr(E_t) \geq 1/2$
- If E_t occurs then $M_{t+1} \leq \frac{3}{4}M_t$.
Recall that
\[M_1 = n; \quad M_{t+1} \leq M_t - 1; \quad \text{If } E_t \Rightarrow M_{t+1} \leq \frac{3}{4} M_t. \]

Note that \(E_t \) is undefined after the algorithm ends, i.e., \(M_t \leq 1 \). For larger \(t \), define \(E_t \) by flipping fair coin and setting \(E_t \) True if HEAD seen.

Now define \(M'_t \) as follows

- \(M'_1 = n \)
- \(\text{If } E_t \Rightarrow M'_{t+1} = \frac{3}{4} M'_t. \quad \text{If } (\text{not } E_t) \Rightarrow M'_{t+1} = M'_t. \)

Then \(\forall t, \quad M_t \leq M'_t. \)

In particular, since \(\sum_t M_t \) bounds the algorithm’s runtime, \(\sum_t M'_t \) also bounds the algorithm’s runtime!
Consider a p-biased coin, i.e., a coin with probability p of turning up Heads and $(1 - p)$ of Tails.

- Let X be the number of flips until seeing the first Head.
- X is a *Geometric Random Variable* with parameter p.
- $\Pr(X = i) = (1 - p)^{i-1} p$
- $E(X) = \frac{1}{p}$
- In particular, if the coin is fair, i.e., $p = 1/2$, then $E(X) = 2$.
- If at every step the coin probability can change, BUT the probability of Heads is always $\geq 1/2$, then $E(X) \leq 2$.
- In this case we say X is *bounded* by a geometric random variable with $p = 1/2$.
Running Time of Randomized-Select($A, 1, n, i$)

Given sequence of events E_1, E_2, E_3, \ldots with $\forall t, \Pr(E_t) \geq 1/2$

- Set $Z_0 = 1$ and Z_i to be the location of the i^{th} true E_t.
- Set $X_i = Z_{i+1} - Z_i$.
 - X_i is time from Z_i until next success so it is bounded by a geometric random variable with $p = 1/2$.
 - \Rightarrow Then $E(X_i) \leq 2$

- Recall $M_1 = n$; If E_t, set $M_{t+1} = \frac{3}{4} M_t$. Else $M_{t+1} = M_t$.

 Then $\sum_t M'_t = \sum_i X_i \left(\frac{3}{4}\right)^i n$ (why)

- By linearity of expectation

$$E \left(\sum_t M'_t \right) = \sum_i E(X_i) \left(\frac{3}{4}\right)^i n \leq 2n \sum_i \left(\frac{3}{4}\right)^i = 8n$$

QED
Worst Case:

\[T(n) = n - 1 + T(n - 1), \quad T(n) = O(n^2). \]

Expected Running Time:

\[O(n) \]

Expected running time much better than worst case!
Question

Why does Randomized Selection take $O(n)$ time while Randomized Quicksort takes $O(n \log n)$ time?

Answer:

- Randomized Selection needs to work on only one of the two subproblems.
- Randomized Quicksort needs to work on both of the two subproblems.
How do we generate a random number?
Dice, coin flipping, roulette wheels, ...

How does a computer generate a random number?
- By hardware: electronic noise, thermal noise, etc. Expensive but “true” random numbers in some sense
- By software: pseudorandom numbers. A long sequence of seemingly random numbers whose pattern is difficult to find
- Pseudorandom numbers are good enough for most applications
Another Analysis of the Running Time of Randomized-Select($A, 1, n, i$)

$T(n)$: upper bound on the expected number of comparisons made by Randomized-Select($A, 1, n, i$) for any i

$T(1) = 0$

For $n > 1$, we get

$T(n) \leq n + \sum_{k=1}^{n} \left(\frac{1}{n} \cdot T(\max\{k - 1, n - k\}) \right)$

initial partition recursion, assume the bad case

Which is a complicated recurrence!

We use the guess & induction method

Guess:

$T(n) \leq c \cdot n$, for all n

for some constant c to be figured out later.
Proof that $T(n) \leq cn$

Induction step: Assume that $T(m) \leq cm$ for all $m \leq n - 1$. Then try to show $T(n) \leq cn$:

$$T(n) \leq n + \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k)$$

$$\leq n + \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck$$

$$\leq \ldots$$

$$\leq \frac{3c}{4} n + \frac{c}{2} + n$$

We want $\frac{3c}{4} n + \frac{c}{2} + n \leq cn$, or $n \geq \frac{2c}{c-4}$.

If we choose $c \geq 12$. Then the induction step works for $n \geq 3$.

Induction basis: $T(1) \leq c \cdot 1$, $T(2) \leq c \cdot 2$.

So if we choose $c = \max\{12, T(1), T(2)/2\}$, then the entire proof works.