Spanning trees and minimum spanning trees (MST).
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
Outline

- Spanning trees and minimum spanning trees (MST).
- Tools for solving the MST problem.
- Prim’s algorithm for the MST problem.
 - The idea
 - The algorithm
 - Analysis
Spanning Trees

Definition

A subgraph T of a undirected graph $G = (V, E)$ is a **spanning tree** of G if it is a tree and contains **every vertex** of G.
Spanning Trees

Definition

A subgraph T of a undirected graph $G = (V, E)$ is a spanning tree of G if it is a tree and contains every vertex of G.

Example

Graph

spanning tree 1

spanning tree 2

spanning tree 3
Theorem

Every connected graph has a spanning tree.
Theorem

Every connected graph has a spanning tree.

Question

Why is this true?
Theorem

Every connected graph has a spanning tree.

Question

Why is this true?

Question

Given a connected graph G, how can you find a spanning tree of G?
A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.
Weighted Graphs

Definition

A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.

Example

- **Weighted graph**
 - Tree 1, \(w = 74 \)
 - Tree 2, \(w = 71 \)
 - Tree 3, \(w = 72 \)
Weighted Graphs

Definition

A **weighted graph** is a graph, in which each edge has a **weight** (some real number) Could denote length, time, strength, etc.

Example

- **Weight of a graph**: The sum of the weights of all edges

![Diagram of weighted graphs and trees](image)
Definition

A **Minimum spanning tree (MST)** of an undirected connected weighted graph is a spanning tree of **minimum weight** (among all spanning trees).
Definition

A **Minimum spanning tree (MST)** of an undirected connected weighted graph is a spanning tree of *minimum weight* (among all spanning trees).

Example

![weighted graph](image1.png)

- Tree 1, $w=74$
- Tree 2, $w=71$
- Tree 3, $w=72$
Remark

The minimum spanning tree may not be unique

Example

![Graph with weights and two minimum spanning trees (MST1 and MST2)]
Remark

The minimum spanning tree may not be unique

Example

Note: if the weights of all the edges are distinct, MST is provably unique (proof will follow from later results).
Minimum Spanning Tree Problem

Definition (MST Problem)

Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.
Definition (MST Problem)

Given a connected weighted undirected graph G, design an algorithm that outputs a minimum spanning tree (MST) of G.
Outline

- Spanning trees and minimum spanning trees (MST).

Minimum Spanning Trees and Prim’s Algorithm
Version of September 23, 2016
Outline

- Spanning trees and minimum spanning trees (MST).
- Tools for solving the MST problem.
- **Spanning trees** and minimum spanning trees (MST).
- **Tools for solving the MST problem.**
- **Prim’s algorithm** for the MST problem.
 - The idea
 - The algorithm
 - Analysis
A tree is an **acyclic** graph
A tree is an **acyclic** graph

1. **start** with an **empty** graph
A tree is an **acyclic** graph

1. start with an **empty** graph
2. try to **add** edges one at a time, subject to not creating a cycle
A tree is an **acyclic** graph

1. start with an **empty** graph
2. try to **add** edges one at a time, subject to not creating a cycle
3. if after adding each edge we are sure that the resulting graph is a **subset** of some minimum spanning tree, then, after \(n - 1 \) steps we are done.
A tree is an **acyclic** graph

1. start with an **empty** graph
2. try to **add** edges one at a time, subject to not creating a cycle
3. if after adding each edge we are sure that the resulting graph is a **subset** of some minimum spanning tree, then, after \(n - 1 \) steps we are done.

Hard part is ensuring (3)!
Generic Algorithm for MST problem

Definition

Let \(A \) be a set of edges such that \(A \subseteq T \), where \(T \) is some MST.
Definition
Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is **safe edge** for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.
Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is **safe edge** for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.

- If at each step, we can find a safe edge (u, v), we can...
Generic Algorithm for MST problem

Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is **safe edge** for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.

- If at each step, we can find a safe edge (u, v), we can **grow** a MST.
Generic Algorithm for MST problem

Definition

Let A be a set of edges such that $A \subseteq T$, where T is some MST. Edge (u, v) is safe edge for A, if $A \cup \{(u, v)\}$ is also a subset of some MST.

- If at each step, we can find a safe edge (u, v), we can grow a MST.

Generic-MST(G, w)

```
begin
    A = EMPTY;
    while $A$ does not form a spanning tree do
        find an edge $(u, v)$ that is safe for $A$;
        add $(u, v)$ to $A$;
    end
    return $A$
end
```
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph.
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph. A **cut** $(S, V - S)$ of G is a partition of V.

- **Example**
- Let $G = (V, E)$ be a connected and undirected graph. A **cut** $(S, V - S)$ of G is a partition of V.

An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$.

A cut respects a set A of edges if no edge in A crosses the cut.

An edge is a **light edge** crossing a cut if its weight is the minimum of any edge crossing the cut.
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

![Diagram of a graph with a cut](image)
Some Definitions

Definition
Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

Definition
An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$.
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

Definition

An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$. A cut respects a set A of edges if no edge in A crosses the cut.
Some Definitions

Definition

Let $G = (V, E)$ be a connected and undirected graph. A cut $(S, V - S)$ of G is a partition of V.

Example

![Diagram](image)

Definition

An edge $(u, v) \in E$ crosses the cut $(S, V - S)$ if one of its endpoints is in S, and the other is in $V - S$. A cut respects a set A of edges if no edge in A crosses the cut. An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.
Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E. A subset A of E is included in some minimum spanning tree for G. Let $(S, V - S)$ be any cut of G that respects A. Let (u, v) be a light edge crossing the cut $(S, V - S)$. Then, edge (u, v) is safe for A. This implies we can find a safe edge by first finding a cut that respects A, then finding a light edge crossing that cut. That light edge is a safe edge.
Lemma

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.
- Let A be a subset of E that is included in some minimum spanning tree for G.
- Then, edge (u, v) is safe for A.

This implies we can find a safe edge by:
1. first finding a cut that respects A,
2. then finding a light edge crossing that cut.

That light edge is a safe edge.
Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.

Let A be a subset of E that is included in some minimum spanning tree for G.

Let $(S, V - S)$ be any cut of G that respects A. Then, edge (u, v) is safe for A.

This implies we can find a safe edge by:

1. First finding a cut that respects A.
2. Then finding a light edge crossing that cut.

That light edge is a safe edge.
How to Find a Safe Edge?

Lemma

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be *any* cut of G that respects A.
- (u, v) be a light edge crossing the cut $(S, V - S)$.
How to Find a Safe Edge?

Lemma

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.
- A be a subset of E that is included in some minimum spanning tree for G.

Let
- $(S, V - S)$ be any cut of G that respects A.
- (u, v) be a light edge crossing the cut $(S, V - S)$.

Then, edge (u, v) is safe for A.
How to Find a Safe Edge?

Lemma

Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E.

Let A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be any cut of G that respects A.
- (u, v) be a light edge crossing the cut $(S, V - S)$.

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by

[Diagram of a graph with a cut and a light edge highlighted]
How to Find a Safe Edge?

Lemma

1. Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E
2. A be a subset of E that is included in some minimum spanning tree for G.

Let

1. $(S, V - S)$ be any cut of G that respects A
2. (u, v) be a light edge crossing the cut $(S, V - S)$

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by

1. first finding a cut that respects A,
Lemma

- Let $G = (V, E)$ be a connected, undirected graph with a real-valued weight function w defined on E
- A be a subset of E that is included in some minimum spanning tree for G.

Let

- $(S, V - S)$ be any cut of G that respects A
- (u, v) be a light edge crossing the cut $(S, V - S)$

Then, edge (u, v) is safe for A.

This implies we can find a safe edge by

1. first finding a cut that respects A,
2. then finding a light edge crossing that cut.

That light edge is a safe edge.
Proof

Let $A \subseteq T$, where T is a MST.
Proof

Let $A \subseteq T$, where T is a MST.

Case 1: $(u, v) \in T$
Let $A \subseteq T$, where T is a MST.

Case 1: $(u, v) \in T$

- $A \cup \{(u, v)\} \subseteq T$.
- Hence (u, v) is safe for A.
Proof (cont’d)

- Case 2: \((u, v) \notin T\)
Proof (cont’d)

Case 2: \((u, v) \notin T\)

Idea: construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
Case 2: \((u, v) \notin T\)

- Idea: construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
Proof (cont’d)

Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
 - Let \((x, y)\) be such an edge.
Proof (cont’d)

Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
 - Let \((x, y)\) be such an edge.
- Since the cut respects \(A\), \((x, y) \notin A\).
Case 2: \((u, v) \notin T\)

- **Idea:** construct another MST \(T'\) s.t. \(A \cup \{(u, v)\} \subseteq T'\).
- Consider the unique path \(P\) in \(T\) from \(u\) to \(v\).
- Since \(u\) and \(v\) are on opposite sides of the cut \((S, V - S)\),
 - There is at least one edge in \(P\) that crosses the cut.
 - Let \((x, y)\) be such an edge.
- Since the cut respects \(A\), \((x, y) \notin A\).
- Since \((u, v)\) is a light edge crossing the cut, we have \(w(u, v) \leq w(x, y)\).
Adding \((u, v)\) to \(T\), creates a cycle with \(P\).
Adding \((u, v)\) to \(T\), creates a cycle with \(P\).
Removing any edge from this cycle gives a tree again.
Adding \((u, v)\) to \(T\), creates a cycle with \(P\).
Removing any edge from this cycle gives a tree again.
In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

The weight of \(T'\) is
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again. In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

The weight of \(T'\) is

\[
\begin{align*}
w(T') &= w(T) - w(x, y) + w(u, v) \\
&\leq w(T)
\end{align*}
\]
Adding \((u, v)\) to \(T\), creates a cycle with \(P\). Removing any edge from this cycle gives a tree again.
In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

The weight of \(T'\) is

\[
w(T') = w(T) - w(x, y) + w(u, v) \\
\leq w(T)
\]

Since \(T\) is a MST, \(W(T) \leq W(T')\) so \(W(T') = W(T)\) and \(T\) is also an MST.
• Adding \((u, v)\) to \(T\), creates a cycle with \(P\).
 Removing any edge from this cycle gives a tree again.
 In particular, adding \((u, v)\) and removing \((x, y)\) creates a new tree \(T'\).

• The weight of \(T'\) is

\[
w(T') = w(T) - w(x, y) + w(u, v) \\
\leq w(T)
\]

• Since \(T\) is a MST, \(W(T) \leq W(T')\) so \(W(T') = W(T)\) and \(T\) is also an MST.

• But \(A \cup \{(u, v)\} \subseteq T'\), so \((u, v)\), is safe for \(A\).
• The Lemma is proved.
Outline

- **Spanning trees** and minimum spanning trees (MST).
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Tools for solving the MST problem.
Spanning trees and minimum spanning trees (MST).
Tools for solving the MST problem.
Prim’s algorithm for the MST problem.
 - The idea
 - The algorithm
 - Analysis
The generic algorithm gives us an idea how to 'grow' a MST.
Prim’s Algorithm

The generic algorithm gives us an idea how to ‘grow’ a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.
The generic algorithm gives us an idea how to ’grow’ a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.

- We can select any cut (that respects current edge set A) and find a light edge crossing that cut to proceed.
The generic algorithm gives us an idea how to 'grow' a MST.

- If you read the theorem and proof carefully, you will notice that the choice of a cut (and hence a corresponding light edge) in each iteration is arbitrary.

- We can select any cut (that respects current edge set A) and find a light edge crossing that cut to proceed.

- Different ways of choosing cuts correspond to different algorithms.

- The two major ones are Prim’s algorithm and Kruskal’s algorithm,
Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking any vertex r to be the root of the tree.
Prim’s Algorithm

Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking *any* vertex \(r \) to be the root of the tree.
- While the tree does not contain all vertices in the graph:
Prim’s Algorithm

Prim’s algorithm
- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree
- Start by picking any vertex \(r \) to be the root of the tree.
- While the tree does not contain all vertices in the graph: find shortest edge leaving tree and add it to the tree.
Prim’s algorithm

- grows a tree, adding a new light edge in each iteration, creating a new tree.

Growing a tree

- Start by picking any vertex r to be the root of the tree.
- While the tree does not contain all vertices in the graph: find shortest edge leaving tree and add it to the tree.

We will show that these steps can be implemented in total $O(E \cdot \log V)$.
Step 0:

- Choose any element r; set $S = \{r\}$ and $A = \emptyset$.
- (Take r as the root of our spanning tree.)
Step 0:
- Choose any element \(r \); set \(S = \{r\} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:
- **Find a lightest edge** such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
Step 0:

- Choose any element \(r \); set \(S = \{ r \} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:

- **Find a lightest edge** such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
- **Add** this edge to \(A \) and its (other) endpoint to \(S \).
Step 0:
- Choose any element \(r \); set \(S = \{ r \} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:
- **Find a lightest edge** such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
- **Add** this edge to \(A \) and its (other) endpoint to \(S \).

Step 2:
- If \(V \setminus S = \emptyset \), then stop and output (minimum) spanning tree \((S, A)\);
Step 0:
- Choose any element \(r \); set \(S = \{ r \} \) and \(A = \emptyset \).
- (Take \(r \) as the root of our spanning tree.)

Step 1:
- **Find a lightest edge** such that one endpoint is in \(S \) and the other is in \(V \setminus S \).
- **Add** this edge to \(A \) and its (other) endpoint to \(S \).

Step 2:
- If \(V \setminus S = \emptyset \), then stop and output (minimum) spanning tree \((S, A)\); Otherwise, go to Step 1.
Worked Example

Connected graph
lightest edge = \{a,b\}

Step 0
S={a}
V \setminus S = \{b,c,d,e,f,g\}
lightest edge = \{a,b\}
Step 1.1 before
S={a}
V \ S = \{b,c,d,e,f,g\}
A={}
lighest edge = \{a,b\}

Step 1.1 after
S={a,b}
V \ S = \{c,d,e,f,g\}
A=\{\{a,b\}\}
lighest edge = \{b,d\}, \{a,c\}
Step 1.2 before
S={a,b}
V \ S = \{c,d,e,f,g\}
A=\{\{a,b\}\}
lighest edge = \{b,d\}, \{a,c\}

Step 1.2 after
S={a,b,d}
V \ S = \{c,e,f,g\}
A=\{\{a,b\},\{b,d\}\}
lighest edge = \{d,c\}
Step 1.3 before
S={a,b,d}
V \ S = {c,e,f,g}
A={\{a,b\},\{b,d\}}
lighest edge = \{d,c\}

Step 1.3 after
S={a,b,c,d}
V \ S = \{e,f,g\}
A={\{a,b\},\{b,d\},\{c,d\}}
lighest edge = \{c,f\}
Step 1.4 before

$S={a, b, c, d}$

$V \setminus S = \{e, f, g\}$

$A=\{\{a,b\}, \{b,d\}, \{c,d\}\}$

lightest edge = $\{c,f\}$

Step 1.4 after

$S={a, b, c, d, f}$

$V \setminus S = \{e, g\}$

$A=\{\{a,b\}, \{b,d\}, \{c,d\}, \{c,f\}\}$

lightest edge = $\{f,g\}$
Step 1.5 before
\[S = \{a,b,c,d,f\} \]
\[V \setminus S = \{e,g\} \]
\[A = \{\{a,b\},\{b,d\},\{c,d\},\{c,f\}\} \]
lighest edge = \{f,g\}

Step 1.5 after
\[S = \{a,b,c,d,f,g\} \]
\[V \setminus S = \{e\} \]
\[A = \{\{a,b\},\{b,d\},\{c,d\},\{c,f\}, \{f,g\}\} \]
lighest edge = \{f,e\}
Prim’s Example – Continued

Step 1.6 before
$S = \{a, b, c, d, f, g\}$
$V \setminus S = \{e\}$
$A = \{\{a, b\}, \{b, d\}, \{c, d\}, \{c, f\}, \{f, g\}\}$
lightest edge = \{f, e\}

Step 1.6 after
$S = \{a, b, c, d, e, f, g\}$
$V \setminus S = \{\}$
$A = \{\{a, b\}, \{b, d\}, \{c, d\}, \{c, f\}, \{f, g\}, \{f, e\}\}$
MST completed
Outline

- **Spanning trees** and minimum spanning trees (MST).
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Strategy for solving the MST problem.
Outline

- **Spanning trees** and minimum spanning trees (MST).
- Strategy for solving the MST problem.
- **Prim’s algorithm** for the MST problem.
 - The idea
 - **The algorithm**
 - Analysis
Recall Idea of Prim’s Algorithm

Step 0: Choose any element r and set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$. Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S, A); Otherwise go to Step 1.
Recall Idea of Prim’s Algorithm

Step 0: Choose any element r and set $S = \{r\}$ and $A = \emptyset$. (Take r as the root of our spanning tree.)

Step 1: Find a lightest edge such that one endpoint is in S and the other is in $V \setminus S$.

Add this edge to A and its (other) endpoint to S.

Step 2: If $V \setminus S = \emptyset$, then stop and output the minimum spanning tree (S, A); Otherwise go to Step 1.

Questions

1. Why does this produce a minimum spanning tree?
2. How does the algorithm find the lightest edge and update A efficiently?
3. How does the algorithm update S efficiently?
Question

How does the algorithm update S efficiently?

Answer: Color the vertices. Initially all are white. Change the color to black when the vertex is moved to S. Use $\text{color}[v]$ to store color.

Question

How does the algorithm find a lightest edge and update A efficiently?

Answer:
1. Use a priority queue to find the lightest edge.
2. Use $\text{pred}[v]$ to update A.
Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
Question
How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.

Answer: Use a priority queue to find the lightest edge.
- Use $\text{pred}[v]$ to update A.

Answer: Use a priority queue to find the lightest edge.
Question
How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.
Question

How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question

How does the algorithm find a lightest edge and update A efficiently?
Question
How does the algorithm update S efficiently?

Answer: Color the vertices.

- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question
How does the algorithm find a lightest edge and update A efficiently?

Answer:
1. Use a priority queue to find the lightest edge.
Question: How does the algorithm update S efficiently?

Answer: Color the vertices.
- Initially all are white.
- Change the color to black when the vertex is moved to S.
- Use $\text{color}[v]$ to store color.

Question: How does the algorithm find a lightest edge and update A efficiently?

Answer:
1. Use a priority queue to find the lightest edge.
2. Use $\text{pred}[v]$ to update A.
Reviewing Priority Queues

Priority Queue is a data structure
 - can be implemented as a heap

Supports the following operations:
Priority Queue is a data structure
 - can be implemented as a heap

Supports the following operations:
Insert\((u, \text{key})\): Insert \(u\) with the key value \(\text{key}\) in \(Q\).
Reviewing Priority Queues

Priority Queue is a data structure
 • can be implemented as a heap

Supports the following operations:

- \textbf{Insert}(u, \textit{key}): Insert \(u \) with the key value \(\textit{key} \) in \(Q \).
- \(u = \text{Extract-Min}() \): Extract the item with minimum key value.
Reviewing Priority Queues

Priority Queue is a data structure
 - can be implemented as a heap

Supports the following operations:

- **Insert**\((u, key)\): Insert \(u\) with the key value \(key\) in \(Q\).
- **\(u = \text{Extract-Min}\)\): Extract the item with minimum key value.
- **\(\text{Decrease-Key}(u, \text{new-key})\): Decrease \(u\)’s key value to \(\text{new-key}\).**

Remark: We already saw how to implement Insert and Extract-Min (and Delete) in \(O(\log |Q|)\) time. Same ideas can also be used to implement Decrease-Key in \(O(\log |Q|)\) time. Alternatively, can implement Decrease-Key using Delete followed by Insert.
Reviewing Priority Queues

Priority Queue is a data structure
 • can be implemented as a heap

Supports the following operations:

Insert\((u, key)\): Insert \(u\) with the key value \(key\) in \(Q\).

\(u = \text{Extract-Min}()\): Extract the item with minimum key value.

Decrease-Key\((u, \text{new-key})\): Decrease \(u\)'s key value to \(\text{new-key}\).

Remark: We already saw how to implement Insert and Extract-Min (and Delete) in \(O(\log |Q|)\) time.
Same ideas can also be used to implement Decrease-Key in \(O(\log |Q|)\) time.
Alternatively, can implement Decrease-Key using Delete followed by Insert.
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair \((u, key[u])\), where
- \(u\) is a vertex in \(V \setminus S\),

\[
\begin{align*}
\text{new edge} & \quad \text{key}[f] = 8, \quad \text{pred}[f] = e \\
\text{key}[i] & = \infty, \quad \text{pred}[i] = \text{nil} \\
\text{key}[i] & = 23, \quad \text{pred}[i] = f \\
\end{align*}
\]

After adding the new edge and vertex \(f\), update the key and pred for each vertex \(v\) adjacent to \(f\).

\[
\begin{align*}
\text{key}[g] & = 16, \quad \text{pred}[g] = c \\
\text{key}[h] & = 24, \quad \text{pred}[h] = b \\
\end{align*}
\]

\(f\) has the minimum key.
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair \((u, key[u])\), where

- \(u\) is a vertex in \(V \setminus S\),
- \(key[u]\) is the weight of the lightest edge from \(u\) to any vertex in \(S\).

(The endpoint of this edge in \(S\) is stored in \(pred[u]\), which is used to build the MST tree.)
Using a Priority Queue to Find the Lightest Edge

Each item of the queue is a pair \((u, \text{key}[u])\), where

- \(u\) is a vertex in \(V \setminus S\),
- \(\text{key}[u]\) is the weight of the lightest edge from \(u\) to any vertex in \(S\). (The endpoint of this edge in \(S\) is stored in \(\text{pred}[u]\), which is used to build the MST tree.)

\[
\begin{align*}
\text{key}[f] &= 8, \quad \text{pred}[f] = e \\
\text{key}[i] &= \infty, \quad \text{pred}[i] = \text{nil} \\
\text{key}[g] &= 16, \quad \text{pred}[g] = c \\
\text{key}[h] &= 24, \quad \text{pred}[h] = b \\
\rightarrow \quad &f \text{ has the minimum key}
\end{align*}
\]

After adding the new edge and vertex \(f\), update the \(\text{key}[v]\) and \(\text{pred}[v]\) for each vertex \(v\) adjacent to \(f\).
begin
 foreach $u \in V$ do
 $color[u] = \text{WHITE};$ $key[u] = +\infty;$ \quad // initialize
 end
 $key[r] = 0;$ $pred[r] = \text{NIL};$ \quad // start at root
 $Q = \text{new PriQueue}(V);$ \quad // put vertices in Q
 while Q is nonempty do
 $u = Q.\text{Extract-Min}();$ \quad // lightest edge
 foreach $v \in \text{adj}[u]$ do
 if $(color[v] = \text{WHITE}) && (w[u, v] < key[v])$ then
 $key[v] = w[u, v];$ \quad // new lightest edge
 $Q.\text{Decrease-Key}(v, key[v]);$
 $pred[v] = u;$
 end
 end
 end
 $color[u] = \text{BLACK};$
end
end
When the algorithm terminates, $Q = \emptyset$ and the MST is

$$T = \left\{ \{v, \text{pred}[v]\} : v \in V \setminus \{r\} \right\}.$$

- The pred pointers define the MST as an inverted tree rooted at r.
Example for Running Prim’s Algorithm

```
<table>
<thead>
<tr>
<th>u</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>key[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pred[u]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

A graph with nodes a, b, c, d, e, f and edges with weights 1, 2, 3, 4, 5, 10, 3, 4.
Outline

- **Spanning trees** and minimum spanning trees (MST).
Outline

- Spanning trees and minimum spanning trees (MST).
- Strategy for solving the MST problem.
• **Spanning trees** and minimum spanning trees (MST).
• Strategy for solving the MST problem.
• **Prim’s algorithm** for the MST problem.
 • The idea
 • The algorithm
 • Analysis
begin
 foreach \(u \in V \) do
 \(key[u] = +\infty; \) color\([u]\) = WHITE; // \(O(V) \)
 end

 key\([r]\) = 0; pred\([r]\) = NIL;
 Q = new PriQueue\((V) \); // \(O(V) \)

 while Q is nonempty do
 u = Q.Extract-Min(); // Do this for each vertex
 foreach \(v \in adj[u] \) do
 // Do the following for each edge twice
 if (color\([v]\) = WHITE) && (\(w[u, v] < key[v] \)) then
 key\([v]\) = \(w[u, v] \); pred\([v]\) = \(u \);
 Q.Decrease-Key\((v, key[v])\); // This is bottleneck
 end
 end
 color\([u]\) = BLACK;
 end
end
The data structure \texttt{PriQueue} (heap) supports the following two operations:

- \(O(|V|)\) for creating new Priority Queue
- \(O(\log V)\) for \texttt{Extract-Min} on a PriQueue of size at most \(V\).
 Total cost: \(O(V \log V)\)
- \(O(\log V)\) time for \texttt{Decrease-Key} on a PriQueue of size at most \(V\).
 Total cost: \(O(E \log V)\).

Total cost is then \(O((V + E) \log V) = O(E \log V)\)
A more advanced Priority Queue implementation called *Fibonacci Heaps* allow

- $O(1)$ for inserting each item
- $O(\log |V|)$ for Extract-Min
- $O(1)$ (amortized) for each Decrease-Key

Since algorithm performs $|V|$ Inserts, $|V|$ Extract-Mins and at most E Decrease-Keys this leads to a $O(|E| + |V| \log |V|)$ algorithm, improving upon the $O(E \log V)$ more naive implementation.