Longest Common Subsequences and Substrings

Version October 28, 2016
Given two sequences $X = (x_1, x_2, \ldots, x_m)$ and $Y = (y_1, y_2, \ldots, y_n)$,

Z is a *common subsequence* of X and Y of length k

if there are two strictly increasing sequence of indices i and j
such that for $p = 1, 2, \ldots, k$, $x_{i_p} = y_{j_p} = z_p$.
Longest Common Subsequence

Given two sequences $X = (x_1, x_2, \ldots, x_m)$ and $Y = (y_1, y_2, \ldots, y_n)$,

Z is a common subsequence of X and Y of length k

if there are two strictly increasing sequence of indices i and j
such that for $p = 1, 2, \ldots, k$, $x_{i_p} = y_{j_p} = z_p$.

Example:

X: A B C B D A B

Y: B D C A B A

Z: B C B A
Given two sequences \(X = (x_1, x_2, ..., x_m) \) and \(Y = (y_1, y_2, ..., y_n) \),

\(Z \) is a common subsequence of \(X \) and \(Y \) of length \(k \)

if there are two strictly increasing sequence of indices \(i \) and \(j \)
such that for \(p = 1, 2, \ldots, k \), \(x_{i_p} = y_{j_p} = z_p \).

Example:
\[
\begin{align*}
X: & \quad A \quad B \quad C \quad B \quad D \quad A \quad B \\
Y: & \quad B \quad D \quad C \quad A \quad B \quad A \\
Z: & \quad B \quad C \quad B \quad A
\end{align*}
\]

Problem: Find a longest common subsequence (lcs) of \(X \) and \(Y \)
in \(O(mn) \) time

Solution: Use Dynamic Programming
Step 1: Space of Subproblems

For $1 \leq i \leq m$, and $1 \leq j \leq n$,

- Define $d_{i,j}$ to be the length of the longest common subsequence of $X[1..i]$ and $Y[1..j]$.
- Let D be the $m \times n$ matrix $[d_{i,j}]$.
Step 2: Recursive Formulation

Let \(Z_k = (z_1, \ldots, z_k) \) be a LCS of \(X[1..i] \) and \(Y[1..j] \).
Step 2: Recursive Formulation

Let $Z_k = (z_1, \ldots, z_k)$ be a LCS of $X[1..i]$ and $Y[1..j]$.

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_k is $LCS(X[1..i - 1], Y[1..j - 1])$ followed by z_k.
Solution

Step 2: Recursive Formulation

Let $Z_k = (z_1, \ldots, z_k)$ be a LCS of $X[1..i]$ and $Y[1..j]$.

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_k is $LCS(X[1..i - 1], Y[1..j - 1])$ followed by z_k

Case 2: If $x_i \neq y_j$, then Z_k is either $LCS(X[1..i - 1], Y[1..j])$ or $LCS(X[1..i], Y[1..j - 1])$
Step 2: Recursive Formulation

Let $Z_k = (z_1, \ldots, z_k)$ be a LCS of $X[1..i]$ and $Y[1..j]$.

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_k is $\text{LCS}(X[1..i - 1], Y[1..j - 1])$ followed by z_k.

Case 2: If $x_i \neq y_j$, then Z_k is either $\text{LCS}(X[1..i - 1], Y[1..j])$ or $\text{LCS}(, X[1..i], Y[1..j - 1])$.

If $x_i \neq y_j$, the answer is the larger of the LCS's of those two cases.
Step 2: Recursive Formulation

Let $Z_k = (z_1, \ldots, z_k)$ be a LCS of $X[1..i]$ and $Y[1..j]$.

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_k is $LCS(X[1..i - 1], Y[1..j - 1])$ followed by z_k.

Case 2: If $x_i \neq y_j$, then Z_k is either $LCS(X[1..i - 1], Y[1..j])$ or $LCS(X[1..i], Y[1..j - 1])$.

If $x_i \neq y_j$, the answer is the larger of the LCS’s of those two cases.

$$d_{i,j} = \begin{cases}
 d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\
 \max\{d_{i-1,j}, d_{i,j-1}\} & \text{if } x_i \neq y_j
\end{cases}$$
Step 3: Bottom-up Computation by Rows

Initialize first row and column of the matrix \((d[0, j] \text{ and } d[i, 0])\) to 0.
Step 3: Bottom-up Computation by Rows

Initialize first row and column of the matrix \((d[0, j] \text{ and } d[i, 0])\) to 0

Calculate \(d[1, j]\) for \(j = 1, 2, \ldots, n\)
Step 3: Bottom-up Computation by Rows

Initialize first row and column of the matrix \((d[0, j] \text{ and } d[i, 0])\) to 0

Calculate \(d[1, j]\) for \(j = 1, 2, \ldots, n\)

Then, \(d[2, j]\) for \(j = 1, 2, \ldots, n\)
Step 3: Bottom-up Computation by Rows

Initialize first row and column of the matrix \((d[0, j] \text{ and } d[i, 0])\) to 0

Calculate \(d[1, j]\) for \(j = 1, 2, \ldots, n\)

Then, \(d[2, j]\) for \(j = 1, 2, \ldots, n\)

Then, \(d[3, j]\) for \(j = 1, 2, \ldots, n\)
Step 3: Bottom-up Computation by Rows

Initialize first row and column of the matrix \((d[0, j] \text{ and } d[i, 0])\) to 0

Calculate \(d[1, j]\) for \(j = 1, 2, \ldots, n\)

Then, \(d[2, j]\) for \(j = 1, 2, \ldots, n\)

Then, \(d[3, j]\) for \(j = 1, 2, \ldots, n\)

....

We fill the table row by row, filling in each row, left to right.

\[
\begin{array}{c|cccccc}
D[i, j] & j = 0 & 1 & 2 & 3 & \cdots & n \\
\hline
i = 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
2 & 0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\vdots & 0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
m & 0 & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}
\]
We also create another $m \times n$ matrix $p[i, j]$ for $1 \leq i \leq m$, and $1 \leq j \leq n$.
This stores which of the three choices led to the maximum value creating $d[i, j]$.
This is done by pointing an arrow towards the entry that led to that choice. These arrows will permit reconstructing the elements of the LCS.
LONGEST-COMMON-SUBSEQUENCE(X, Y)

\[
\begin{align*}
m & \leftarrow \text{length}(X); \\
n & \leftarrow \text{length}(Y); \\
\end{align*}
\]

// initialization
\[
\begin{align*}
\text{for } i & \leftarrow 0 \text{ to } m \\
& \quad \text{\(d[i, 0] \leftarrow 0;\)} \\
\text{for } j & \leftarrow 0 \text{ to } n \\
& \quad \text{\(d[0, j] \leftarrow 0;\)}
\end{align*}
\]

// dynamic programming
\[
\begin{align*}
\text{for } i & \leftarrow 1 \text{ to } m \\
& \quad \text{\(\text{for } j \leftarrow 1 \text{ to } n \)} \\
& \quad \quad \text{if } (x_i = y_j) \\
& \quad \quad \quad \text{\(d[i, j] \leftarrow d[i - 1, j - 1] + 1;\)} \\
& \quad \quad \quad \text{\(p[i, j] \leftarrow "LU";\)} \quad // "LU" indicates left up arrow \\
& \quad \quad \text{\(\)} \\
& \quad \text{\(\quad \)} \\
& \quad \text{\(\) else} \\
\end{align*}
\]
if \((d[i-1,j] \geq d[i,j-1])\)
\[d[i,j] \leftarrow d[i-1,j];\]

\[p[i,j] \leftarrow "U"; \quad // \text{"U" indicates up arrow}\]

else
\[d[i,j] \leftarrow d[i,j-1];\]

\[p[i,j] \leftarrow "L"; \quad // \text{"L" indicates left}\]
end if
end if
end for
end for

return \(d, p;\)

Since it takes only \(O(1)\) time to fill in each of the \(O(mn)\) table entries the algorithm runs in \(O(mn)\) time.
Step 4: Construction of Optimal Solution

As mentioned before, we also maintain a $m \times n$ matrix p for storing arrows to reconstruct the elements of the LCS. The following recursive procedure prints out an LCS of X and Y.

PRINT-LCS(p, X, i, j)
 if $(i = 0 \text{ or } j = 0)$ return NULL;
 if ($p[i, j] = \text{“LU”}$)
 PRINT-LCS(p, X, $i - 1$, $j - 1$);
 print x_i;
 else
 if ($p[i, j] = \text{“U”}$)
 PRINT-LCS(p, X, $i - 1$, j);
 else
 PRINT-LCS(p, X, i, $j - 1$);
 end if
A slightly different problem with a similar solution

Given two strings \(X = x_1x_2...x_m \) and \(Y = y_1y_2...y_n \), find their \emph{longest common substring} \(Z \), i.e., a largest largest \(k \) for which there are indices \(i \) and \(j \) with \(x_ix_{i+1}...x_{i+k-1} = y_jy_{j+1}...y_{j+k-1} \).

For example:
\begin{align*}
X : & \text{ DEADBEEF} \\
Y : & \text{ EATBEEF} \\
Z : & \text{ BEEF} \quad \text{//pick the longest contiguous substring}
\end{align*}
A slightly different problem with a similar solution

Given two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$, find their longest common substring Z, i.e., a largest largest k for which there are indices i and j with $x_ix_{i+1}...x_{i+k-1} = y_jy_{j+1}...y_{j+k-1}$.

For example:
$X : \text{DEADBEEF}$
$Y : \text{EATBEEF}$
$Z : \text{BEEF} \quad //\text{pick the longest contiguous substring}$

Show how to do this in time $O(mn)$ by dynamic programming.
Step 1: Space of Subproblems

For $1 \leq i \leq m$, and $1 \leq j \leq n$,

- First Attempt: Define $d_{i,j}'$ to be the length of the longest common substring of $X[1..i]$ and $Y[1..j]$. (Does this work?)
Step 1: Space of Subproblems

For $1 \leq i \leq m$, and $1 \leq j \leq n$,

- First Attempt: Define $d'_{i,j}$ to be the length of the longest common substring of $X[1..i]$ and $Y[1..j]$. (Does this work?)
- Second Attempt: Define $d_{i,j}$ to be the length of the longest common substring ending at x_i and y_j. (Does this work?)
Step 1: Space of Subproblems

For $1 \leq i \leq m$, and $1 \leq j \leq n$,

- First Attempt: Define $d'_{i,j}$ to be the length of the longest common substring of $X[1..i]$ and $Y[1..j]$. (Does this work?)
- Second Attempt: Define $d_{i,j}$ to be the length of the longest common substring ending at x_i and y_j. (Does this work?)
- Let D be the $m \times n$ matrix $[d_{i,j}]$.
 - How does D provide answer?
Step 2: Recursive Formulation

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and

Z_{k-1} is a LCS of X and Y ending at x_{i-1} and y_{j-1}
Step 2: Recursive Formulation

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_{k-1} is a LCS of X and Y ending at x_{i-1} and y_{j-1}.

Case 2: If $x_i \neq y_j$, then there can’t be a common substring ending at x_i and y_j!
Step 2: Recursive Formulation

Case 1: If \(x_i = y_j \), then \(z_k = x_i = y_j \) and
\[
Z_{k-1} \text{ is a LCS of } X \text{ and } Y \text{ ending at } x_{i-1} \text{ and } y_{j-1}
\]

Case 2: If \(x_i \neq y_j \), then there can’t be a common substring ending at \(x_i \) and \(y_j \! \! .

\[
d_{i,j} = \begin{cases}
 d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\
 0 & \text{if } x_i \neq y_j
\end{cases}
\]
Step 2: Recursive Formulation

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_{k-1} is a LCS of X and Y ending at x_{i-1} and y_{j-1}.

Case 2: If $x_i \neq y_j$, then there can’t be a common substring ending at x_i and y_j.

\[
 d_{i,j} = \begin{cases}
 d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\
 0 & \text{if } x_i \neq y_j
\end{cases}
\]

Finally, we can find the length of the longest common substring by finding the maximum $d_{i,j}$ among all possible ending positions i and j.

\[
 \text{LCSString}(X, Y) = \max\{d_{i,j}\}
\]
Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix $d[0, j]$ and $d[i, 0]$ to be 0.
Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix $d[0,j]$ and $d[i,0]$ to be 0.

Calculate $d[1,j]$ for $j = 1, 2, ..., n$.

Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix $d[0, j]$ and $d[i, 0]$ to be 0

Calculate $d[1, j]$ for $j = 1, 2, \ldots, n$

Then, the $d[2, j]$ for $i = 1, 2, \ldots, 2,$
Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix \(d[0, j] \) and \(d[i, 0] \) to be 0

Calculate \(d[1, j] \) for \(j = 1, 2, \ldots, n \)
Then, the \(d[2, j] \) for \(i = 1, 2, \ldots, 2 \),
Then, the \(d[3, j] \) for \(i = 1, 2, \ldots, 2 \),
Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix \(d[0,j]\) and \(d[i,0]\) to be 0

Calculate \(d[1,j]\) for \(j = 1, 2, ..., n\)

Then, the \(d[2,j]\) for \(i = 1, 2, ..., 2,\)

Then, the \(d[3,j]\) for \(i = 1, 2, ..., 2,\)

etc., filling the matrix row by row and left to right.

For this problem we do not need to create another \(m \times n\) matrix for storing arrows. Instead, we use \(l_{\text{max}}\) and \(p_{\text{max}}\) to store the largest length of common substring and its \(i\) position respectively. This suffices to reconstruct the solution.
LONGEST-COMMON-SUBSTRING(X, Y)

$m ← \text{length}(X);$
$n ← \text{length}(Y);$
$l_{\text{max}} ← 0;$
$p_{\text{max}} ← 0;$

// initialization
for $i ← 0$ to m
 $d[i, 0] ← 0;$
for $j ← 0$ to n
 $d[0, j] ← 0;$

// dynamic programming
for $i ← 1$ to m
 for $j ← 1$ to n
 if ($x_i ≠ y_j$)
 $d[i, j] ← 0;$
The dynamic programming algorithm runs in $O(mn)$ time.
Step 4: Construction of Optimal Solution

Since we maintained l_{max} and p_{max}, we can use them to print out the longest common substring of X and Y in the following procedure.

PRINT-LCSUBSTRING(X, p_{max}, l_{max})

if ($l_{\text{max}} = 0$) return NULL;
for $i \leftarrow (p_{\text{max}} - l_{\text{max}} + 1)$ to p_{max}
 print x_i;