Given two sequences \(X = (x_1, x_2, \ldots, x_m) \) and \(Y = (y_1, y_2, \ldots, y_n) \),

\[Z \text{ is a } \textit{common subsequence} \text{ of } X \text{ and } Y \text{ of length } k \]

if there are two strictly increasing sequence of indices \(i \) and \(j \) such that for \(p = 1, 2, \ldots, k \), \(x_{i_p} = y_{j_p} = z_p \).

Example:

\[X: \quad A \ B \ C \ B \ D \ A \ B \]
\[Y: \quad B \ D \ C \ A \ B \ A \]
\[Z: \quad B \ C \ B \ A \]

Problem: Find a \textit{longest common subsequence (lcs)} of \(X \) and \(Y \) in \(O(mn) \) time

Solution: Use Dynamic Programming
Step 1: Space of Subproblems

For $1 \leq i \leq m$, and $1 \leq j \leq n$,

- Define $d_{i,j}$ to be the length of the longest common subsequence of $X[1..i]$ and $Y[1..j]$.
- Let D be the $m \times n$ matrix $[d_{i,j}]$.
Step 2: Recursive Formulation

Let $Z_k = (z_1, \ldots, z_k)$ be a LCS of $X[1..i]$ and $Y[1..j]$.

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_k is $LCS(X[1..i - 1], Y[1..j - 1])$ followed by z_k.

Case 2: If $x_i \neq y_j$, then Z_k is either $LCS(X[1..i - 1], Y[1..j])$ or $LCS(X[1..i], Y[1..j - 1])$.

If $x_i \neq y_j$, the answer is the larger of the LCS’s of those two cases.

$$d_{i,j} = \begin{cases}
 d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\
 \max\{d_{i-1,j}, d_{i,j-1}\} & \text{if } x_i \neq y_j
\end{cases}$$
Step 3: Bottom-up Computation by Rows

Initialize first row and column of the matrix \((d[0, j] \text{ and } d[i, 0])\) to 0

Calculate \(d[1, j]\) for \(j = 1, 2, \ldots, n\)
Then, \(d[2, j]\) for \(j = 1, 2, \ldots, n\)
Then, \(d[3, j]\) for \(j = 1, 2, \ldots, n\)

....

We fill the table row by row, filling in each row, left to right.

| \(D[i, j]\) | \(j = 0\) | 1 | 2 | 3 | \(\ldots\) | \(\ldots\) | \(n\) |
|---|---|---|---|---|---|---|
| \(i = 0\) | 0 | 0 | 0 | 0 | \(\ldots\) | \(\ldots\) | 0 |
| 1 | 0 | | | | | | |
| 2 | 0 | | | | | | |
| : | 0 | | | | | | |
| \(m\) | 0 | | | | | | |
We also create another $m \times n$ matrix $p[i, j]$ for $1 \leq i \leq m$, and $1 \leq j \leq n$.

This stores which of the three choices led to the maximum value creating $d[i, j]$.

This is done by pointing an arrow towards the entry that led to that choice. These arrows will permit reconstructing the elements of the LCS.

![Matrix Diagram]

Solution
LONGEST-COMMON-SUBSEQUENCE(X, Y)

$m \leftarrow \text{length}(X)$;
$n \leftarrow \text{length}(Y)$;

// initialization
for $i \leftarrow 0$ to m
 $d[i, 0] \leftarrow 0$;
for $j \leftarrow 0$ to n
 $d[0, j] \leftarrow 0$;

// dynamic programming
for $i \leftarrow 1$ to m
 for $j \leftarrow 1$ to n
 if ($x_i = y_j$)
 $d[i, j] \leftarrow d[i - 1, j - 1] + 1$;
 $p[i, j] \leftarrow “LU”$; // “LU” indicates left up arrow
 else
if \((d[i - 1, j] \geq d[i, j - 1])\)
\(d[i, j] \leftarrow d[i - 1, j];\)
\(p[i, j] \leftarrow "U"; \quad // \ "U" \text{ indicates up arrow}\)
else
\(d[i, j] \leftarrow d[i, j - 1];\)
\(p[i, j] \leftarrow "L"; \quad // \ "L" \text{ indicates left}\)
end if
end if
end for
end for

return \(d, p;\)

Since it takes only \(O(1)\) time to fill in each of the \(O(mn)\) table entries the algorithm runs in \(O(mn)\) time.
Step 4: Construction of Optimal Solution

As mentioned before, we also maintain a $m \times n$ matrix p for storing arrows to reconstruct the elements of the LCS. The following recursive procedure prints out an LCS of X and Y.

\[
\text{PRINT-LCS}(p, X, i, j) \\
\quad \text{if } (i = 0 \lor j = 0) \quad \text{return} \ NULL; \\
\quad \text{if } (p[i, j] = \text{"LU"}) \\
\qquad \text{PRINT-LCS}(p, X, i - 1, j - 1); \\
\qquad \text{print } x_i; \\
\quad \text{else} \\
\qquad \text{if } (p[i, j] = \text{"U"}) \\
\qquad \qquad \text{PRINT-LCS}(p, X, i - 1, j); \\
\qquad \text{else} \quad \text{PRINT-LCS}(p, X, i, j - 1); \\
\text{end if}
\]
A slightly different problem with a similar solution

Given two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$, find their longest common substring Z, i.e., a largest largest k for which there are indices i and j with $x_ix_{i+1}...x_{i+k-1} = y_jy_{j+1}...y_{j+k-1}$.

For example:

$X : DEADBEEF$

$Y : EATBEEF$

$Z : BEEF$ //pick the longest contiguous substring

Show how to do this in time $O(mn)$ by dynamic programming.
Step 1: Space of Subproblems

For $1 \leq i \leq m$, and $1 \leq j \leq n$,

- First Attempt: Define $d'_{i,j}$ to be the length of the longest common substring of $X[1..i]$ and $Y[1..j]$. (Does this work?)
- Second Attempt: Define $d_{i,j}$ to be the length of the longest common substring ending at x_i and y_j. (Does this work?)
- Let D be the $m \times n$ matrix $[d_{i,j}]$.
 - How does D provide answer?
Step 2: Recursive Formulation

Case 1: If \(x_i = y_j \), then \(z_k = x_i = y_j \) and
\[
Z_{k-1} \text{ is a LCS of } X \text{ and } Y \text{ ending at } x_{i-1} \text{ and } y_{j-1}
\]

Case 2: If \(x_i \neq y_j \), then there can’t be a common substring ending at \(x_i \) and \(y_j \)!

\[
d_{i,j} = \begin{cases}
 d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\
 0 & \text{if } x_i \neq y_j
\end{cases}
\]

Finally, we can find length of longest common substring by finding maximum \(d_{i,j} \) among all possible ending positions \(i \) and \(j \).

\[
\text{LCSString}(X, Y) = \max\{d_{i,j}\}
\]
Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix $d[0, j]$ and $d[i, 0]$ to be 0.

Calculate $d[1, j]$ for $j = 1, 2, ..., n$.

Then, the $d[2, j]$ for $i = 1, 2, ..., 2$.

Then, the $d[3, j]$ for $i = 1, 2, ..., 2$.

etc., filling the matrix row by row and left to right.

For this problem we do not need to create another $m \times n$ matrix for storing arrows. Instead, we use l_{max} and p_{max} to store the largest length of common substring and its i position respectively. This suffices to reconstruct the solution.
LONGEST-COMMON-SUBSTRING(X, Y)

$m \leftarrow \text{length}(X);$
$n \leftarrow \text{length}(Y);$
$l_{\text{max}} \leftarrow 0;$
$p_{\text{max}} \leftarrow 0;$

// initialization
for $i \leftarrow 0$ to m

 $d[i, 0] \leftarrow 0;$

for $j \leftarrow 0$ to n

 $d[0, j] \leftarrow 0;$

// dynamic programming
for $i \leftarrow 1$ to m

 for $j \leftarrow 1$ to n

 if ($x_i \neq y_j$)

 $d[i, j] \leftarrow 0;$
else
 \[d[i, j] \leftarrow d[i - 1, j - 1] + 1; \]
 \[
 \textbf{if} \ (d[i, j] > l_{\text{max}}) \\
 \quad l_{\text{max}} \leftarrow d[i, j]; \\
 \quad p_{\text{max}} \leftarrow i; \\
 \textbf{end if}
 \]
 \textbf{end if}
\textbf{end for}
\textbf{end for}

\textbf{return} \ l_{\text{max}}, p_{\text{max}}; \\

The dynamic programming algorithm runs in \(O(mn) \) time.
Step 4: Construction of Optimal Solution

Since we maintained l_{max} and p_{max}, we can use them to print out the longest common substring of X and Y in the following procedure.

PRINT-LCSUBSTRING(X, p_{max}, l_{max})

1. if ($l_{\text{max}} = 0$) return NULL;
2. for $i \leftarrow (p_{\text{max}} - l_{\text{max}} + 1)$ to p_{max}
 1. print x_i;