
Mergesort

Merging Two sorted arrays A[1, . . . , n1] and
B[1, . . . , n2] can be merged together and writ-
ten (sorted) into an array C[1, . . . , n1 + n2] in
O(n1 + n2) worst case time. This is done by walk-
ing through the two arrays in parallel, keeping a
pointer to the smallest unmoved item in each list.
At each step it

• compares the smallest remaining items in each
of the two lists

• moves (writes) the smaller of the two to the
next place in C

• advances by one the pointer that had pointed
to that smallest

Mergesort Description. Given an array
A[1, . . . , n] of n numbers, mergesort first recur-
sively sorts A[1, . . . , n/2] and A[n/2, . . . , n] and
then merges the two sorted subarrays into one
sorted array. Note that Mergesort requires extra
memory into which to originally write the new
merged list before writing it back into the original
array,

Recurrence. Mergesort is a typical divide-and-
conquer algorithm, which can usually be analyzed
using a recurrence. Let T (n) denote the worst-case
running time of mergesort on n numbers.

The two recursive calls of mergesort take
2T (n/2) time. The merging step takes O(n) time
to merge the two sublists together. The recursion
does not go on forever. It bottoms out when n = 1
in which case there is nothing to be done because
an array of one number is trivially sorted. This
gives the following recurrence:

T (1) = O(1)

T (n) = 2T (n/2) + O(n)

which we have already seen implies T (n) =
O(n log n).

Note: This document was written by M J.

Golin, revised from an original by S.W. Cheng, for

COMP3711H, HKUST.

1


