Reference: Chapter 7 of CLRS
Reference: Chapter 7 of CLRS

Outline:
- Partitions
- Quicksort
- Analysis of Quicksort
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q-1 \text{ and } q+1 \leq v \leq r$$

Quicksort works by:
1. calling partition first
2. recursively sorting $A[p..q-1]$ and $A[q+1..r]$

Quicksort Revision of August 25, 2016
Given: An array of numbers

Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q-1 \text{ and } q+1 \leq v \leq r$$

x is called the pivot. Assume $x = A[r]$; if not, swap first.
Given: An array of numbers
Partition: Rearrange the array \(A[p..r]\) in place into two (possibly empty) subarrays \(A[p..q - 1]\) and \(A[q + 1..r]\) such that

\[A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r\]

\(x = A[r]\)

\(x\) is called the pivot. Assume \(x = A[r]\); if not, swap first

Quicksort works by:
Given: An array of numbers
Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q - 1]$ and $A[q + 1..r]$ such that

$$A[u] < A[q] < A[v], \text{ for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

$x = A[r]$ \hspace{1cm} x is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
Partition

Given: An array of numbers

Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q-1]$ and $A[q+1..r]$ such that

$$A[u] < A[q] < A[v], \text{ for any } p \leq u \leq q-1 \text{ and } q+1 \leq v \leq r$$

- $x = A[r]$

x is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
2. recursively sorting $A[]$ and $A[]$
Given: An array of numbers

Partition: Rearrange the array $A[p..r]$ in place into two (possibly empty) subarrays $A[p..q - 1]$ and $A[q + 1..r]$ such that

$$A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r$$

$x = A[r]$ is called the pivot. Assume $x = A[r]$; if not, swap first

Quicksort works by:

1. calling partition first
2. recursively sorting $A[p..q - 1]$ and $A[]$
Given: An array of numbers
Partition: Rearrange the array \(A[p..r] \) in place into two (possibly empty) subarrays \(A[p..q - 1] \) and \(A[q + 1..r] \) such that

\[
A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r
\]

\[
p \quad q \quad x \quad r
\]

\[
\leq x \quad \geq x
\]

\(x = A[r] \)

\(x \) is called the pivot. Assume \(x = A[r] \); if not, swap first

Quick sort works by:

1. calling partition first
2. recursively sorting \(A[p..q - 1] \) and \(A[q + 1..r] \)
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$

- Copy the items in $B[p..r]$ back to $A[p..r]$ placing
 - items smaller than x into first $R - 1$ locations
 - x into location $p + R - 1$
 - items larger than x into last $r - R$ locations
Partitioning $A[p..r]$ with extra memory

- Copy $A[p..r]$ to another array $B[p..r]$

- With $p - r$ comparisons find the rank R of $x = A[r]$ in $B[p..r]$

- Copy the items in $B[p..r]$ back to $A[p..r]$ placing
 - items smaller than x into first $R - 1$ locations
 - x into location $p + R - 1$
 - items larger than x into last $r - R$ locations

- $O(r - p)$ time but needs extra space.
Partition(A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right.

i will be largest index of processed item $\leq x$.

j will be smallest index of unprocessed item.

Initially $(i, j) = (p - 1, p)$

Increase j by 1 each time to find a place for $A[j]$.
At the same time increase i when necessary.

Stops when $j = r$

\[\begin{array}{ccccccc}
 p & i & j & r \\
 \text{\color{red}{Red}} & \text{\color{red}{Red}} & \text{\color{blue}{Blue}} & \text{\color{blue}{Blue}} & \text{\color{blue}{Blue}} & \text{\color{blue}{Blue}} & \text{\color{red}{Red}} \\
 \leq & x & \geq & x & \text{unrestricted} & x \\
\end{array} \]
Partition(A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right.

- i will be largest index of processed item $\leq x$.
- j will be smallest index of unprocessed item.

Initially $(i, j) = (p - 1, p)$
Use $A[r]$ as the pivot, and grow partition from left to right.
i will be largest index of processed item $\leq x$.

j will be smallest index of unprocessed item.

1. Initially $(i, j) = (p - 1, p)$

2. Increase j by 1 each time to find a place for $A[j]$
 At the same time increase i when necessary
Partition(A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right.
 i will be largest index of processed item $\leq x$.
 j will be smallest index of unprocessed item.

1. Initially $(i, j) = (p - 1, p)$
2. Increase j by 1 each time to find a place for $A[j]$
 At the same time increase i when necessary
3. Stops when $j = r$
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(A) $A[j] > x$

(B) $A[j] \leq x$
Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

1. Only increase j by 1
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

(1) Only increase j by 1

(2) $i = i + 1$.

(A) $A[j] > x$

(B) $A[j] \leq x$
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

1. Only increase j by 1

(A) $A[j] > x$

(B) $A[j] \leq x$
One Iteration of the Procedure Partition

Increase \(j \) by 1 each time to find a place for \(A[j] \)

At the same time increase \(i \) when necessary

1. Only increase \(j \) by 1
2. \(i = i + 1. \ A[i] \leftrightarrow A[j]. \ j = j + 1 \)
Example: The Operation of Partition(A, p, r)

\[
\begin{array}{cccccc}
 & i & p, j & r \\
 1 & 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 2 & 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 3 & 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 4 & 2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
 5 & 2 & 1 & 7 & 8 & 3 & 5 & 6 & 4 \\
 6 & 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
 7 & 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
 8 & 2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
 9 & 2 & 1 & 3 & 8 & 7 & 5 & 6 & 8 \\
\end{array}
\]
\textbf{Partition}(A, p, r)

begin
 \text{\texttt{x = A[r]; // A[r] is the pivot element}}
end
The Partition(A, p, r) Algorithm

Partition(A, p, r)

\[
\begin{align*}
\text{begin} \\
\quad & x = A[r]; \quad // \ A[r] \text{ is the pivot element} \\
\quad & i = p - 1; \\
\quad & \textbf{for } j = p \textbf{ to } r - 1 \quad \textbf{do} \\
\quad & \quad \text{if } A[j] \leq x \text{ then} \\
\quad & \quad \quad i = i + 1; \\
\quad & \quad \quad \text{exchange } A[i] \text{ and } A[j]; \\
\quad & \text{end} \\
\quad & \text{end} \\
\quad & \text{exchange } A[i + 1] \text{ and } A[r]; \quad // \text{ put pivot in position} \\
\quad & \text{return } i + 1; \quad // q = i + 1 \\
\text{end}
\end{align*}
\]
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
\[x = A[r]; \quad // \quad A[r] \text{ is the pivot element} \]
\[i = p - 1; \]
for $j = p$ to $r - 1$ do
\[\text{if } A[j] \leq x \text{ then} \]

end
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin

\[x = A[r]; \quad // \text{A}[r] \text{ is the pivot element} \]
\[i = p - 1; \]

for \(j = p \) to \(r - 1 \) do

\[\text{if } A[j] \leq x \text{ then} \]
\[i = i + 1; \]
\[\text{exchange } A[i] \text{ and } A[j]; \]

end

end
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin

 $x = A[r]$; // $A[r]$ is the pivot element
 $i = p - 1$;

 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$;
 end
 end

end

; // put pivot in position
The Partition(A, p, r) Algorithm

Partition(A, p, r) begin

\textcolor{red}{x = A[r];} // $A[r]$ is the pivot element
\textcolor{red}{i = p - 1;}
\textcolor{red}{\textbf{for} j = p \textbf{to} r - 1 \textbf{do}}
\textcolor{red}{\quad \textbf{if} A[j] \leq x \textbf{ then}}
\textcolor{red}{\quad \quad i = i + 1;}
\textcolor{red}{\quad \quad \text{exchange } A[i] \text{ and } A[j];}
\textcolor{red}{\quad \textbf{end}}
\textcolor{red}{\textbf{end}}

\textcolor{red}{\text{exchange } A[i + 1] \text{ and } A[r];} // put pivot in position

end
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
\hspace{1em} x = A[r]; // $A[r]$ is the pivot element
\hspace{1em} i = p - 1;
\hspace{1em} for $j = p$ to $r - 1$ do
\hspace{2em} if $A[j] \leq x$ then
\hspace{3em} i = i + 1;
\hspace{3em} exchange $A[i]$ and $A[j]$;
\hspace{2em} end
\hspace{1em} end
\hspace{1em} exchange $A[i + 1]$ and $A[r]$; // put pivot in position
return
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
 \[x = A[r]; \text{ // } A[r] \text{ is the pivot element} \]
 \[i = p - 1; \]
 for \(j = p \) to \(r - 1 \) do
 if \(A[j] \leq x \) then
 \[i = i + 1; \]
 exchange \(A[i] \) and \(A[j] \);
 end
 end
 exchange \(A[i + 1] \) and \(A[r] \); // put pivot in position
 return \(i + 1 \) // \(q = i + 1 \)
end
Running Time of Partition(A, p, r)

Partition(A, p, r)

\[
\begin{align*}
\text{begin} & \\
& x = A[r]; \\
& i = p - 1; \\
& \text{for } j = p \text{ to } r - 1 \text{ do} \\
& \quad \text{if } A[j] \leq x \text{ then} \\
& \quad \quad i = i + 1; \\
& \quad \quad \text{exchange } A[i] \text{ and } A[j]; // O(r - p) \\
& \quad \text{end} \\
& \text{end} \\
& \text{exchange } A[i + 1] \text{ and } A[r]; \\
& \text{return } i + 1 \\
\text{end}
\end{align*}
\]

Running time is $O(r - p)$ linear in the length of the array $A[p..r]$.
Running Time of Partition(A, p, r)

Partition(A, p, r)

```plaintext
begin
    x = A[r];
    i = p - 1;
    for $j = p$ to $r - 1$ do
        if $A[j] \leq x$ then
            i = i + 1;
            exchange $A[i]$ and $A[j]$;  // $O(r - p)$
        end
    end
    exchange $A[i + 1]$ and $A[r]$;
return $i + 1$
end
```

Running time is $O(\quad)$
Running Time of Partition(A, p, r)

Partition(A, p, r)

\[
\begin{align*}
\text{begin} & \quad \begin{align*}
& x = A[r]; \\
& i = p - 1; \\
& \text{for } j = p \text{ to } r - 1 \text{ do} \\
& \quad \text{if } A[j] \leq x \text{ then} \\
& \quad \quad i = i + 1; \\
& \quad \quad \text{exchange } A[i] \text{ and } A[j]; \quad // \quad O(r - p) \\
& \text{end} \\
& \text{end} \\
& \text{exchange } A[i + 1] \text{ and } A[r]; \\
& \text{return } i + 1
\end{align*}
\end{align*}
\]

Running time is $O(r - p)$
Running Time of Partition(A, p, r)

Partition(A, p, r)

\begin{algorithm}
\begin{algorithmic}
 \STATE $x = A[r]$;
 \STATE $i = p - 1$;
 \FOR {$j = p$ \textbf{to} $r - 1$}
 \IF {$A[j] \leq x$}
 \STATE $i = i + 1$;
 \STATE exchange $A[i]$ and $A[j]$; \textbf{//} $O(r - p)$
 \ENDIF
 \ENDFOR
 \STATE exchange $A[i + 1]$ and $A[r]$;
 \RETURN $i + 1$
\end{algorithmic}
\end{algorithm}

Running time is $O(r - p)$

- linear in the length of the array $A[p..r]$
Running Time of Partition(A, p, r)

Partition(A, p, r)

begin
 $x = A[r]$;
 $i = p - 1$;
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$; \hspace{1em} // O(r − p)
 end
 end
 exchange $A[i + 1]$ and $A[r]$;
 return $i + 1$
end

Running time is $O(r − p)$

- linear in the length of the array $A[p..r]$
Quicksort

Quicksort(A, p, r)

begin
 if $p < r$ then
 $q = \text{Partition}(A, p, r);$
 Quicksort(A, \quad);
 Quicksort(A, \quad);
 end
end
Quicksort

Quicksort(A, p, r)

begin
 if p < r then
 q = Partition(A, p, r);
 Quicksort(A, p, q - 1);
 Quicksort(A, q + 1, r);
 end
end

If we could always partition the array into halves, then we have the recurrence

\[T(n) \leq 2T(n/2) + O(n), \]

hence

\[T(n) = O(n \log n). \]

However, if we always get unlucky with very unbalanced partitions, then

\[T(n) \leq T(n - 1) + O(n), \]

hence

\[T(n) = O(n^2). \]
Quicksort(A, p, r)

begin
 if p < r then
 q = Partition(A, p, r);
 Quicksort(A, p, q - 1);
 Quicksort(A, q + 1, r);
 end
end

If we could always partition the array into halves, then we have the recurrence

\[T(n) \leq 2T\left(\frac{n}{2}\right) + O(n), \]

hence

\[T(n) = O(n \log n). \]

However, if we always get unlucky with very unbalanced partitions, then

\[T(n) \leq T(n-1) + O(n), \]

hence

\[T(n) = O(n^2). \]
Quicksort

Quicksort(A, p, r)

\begin{algorithm}
\begin{algorithmic}
 \State \textbf{begin}
 \If{$p < r$}
 \State $q = \text{Partition}(A, p, r)$;
 \State Quicksort($A, p, q-1$);
 \State Quicksort($A, q+1, r$);
 \EndIf
 \State \textbf{end}
\end{algorithmic}
\end{algorithm}

- If we could always partition the array into halves, then we have the recurrence $T(n) \leq 2T(n/2) + O(n)$, hence $T(n) = O(n \log n)$

- However, if we always get unlucky with very unbalanced partitions, then $T(n) \leq T(n - 1) + O(n)$, hence $T(n) = O(n^2)$
Outline:

- Partition
- Quicksort
- Average Case Analysis of Quicksort
Average Case Analysis of Quicksort

Measuring running time:

\[T(n) = T(m) + T(n-m-1) + O(n) \]

Worst Case:

\[T(n) = T(0) + T(n-1) + O(n) \]

\[T(n) = O(n^2) \]

What inputs give worst case performance?

We will analyze average case running time.
Measuring running time:

- The running time is dominated by the time spent in partition.
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the **number of key comparisons**.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) =$
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify \(m \), the size of the left partition block.

\(T(n) \): running time on array of size \(n \).

Recurrence: \(T(n) = T(m) + \)
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify \(m \), the size of the left partition block.

\(T(n) \): running time on array of size \(n \).

Recurrence: \(T(n) = T(m) + T(n - m - 1) + \)
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: $T(n) = T(m) + T(n - m - 1) + O(n)$

Worst Case:

$$T(n) = T(0) + T(n - 1) + O(n)$$
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify \(m \), the size of the left partition block.

\(T(n) \): running time on array of size \(n \).

Recurrence: \(T(n) = T(m) + T(n - m - 1) + O(n) \)

Worst Case:

\[
T(n) = T(0) + T(n - 1) + O(n) \\
T(n) = O()
\]
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify \(m \), the size of the left partition block.

\(T(n) \): running time on array of size \(n \).

Recurrence: \(T(n) = T(m) + T(n - m - 1) + O(n) \)

Worst Case:

\[
\begin{align*}
T(n) &= T(0) + T(n - 1) + O(n) \\
T(n) &= O(n^2)
\end{align*}
\]
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the **number of key comparisons**.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence:

\[T(n) = T(m) + T(n - m - 1) + O(n) \]

Worst Case:

\[
\begin{align*}
T(n) &= T(0) + T(n - 1) + O(n) \\
T(n) &= O(n^2)
\end{align*}
\]

What inputs give worst case performance?
Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify \(m \), the size of the left partition block.

\(T(n) \): running time on array of size \(n \).

Recurrence: \(T(n) = T(m) + T(n - m - 1) + O(n) \)

Worst Case:

\[
T(n) = T(0) + T(n - 1) + O(n) \\
T(n) = O(n^2)
\]

What inputs give worst case performance?

We will analyze average case running time.
Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen.
Average Case Analysis

1. Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen
2. Use Average Case Analysis
1. Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen.

2. Use Average Case Analysis.

3. Assume every possible input permutation of the n items are equally likely.

4. $n!$ permutations so each one has probability $\frac{1}{n!}$ of occurring.

5. If S_n is set of all permutations, $\sigma \in S_n$ is a possible input permutation, then average running time is

$$\frac{1}{n!} \sum_{\sigma \in S_n} C(\sigma)$$
Let A be the set of items in $A[p..r]$ and σ a random permutation of A.

1. $A[r]$ is equally likely to be any item in A.
2. After running the partition algorithm on $A[p..r]$, the input to the new left and right subproblems are again random permutations (need to argue why).

Recall that if X is a random variable and E_1, E_2, \ldots, E_n are events that partition the probability space then we can write the expectation of X in terms of the Expectation of X conditioned on E_i. That is

$$E(X) = \sum_i E(X|E_i) \Pr(E_i).$$
Average Case Analysis

Assume that the input to is a random permutation of N items.

- Let C_N be the average amount of work performed on the input
- $C_0 = C_1 = 0$.
- Partition requires $N - 1$ comparisons
- Each item has probability $1/N$ of being pivot.
- If Item k is pivot, the two remaining subproblems require $C_{k-1} + C_{N-k}$ average time

\[
C_N = N - 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k}) \\
= N - 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}
\]
Multiplying both sides of previous equation by N and then rewriting the equation for $N - 1$ yields

$$NC_N = N(N - 1) + 2 \sum_{1 \leq k \leq N} C_{k-1}, \quad (N - 1)C_{N-1} = (N - 1)(N - 2) + 2 \sum_{1 \leq k \leq N-1} C_{k-1}$$

Subtracting the 2nd from the 1st and simplifying yields

$$NC_N = (N + 1)C_{N-1} + 2N - 2$$

Dividing both sides by $N(N + 1)$ gives

$$\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} - \frac{2}{N(N + 1)}.$$
Telescoping the recurrence down to $N = 3$ and recalling that $C_1 = 0$ yields

\[
\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N+1} - \frac{2}{N(N+1)}
\]

\[
= \frac{C_{N-2}}{N-1} + \left(\frac{2}{N} - \frac{2}{(N-1)N} \right) + \left(\frac{2}{N+1} - \frac{2}{N(N+1)} \right)
\]

\[
= \ldots
\]

\[
= \frac{C_1}{2} + 2 \sum_{i=3}^{N} \frac{1}{i+1} - \sum_{i=3}^{N} \frac{2}{i(i+1)}
\]

\[
= 2H_{N+1} - 2H_3 + O(1) = 2H_N + O(1)
\]

where $H_N = \sum_{i=1}^{N} \frac{1}{i}$ and we are using the fact that $\sum_{i=1}^{\infty} \frac{1}{i(i = 1)}$ is bounded.
We just saw that

$$\frac{C_N}{N + 1} = 2H_N + O(1).$$

H_N is called the Nth Harmonic number and it is well known that

$$H_n = \ln n + O(1).$$

So, we have just proven that the average number of operations performed running Quicksort on a random permutation of N items is

$$C_N = 2(N + 1)H_N + O(N) = 2N \ln N + O(N).$$
Odds and Ends

- Quicksort is a divide and conquer algorithm.
- The Quicksort code can be tuned
 - When N is small, call Insertion Sort rather than Quicksort (on very small N, Insertion sort is faster.
 - Instead of using last item $A[r]$ as pivot, set pivot to be median of first, last and middle item. (Why should this help?)

- *qsort* under UNIX was an extremely popular sorting routine for decades. It was a finely tuned version of Quicksort.

- Quicksort was published by Tony Hoare in the Communications of the ACM 4(7), 1961.