Quicksort

Revision of August 25, 2016
Reference: Chapter 7 of CLRS

Outline:
- Partitions
- Quicksort
- Analysis of Quicksort
Given: An array of numbers

Partition: Rearrange the array \(A[p..r] \) in place into two (possibly empty) subarrays \(A[p..q-1] \) and \(A[q+1..r] \) such that

\[
A[u] < A[q] < A[v], \quad \text{for any } p \leq u \leq q - 1 \text{ and } q + 1 \leq v \leq r
\]

\(x = A[r] \)

\(x \) is called the pivot. Assume \(x = A[r] \); if not, swap first

Quicksort works by:

1. calling partition first
2. recursively sorting \(A[p..q-1] \) and \(A[q+1..r] \)
Partitioning $A[p..r]$ with extra memory

- Copy the items in $B[p..r]$ back to $A[p..r]$ placing:
 - items smaller than x into first $R - 1$ locations
 - x into location $p + R - 1$
 - items larger than x into last $r - R$ locations
- $O(r - p)$ time but needs extra space.
Partition(A, p, r) without extra memory

Use $A[r]$ as the pivot, and grow partition from left to right.
i will be largest index of processed item $\leq x$.
j will be smallest index of unprocessed item.

1. Initially $(i, j) = (p - 1, p)$
2. Increase j by 1 each time to find a place for $A[j]$.
 At the same time increase i when necessary.
3. Stops when $j = r$
One Iteration of the Procedure Partition

Increase j by 1 each time to find a place for $A[j]$

At the same time increase i when necessary

1. Only increase j by 1
2. $i = i + 1$. $A[i] \leftrightarrow A[j]$. $j = j + 1$
Example: The Operation of Partition\((A, p, r)\)

\[
\begin{array}{cccccc}
 & p, j & r \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
\end{array}
\]

(1)

\[
\begin{array}{cccccc}
 & p, i & j & r \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
\end{array}
\]

(2)

\[
\begin{array}{cccccc}
 & p, i & j & r \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
\end{array}
\]

(3)

\[
\begin{array}{cccccc}
 & p, i & j & r \\
2 & 8 & 7 & 1 & 3 & 5 & 6 & 4 \\
\end{array}
\]

(4)

\[
\begin{array}{cccccc}
 & p, i & j & r \\
2 & 1 & 7 & 8 & 3 & 5 & 6 & 4 \\
\end{array}
\]

(5)

\[
\begin{array}{cccccc}
 & p, i & j & r \\
2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
\end{array}
\]

(6)

\[
\begin{array}{cccccc}
 & p, i & j & r \\
2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
\end{array}
\]

(7)

\[
\begin{array}{cccccc}
 & p, i & j, r \\
2 & 1 & 3 & 8 & 7 & 5 & 6 & 4 \\
\end{array}
\]

(8)

\[
\begin{array}{cccccc}
 & p, i & j, r \\
2 & 1 & 3 & 4 & 7 & 5 & 6 & 8 \\
\end{array}
\]

(9)
The Partition(A, p, r) Algorithm

Partition(A, p, r)

begin
 $x = A[r]$; // $A[r]$ is the pivot element
 $i = p - 1$;
 for $j = p$ to $r - 1$ do
 if $A[j] \leq x$ then
 $i = i + 1$;
 exchange $A[i]$ and $A[j]$;
 end
 end
 exchange $A[i + 1]$ and $A[r]$; // put pivot in position
 return $i + 1$ // $q = i + 1$
end
Running Time of Partition(A, p, r)

Partition(A, p, r)

\[
\begin{align*}
\text{begin} & \\
& x = A[r]; \\
& i = p - 1; \\
& \text{for } j = p \text{ to } r - 1 \text{ do} \\
& \quad \text{if } A[j] \leq x \text{ then} \\
& \quad \quad i = i + 1; \\
& \quad \quad \text{exchange } A[i] \text{ and } A[j]; // O(r - p) \\
& \text{end} \\
& \text{end} \\
& \text{exchange } A[i + 1] \text{ and } A[r]; \\
& \text{return } i + 1 \\
\text{end}
\end{align*}
\]

Running time is $O(r - p)$
- \textbf{linear} in the length of the array $A[p..r]$
Quicksort

Quicksort\((A, p, r)\)

\[
\text{begin}
\begin{align*}
\text{if } p &< r \text{ then} \\
q &\equiv \text{Partition}(A, p, r); \\
\text{Quicksort}(A, p, q - 1); \\
\text{Quicksort}(A, q + 1, r);
\end{align*}
\text{end}
\text{end}
\]

- If we could always partition the array into halves, then we have the recurrence \(T(n) \leq 2T(n/2) + O(n)\), hence \(T(n) = O(n \log n)\).

- However, if we always get unlucky with very unbalanced partitions, then \(T(n) \leq T(n - 1) + O(n)\), hence \(T(n) = O(n^2)\).
Outline:

- Partition
- Quicksort
- Average Case Analysis of Quicksort
Average Case Analysis of Quicksort

Measuring running time:

- The running time is dominated by the time spent in partition.
- The running time of the partition procedure can be measured by the number of key comparisons.
- Need to specify m, the size of the left partition block.

$T(n)$: running time on array of size n.

Recurrence: \[T(n) = T(m) + T(n - m - 1) + O(n) \]

Worst Case:

\[
\begin{align*}
T(n) & = T(0) + T(n - 1) + O(n) \\
T(n) & = O(n^2)
\end{align*}
\]

What inputs give worst case performance?

We will analyze average case running time.
1. Worst-case doesn’t make sense: for any given input, the worst case is very unlikely to happen.

2. Use Average Case Analysis.

3. Assume every possible input permutation of the n items are equally likely.

4. $n!$ permutations so each one has probability $\frac{1}{n!}$ of occurring.

5. If S_n is set of all permutations, $\sigma \in S_n$ is a possible input permutation, then average running time is

$$\frac{1}{n!} \sum_{\sigma \in S_n} C(\sigma)$$
Average Case Analysis

Let A be the set of items in $A[p..r]$ and σ a random permutation of A.

1. $A[r]$ is equally likely to be any item in A.
2. After running the partition algorithm on $A[p..r]$, the input to the new left and right subproblems are again random permutations (need to argue why).

Recall that if X is a random variable and E_1, E_2, \ldots, E_n are events that partition the probability space then we can write the expectation of X in terms of the Expectation of X conditioned on E_i. That is

$$E(X) = \sum_i E(X|E_i) \Pr(E_i).$$
Average Case Analysis

Assume that the input to is a random permutation of N items.

- Let C_N be the average amount of work performed on the input
- $C_0 = C_1 = 0$.
- Partition requires $N - 1$ comparisons
- Each item has probability $1/N$ of being pivot.
- If Item k is pivot, the two remaining subproblems require $C_{k-1} + C_{N-k}$ average time

$$
C_N = N - 1 + \frac{1}{N} \sum_{1 \leq k \leq N} (C_{k-1} + C_{N-k})
$$

$$
= N - 1 + \frac{2}{N} \sum_{1 \leq k \leq N} C_{k-1}
$$
Multiplying both sides of previous equation by N and then rewriting the equation for $N - 1$ yields

$$NC_N = N(N - 1) + 2 \sum_{1 \leq k \leq N} C_{k-1}, \quad (N - 1)C_{N-1} = (N - 1)(N - 2) + 2 \sum_{1 \leq k \leq N-1} C_{k-1}$$

Subtracting the 2nd from the 1st and simplifying yields

$$NC_N = (N + 1)C_{N-1} + 2N - 2$$

Dividing both sides by $N(N + 1)$ gives

$$\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} - \frac{2}{N(N + 1)}.$$
Telescoping the recurrence down to $N = 3$ and recalling that $C_1 = 0$ yields

$$
\frac{C_N}{N + 1} = \frac{C_{N-1}}{N} + \frac{2}{N + 1} - \frac{2}{N(N + 1)}
$$

$$
= \frac{C_{N-1}}{N - 1} + \left(\frac{2}{N} - \frac{2}{(N - 1)N} \right) + \left(\frac{2}{N + 1} - \frac{2}{N(N + 1)} \right)
$$

$$
= \ldots
$$

$$
= \frac{C_1}{2} + 2 \sum_{i=3}^{N} \frac{1}{i + 1} - \sum_{i=3}^{N} \frac{2}{i(i + 1)}
$$

$$
= 2H_{N+1} - 2H_3 + O(1) = 2H_N + O(1)
$$

where $H_N = \sum_{i=1}^{N} 1/i$ and we are using the fact that $\sum_{i=1}^{\infty} 1/i(i = 1)$ is bounded.
We just saw that
\[
\frac{C_N}{N + 1} = 2H_N + O(1).
\]

\(H_N\) is called the \(N\)th \textit{Harmonic number} and it is well known that
\[
H_n = \ln n + O(1).
\]

So, we have just proven that the average number of operations performed running Quicksort on a random permutation of \(N\) items is
\[
C_N = 2(N + 1)H_N + O(N) = 2N \ln N + O(N).
\]
QuickSort is a divide and conquer algorithm.

The QuickSort code can be tuned
- When N is small, call Insertion Sort rather than QuickSort (on very small N, Insertion sort is faster.
- Instead of using last item $A[r]$ as pivot, set pivot to be median of first, last and middle item. (Why should this help?)

`qsort` under UNIX was an extremely popular sorting routine for decades. It was a finely tuned version of QuickSort

QuickSort was published by Tony Hoare in the Communications of the ACM 4(7), 1961.