COMP 3711H
Lecture 1: Introduction
Computational Problems and Algorithms

- A **computational problem** is a specification of the desired input-output relationship.
- An **instance** of a problem is all the inputs needed to compute a solution to the problem.
- An **algorithm** is a well defined computational procedure that transforms inputs into outputs, achieving the desired input-output relationship.
- A **correct algorithm** halts with the correct output for every input instance. We then say that the algorithm **solves** the problem.
Example of a Problem and an Instance

Computational Problem: Sorting

- **Input:** Sequence of n numbers $\langle a_1, \cdots, a_n \rangle$.
- **Output:** Permutation (reordering)

$$\langle a'_1, a'_2, \cdots, a'_n \rangle$$

such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.
Example of a Problem and an Instance

Computational Problem: Sorting
- **Input**: Sequence of \(n \) numbers \(\langle a_1, \cdots, a_n \rangle \).
- **Output**: Permutation (reordering)

\[\langle a'_1, a'_2, \cdots, a'_n \rangle \]

such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n \).

Instance of Problem Sorting
- **Input**: Permutation

\[\langle 8, 3, 6, 7, 1, 2, 9 \rangle \]

- **Output**: Permutation (reordering)

\[\langle 1, 2, 3, 6, 7, 8, 9 \rangle \]
Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for the data.
Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for the data.

Pseudocode:

A is an array of numbers

for $j = 2$ to length(A)
{
 key = $A[j]$;
 $i = j - 1$;
 while ($i \geq 1$ and $A[i] >$ key)
 {
 $i = i - 1$;
 }
 $A[i + 1] = $ key;
}
Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for the data.

Pseudocode:
A is an array of numbers

for $j = 2$ to length(A)
{
 key = $A[j]$;
 $i = j - 1$;
 while ($i \geq 1$ and $A[i] > key$)
 {
 $i = i - 1$;
 }
 $A[i + 1] = key$;
}

Pause:
How does it work?
Insertion Sort: an Incremental Approach

To sort an array of length n: n steps

ith step sorts the array of the first i items by inserting ith item properly into sorted array of the first $i - 1$ items (created in previous step)
Insertion Sort: an Incremental Approach

To sort an array of length n: n steps

ith step sorts the array of the first i items by inserting ith item properly into sorted array of the first $i - 1$ items (created in previous step)

Example: Sort $A = \langle 6, 3, 2, 4 \rangle$ with Insertion Sort.
Insertion Sort: an Incremental Approach

To sort an array of length n: n steps

ith step sorts the array of the first i items by inserting ith item properly into sorted array of the first $i - 1$ items (created in previous step)

Example: Sort $A = \langle 6, 3, 2, 4 \rangle$ with Insertion Sort.

Step 1: $\langle 6, 3, 2, 4 \rangle$
Insertion Sort: an Incremental Approach

To sort an array of length n: n steps

ith step sorts the array of the first i items by inserting ith item properly into sorted array of the first $i - 1$ items (created in previous step)

Example: Sort $A = \langle 6, 3, 2, 4 \rangle$ with Insertion Sort.

Step 1: $\langle 6, 3, 2, 4 \rangle$

Step 2: $\langle 3, 6, 2, 4 \rangle$
Insertion Sort: an Incremental Approach

To sort an array of length n: n steps

ith step sorts the array of the first i items by inserting ith item properly into sorted array of the first $i - 1$ items (created in previous step)

Example: Sort $A = \langle 6, 3, 2, 4 \rangle$ with Insertion Sort.

Step 1: $\langle 6, 3, 2, 4 \rangle$
Step 2: $\langle 3, 6, 2, 4 \rangle$
Step 3: $\langle 2, 3, 6, 4 \rangle$
Insertion Sort: an Incremental Approach

To sort an array of length \(n \): \(n \) steps

\(i \)th step sorts the array of the first \(i \) items by inserting \(i \)th item properly into sorted array of the first \(i - 1 \) items (created in previous step)

Example: Sort \(A = \langle 6, 3, 2, 4 \rangle \) with Insertion Sort.

Step 1: \(\langle 6, 3, 2, 4 \rangle \)
Step 2: \(\langle 3, 6, 2, 4 \rangle \)
Step 3: \(\langle 2, 3, 6, 4 \rangle \)
Step 4: \(\langle 2, 3, 4, 6 \rangle \)
Analyzing Algorithms

Predict resource utilization

1. **Memory** (space complexity)
2. **Running time** (time complexity)
Analyzing Algorithms

Predict resource utilization

1. **Memory** (space complexity)
2. **Running time** (time complexity)

Remark: Depends on model of computation, e.g., *sequential vs. parallel* or *internal memory vs. external memory.*

In this class we usually assume *sequential* and *internal memory.*
Analyzing Algorithms (Continued)

Running time: the number of *primitive operations* used to solve the problem.
Analyzing Algorithms (Continued)

Running time: the number of primitive operations used to solve the problem.

Primitive operations:
e.g., addition, multiplication, comparisons. In more advanced models could be page faults or Map/Reduce calls.
Analyzing Algorithms (Continued)

Running time: the number of *primitive operations* used to solve the problem.

Primitive operations:
e.g., addition, multiplication, comparisons. In more advanced models could be page faults or Map/Reduce calls

Running time: depends on problem instance, often we find an upper bound: $F(\text{input size})$
Analyzing Algorithms (Continued)

Running time: the number of **primitive operations** used to solve the problem.

Primitive operations:
e.g., addition, multiplication, comparisons. In more advanced models could be page faults or Map/Reduce calls

Running time: depends on problem instance, often we find an upper bound: $F(\text{input size})$

Input size: rigorous definition given later.
1. **Sorting:** number of items to be sorted
2. **Multiplication:** number of bits, number of digits.
3. **Graphs:** number of vertices and edges.
Three Types of Algorithmic Analyses

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.
Three Types of Algorithmic Analyses

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size, resulting in the slowest possible running time.

Example. In the worst case *Quicksort* runs in $\Theta(n^2)$ time on an input of n keys.
Three Types of Algorithmic Analyses

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size, resulting in the slowest possible running time.

Example. In the worst case Quicksort runs in $\Theta(n^2)$ time on an input of n keys.

Average Case: average running time over every possible type of input (usually involve probabilities of different types of input).

Example. In average case Quicksort runs in $\Theta(n \log n)$ time on an input of n keys. All $n!$ inputs of n keys are considered equally likely.
Three Types of Algorithmic Analyses

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size, resulting in the slowest possible running time. Example. In the worst case *Quicksort* runs in $\Theta(n^2)$ time on an input of n keys.

Average Case: average running time over every possible type of input (usually involve probabilities of different types of input). Example. In average case *Quicksort* runs in $\Theta(n \log n)$ time on an input of n keys. All $n!$ inputs of n keys are considered equally likely.

Remark: All cases are relative to the algorithm under consideration.
Three Analyses of Insertion Sorting
Three Analyses of Insertion Sorting

The number of comparisons needed is equal to

$$1 + 1 + 1 + \cdots + 1 = n - 1 = \Theta(n).$$
Three Analyses of Insertion Sorting

The number of comparisons needed is equal to

\[
1 + 1 + 1 + \cdots + 1 = n - 1 = \Theta(n).
\]

The number of comparisons needed is equal to

\[
1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2} = \Theta(n^2).
\]
Three Analyses of Insertion Sorting

The number of comparisons needed is equal to

\[
1 + 1 + 1 + \cdots + 1 = n - 1 = \Theta(n).
\]

The number of comparisons needed is equal to

\[
1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2} = \Theta(n^2).
\]

Average Case: \(\Theta(n^2) \) assuming that each of the \(n! \) instances are equally likely.
Further thoughts on algorithm design

- *Algorithm Design*, as taught in this class, is mainly about designing algorithms that have small big $O()$ running times.

- "All other things being equal", $O(n \log n)$ algorithms will run more quickly than $O(n^2)$ ones and $O(n)$ algorithms will beat $O(n \log n)$ ones.

- Being able to do good algorithm design lets you identify the hard parts of your problem and deal with them effectively.

- Too often, programmers try to solve problems using brute force techniques and end up with slow complicated code! A few hours of abstract thought devoted to algorithm design could have speeded up the solution substantially and simplified it.
Final Note

Note: After algorithm design one can continue on to Algorithm tuning which would further concentrate on improving algorithms by cutting cut down on the constants in the big $O()$ bounds. This needs a good understanding of both algorithm design principles and efficient use of data structures.

In this course we will not go further into algorithm tuning. For a good introduction, see Chapter 9 in Programming Pearls, 2nd ed by Jon Bentley.