Lecture 1: Introduction

Computational Problems and Algorithms

Definition: A **computational problem** is a **specification** of the desired input-output relationship.

Definition: An **instance** of a problem is all the inputs needed to compute a solution to the problem.

Definition: An **algorithm** is a well defined **computational procedure** that transforms inputs into outputs, achieving the desired input-output relationship.

Definition: A **correct algorithm halts** with the correct output for every input instance. We can then say that the algorithm **solves** the problem.
Example of Problems and Instances

Computational Problem: Sorting

- **Input:** Sequence of n numbers $\langle a_1, \cdots, a_n \rangle$.

- **Output:** Permutation (reordering)

 $\langle a_1', a_2', \cdots, a_n' \rangle$

 such that $a_1' \leq a_2' \leq \cdots \leq a_n'$.

Instance of Problem:

- **Input:** Permutation

 $\langle 8, 3, 6, 7, 1, 2, 9 \rangle$

- **Output:** Permutation (reordering)

 $\langle 1, 2, 3, 6, 7, 8, 9 \rangle$
Example of Algorithm: Insertion Sort

In-Place Sort: uses only a fixed amount of storage beyond that needed for the data.

Pseudocode: A is an array of numbers

for $j = 2$ to length(A)
{ key = A[j];
 $i = j - 1$;
 while ($i \geq 1$ and $A[i] > key$)
 { $A[i + 1] = A[i]$;
 $i = i - 1$;
 }
 $A[i + 1] = key$;
}

Pause: How does it work?
Insertion Sort: an Incremental Approach

To sort a given array of length \(n \), at the \(i \)th step it sorts the array of the first \(i \) items by making use of the sorted array of the first \(i - 1 \) items in the \((i - 1) \)th Step.

Example: Sort \(A = \langle 6, 3, 2, 4 \rangle \) with Insertion Sort.

Step 1: \(\langle 6, 3, 2, 4 \rangle \)

Step 2: \(\langle 3, 6, 2, 4 \rangle \)

Step 3: \(\langle 2, 3, 6, 4 \rangle \)

Step 4: \(\langle 2, 3, 4, 6 \rangle \)
Analyzing Algorithms

Predict resource utilization

1. Memory (space complexity)

2. Running time (time complexity)

Remark: Really depends on the model of computation, e.g.,
sequential vs. parallel or internal memory vs. external memory.
In this class we usually assume sequential and internal memory.
Analyzing Algorithms – Continued

Running time: the number of *primitive operations* used to solve the problem.

Primitive operations:
e.g., addition, multiplication, comparisons.
In more advanced models could be page faults or Map/Reduce calls

Running time: depends on problem instance, often we find an upper bound: $F(\text{input size})$

Input size: rigorous definition given later.

1. **Sorting:** number of items to be sorted

2. **Multiplication:** number of bits, number of digits.

3. **Graphs:** number of vertices and edges.
Three Cases of Analysis

Best Case: constraints on the input, other than size, resulting in the fastest possible running time.

Worst Case: constraints on the input, other than size, resulting in the slowest possible running time. Example. In the worst case Quicksort runs in $\Theta(n^2)$ time on an input of n keys.

Average Case: average running time over every possible type of input (usually involve probabilities of different types of input). Example. In the average case Quicksort runs in $\Theta(n \log n)$ time on an input of n keys. All $n!$ inputs of n keys are considered equally likely.

Remark: All cases are relative to the algorithm under consideration.
Three Analyses of Insertion Sorting

The number of comparisons needed is equal to

$$
\underbrace{1 + 1 + 1 + \cdots + 1}_{n-1} = n - 1 = \Theta(n).
$$

The number of comparisons needed is equal to

$$
1 + 2 + \cdots + (n - 1) = \frac{n(n - 1)}{2} = \Theta(n^2).
$$

Average Case: $\Theta(n^2)$ assuming that each of the $n!$ instances are equally likely.
Some thoughts on Algorithm Design

- *Algorithm Design*, as taught in this class, is mainly about designing algorithms that have small big $O()$ running times.

- “All other things being equal”,
 $O(n \log n)$ algorithms will run more quickly than $O(n^2)$ ones and
 $O(n)$ algorithms will beat $O(n \log n)$ ones.

- Being able to do good algorithm design lets you identify the *hard parts* of your problem and deal with them effectively.

- Too often, programmers try to solve problems using brute force techniques and end up with slow complicated code! A few hours of abstract thought devoted to algorithm design could have speeded up the solution substantially *and* simplified it.
Note: After algorithm design one can continue on to *Algorithm tuning* which would further concentrate on improving algorithms by cutting down on the *constants* in the big $\mathcal{O}()$ bounds. This needs a good understanding of both algorithm design principles and efficient use of data structures. In this course we will not go further into algorithm tuning. For a good introduction, see Chapter 9 in *Programming Pearls, 2nd ed* by Jon Bentley.